liger-kernel-nightly 0.6.2.dev20251011154427__py3-none-any.whl → 0.6.4.dev20260107111351__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/cosine_similarity_loss.py +20 -5
- liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
- liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
- liger_kernel/chunked_loss/grpo_loss.py +8 -5
- liger_kernel/chunked_loss/jsd_loss.py +39 -11
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +43 -0
- liger_kernel/ops/backends/_ascend/ops/geglu.py +244 -0
- liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
- liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
- liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
- liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +75 -12
- liger_kernel/ops/dyt.py +5 -2
- liger_kernel/ops/fused_add_rms_norm.py +5 -1
- liger_kernel/ops/fused_linear_cross_entropy.py +45 -14
- liger_kernel/ops/geglu.py +5 -3
- liger_kernel/ops/group_norm.py +2 -1
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +86 -66
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +131 -49
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +14 -0
- liger_kernel/transformers/__init__.py +30 -0
- liger_kernel/transformers/auto_model.py +21 -0
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +1 -1
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/functional.py +48 -25
- liger_kernel/transformers/fused_add_rms_norm.py +1 -1
- liger_kernel/transformers/fused_linear_cross_entropy.py +9 -4
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +57 -2
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +1 -1
- liger_kernel/transformers/model/falcon_h1.py +19 -5
- liger_kernel/transformers/model/gemma.py +17 -6
- liger_kernel/transformers/model/gemma2.py +14 -5
- liger_kernel/transformers/model/gemma3.py +26 -12
- liger_kernel/transformers/model/glm4.py +16 -4
- liger_kernel/transformers/model/glm4v.py +16 -4
- liger_kernel/transformers/model/glm4v_moe.py +23 -4
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +12 -5
- liger_kernel/transformers/model/llama.py +14 -5
- liger_kernel/transformers/model/llama4.py +16 -4
- liger_kernel/transformers/model/llava.py +12 -4
- liger_kernel/transformers/model/loss_utils.py +31 -3
- liger_kernel/transformers/model/mistral.py +15 -6
- liger_kernel/transformers/model/mixtral.py +16 -7
- liger_kernel/transformers/model/mllama.py +12 -4
- liger_kernel/transformers/model/olmo2.py +16 -4
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +23 -5
- liger_kernel/transformers/model/phi3.py +14 -7
- liger_kernel/transformers/model/qwen2.py +16 -3
- liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
- liger_kernel/transformers/model/qwen2_vl.py +16 -4
- liger_kernel/transformers/model/qwen3.py +20 -5
- liger_kernel/transformers/model/qwen3_moe.py +19 -5
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +15 -6
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +702 -48
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +15 -3
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +1 -1
- liger_kernel/transformers/sparsemax.py +1 -1
- liger_kernel/transformers/swiglu.py +18 -1
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +52 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/METADATA +12 -3
- liger_kernel_nightly-0.6.4.dev20260107111351.dist-info/RECORD +130 -0
- liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/RECORD +0 -107
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20260107111351.dist-info}/top_level.txt +0 -0
|
@@ -12,6 +12,8 @@ from transformers.utils.deprecation import deprecate_kwarg
|
|
|
12
12
|
|
|
13
13
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
14
14
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
15
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
16
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
15
17
|
|
|
16
18
|
|
|
17
19
|
def lce_forward_deprecated(
|
|
@@ -147,7 +149,7 @@ def lce_forward(
|
|
|
147
149
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
148
150
|
skip_logits: Optional[bool] = None,
|
|
149
151
|
**kwargs,
|
|
150
|
-
) -> Union[Tuple,
|
|
152
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
151
153
|
r"""
|
|
152
154
|
Args:
|
|
153
155
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -209,6 +211,7 @@ def lce_forward(
|
|
|
209
211
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
210
212
|
logits = None
|
|
211
213
|
loss = None
|
|
214
|
+
token_accuracy = None
|
|
212
215
|
|
|
213
216
|
if skip_logits and labels is None and shift_labels is None:
|
|
214
217
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -217,8 +220,9 @@ def lce_forward(
|
|
|
217
220
|
# By default, if in training mode, don't materialize logits
|
|
218
221
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
219
222
|
|
|
223
|
+
# Compute loss
|
|
220
224
|
if skip_logits:
|
|
221
|
-
|
|
225
|
+
result = LigerForCausalLMLoss(
|
|
222
226
|
hidden_states=kept_hidden_states,
|
|
223
227
|
lm_head_weight=self.lm_head.weight,
|
|
224
228
|
labels=labels,
|
|
@@ -226,6 +230,7 @@ def lce_forward(
|
|
|
226
230
|
hidden_size=self.config.hidden_size,
|
|
227
231
|
**kwargs,
|
|
228
232
|
)
|
|
233
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
229
234
|
else:
|
|
230
235
|
logits = self.lm_head(kept_hidden_states)
|
|
231
236
|
if labels is not None or shift_labels is not None:
|
|
@@ -238,13 +243,19 @@ def lce_forward(
|
|
|
238
243
|
)
|
|
239
244
|
|
|
240
245
|
if not return_dict:
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
246
|
+
output_tuple = (logits,) + outputs[1:]
|
|
247
|
+
if loss is not None:
|
|
248
|
+
output_tuple = (loss,) + output_tuple
|
|
249
|
+
if token_accuracy is not None:
|
|
250
|
+
output_tuple = output_tuple + (token_accuracy,)
|
|
251
|
+
return output_tuple
|
|
252
|
+
|
|
253
|
+
# Return custom output class with token_accuracy field
|
|
254
|
+
return LigerCausalLMOutputWithPast(
|
|
245
255
|
loss=loss,
|
|
246
256
|
logits=logits,
|
|
247
257
|
past_key_values=outputs.past_key_values,
|
|
248
258
|
hidden_states=outputs.hidden_states,
|
|
249
259
|
attentions=outputs.attentions,
|
|
260
|
+
token_accuracy=token_accuracy,
|
|
250
261
|
)
|
|
@@ -13,6 +13,8 @@ from transformers.utils.deprecation import deprecate_kwarg
|
|
|
13
13
|
|
|
14
14
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
15
15
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
16
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
17
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
16
18
|
|
|
17
19
|
logger = logging.getLogger(__name__)
|
|
18
20
|
|
|
@@ -158,7 +160,7 @@ def lce_forward(
|
|
|
158
160
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
159
161
|
skip_logits: Optional[bool] = None,
|
|
160
162
|
**kwargs,
|
|
161
|
-
) -> Union[Tuple,
|
|
163
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
162
164
|
r"""
|
|
163
165
|
Args:
|
|
164
166
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -225,6 +227,7 @@ def lce_forward(
|
|
|
225
227
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
226
228
|
logits = None
|
|
227
229
|
loss = None
|
|
230
|
+
token_accuracy = None
|
|
228
231
|
|
|
229
232
|
if skip_logits and labels is None and shift_labels is None:
|
|
230
233
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -233,8 +236,9 @@ def lce_forward(
|
|
|
233
236
|
# By default, if in training mode, don't materialize logits
|
|
234
237
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
235
238
|
|
|
239
|
+
# Compute loss
|
|
236
240
|
if skip_logits:
|
|
237
|
-
|
|
241
|
+
result = LigerForCausalLMLoss(
|
|
238
242
|
hidden_states=kept_hidden_states,
|
|
239
243
|
lm_head_weight=self.lm_head.weight,
|
|
240
244
|
labels=labels,
|
|
@@ -243,6 +247,7 @@ def lce_forward(
|
|
|
243
247
|
final_logit_softcapping=self.config.final_logit_softcapping,
|
|
244
248
|
**kwargs,
|
|
245
249
|
)
|
|
250
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
246
251
|
|
|
247
252
|
else:
|
|
248
253
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -262,13 +267,17 @@ def lce_forward(
|
|
|
262
267
|
)
|
|
263
268
|
|
|
264
269
|
if not return_dict:
|
|
265
|
-
|
|
266
|
-
|
|
270
|
+
output_tuple = (logits,) + outputs[1:]
|
|
271
|
+
output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
|
|
272
|
+
output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
|
|
273
|
+
return output_tuple
|
|
267
274
|
|
|
268
|
-
|
|
275
|
+
# Return custom output class with token_accuracy field
|
|
276
|
+
return LigerCausalLMOutputWithPast(
|
|
269
277
|
loss=loss,
|
|
270
278
|
logits=logits,
|
|
271
279
|
past_key_values=outputs.past_key_values,
|
|
272
280
|
hidden_states=outputs.hidden_states,
|
|
273
281
|
attentions=outputs.attentions,
|
|
282
|
+
token_accuracy=token_accuracy,
|
|
274
283
|
)
|
|
@@ -7,12 +7,13 @@ import torch.nn as nn
|
|
|
7
7
|
|
|
8
8
|
from transformers.cache_utils import Cache
|
|
9
9
|
from transformers.cache_utils import HybridCache
|
|
10
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
11
|
-
from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast
|
|
12
10
|
from transformers.utils import logging
|
|
13
11
|
|
|
14
12
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
15
13
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
15
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
16
|
+
from liger_kernel.transformers.model.output_classes import LigerGemma3CausalLMOutputWithPast
|
|
16
17
|
|
|
17
18
|
logger = logging.get_logger(__name__)
|
|
18
19
|
|
|
@@ -33,7 +34,7 @@ def causal_forward(
|
|
|
33
34
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
34
35
|
skip_logits: Optional[bool] = None,
|
|
35
36
|
**loss_kwargs,
|
|
36
|
-
) -> Union[Tuple,
|
|
37
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
37
38
|
r"""
|
|
38
39
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
39
40
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -98,12 +99,14 @@ def causal_forward(
|
|
|
98
99
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
|
99
100
|
loss = None
|
|
100
101
|
logits = None
|
|
102
|
+
token_accuracy = None
|
|
101
103
|
|
|
102
104
|
if skip_logits is None:
|
|
103
105
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
104
106
|
|
|
107
|
+
# Compute loss
|
|
105
108
|
if skip_logits:
|
|
106
|
-
|
|
109
|
+
result = LigerForCausalLMLoss(
|
|
107
110
|
hidden_states=kept_hidden_states,
|
|
108
111
|
lm_head_weight=self.lm_head.weight,
|
|
109
112
|
labels=labels,
|
|
@@ -112,7 +115,7 @@ def causal_forward(
|
|
|
112
115
|
final_logit_softcapping=self.config.final_logit_softcapping,
|
|
113
116
|
**loss_kwargs,
|
|
114
117
|
)
|
|
115
|
-
|
|
118
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
116
119
|
else:
|
|
117
120
|
logits = self.lm_head(kept_hidden_states)
|
|
118
121
|
if self.config.final_logit_softcapping is not None:
|
|
@@ -129,15 +132,19 @@ def causal_forward(
|
|
|
129
132
|
)
|
|
130
133
|
|
|
131
134
|
if not return_dict:
|
|
132
|
-
|
|
133
|
-
|
|
135
|
+
output_tuple = (logits,) + outputs[1:]
|
|
136
|
+
output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
|
|
137
|
+
output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
|
|
138
|
+
return output_tuple
|
|
134
139
|
|
|
135
|
-
|
|
140
|
+
# Return custom output class with token_accuracy field
|
|
141
|
+
return LigerCausalLMOutputWithPast(
|
|
136
142
|
loss=loss,
|
|
137
143
|
logits=logits,
|
|
138
144
|
past_key_values=outputs.past_key_values,
|
|
139
145
|
hidden_states=outputs.hidden_states,
|
|
140
146
|
attentions=outputs.attentions,
|
|
147
|
+
token_accuracy=token_accuracy,
|
|
141
148
|
)
|
|
142
149
|
|
|
143
150
|
|
|
@@ -159,7 +166,7 @@ def multimodal_forward(
|
|
|
159
166
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
160
167
|
skip_logits: Optional[bool] = None,
|
|
161
168
|
**lm_kwargs,
|
|
162
|
-
) -> Union[tuple,
|
|
169
|
+
) -> Union[tuple, LigerGemma3CausalLMOutputWithPast]:
|
|
163
170
|
r"""
|
|
164
171
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
165
172
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -228,6 +235,7 @@ def multimodal_forward(
|
|
|
228
235
|
**lm_kwargs,
|
|
229
236
|
)
|
|
230
237
|
|
|
238
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
231
239
|
hidden_states = outputs[0]
|
|
232
240
|
|
|
233
241
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
@@ -235,6 +243,7 @@ def multimodal_forward(
|
|
|
235
243
|
|
|
236
244
|
loss = None
|
|
237
245
|
logits = None
|
|
246
|
+
token_accuracy = None
|
|
238
247
|
if skip_logits and labels is None:
|
|
239
248
|
raise ValueError("skip_logits is True, but labels is None")
|
|
240
249
|
|
|
@@ -261,7 +270,9 @@ def multimodal_forward(
|
|
|
261
270
|
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
262
271
|
|
|
263
272
|
lce = LigerFusedLinearCrossEntropyLoss()
|
|
264
|
-
|
|
273
|
+
result = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
274
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
275
|
+
|
|
265
276
|
else:
|
|
266
277
|
logits = self.lm_head(kept_hidden_states)
|
|
267
278
|
if labels is not None:
|
|
@@ -306,13 +317,16 @@ def multimodal_forward(
|
|
|
306
317
|
|
|
307
318
|
if not return_dict:
|
|
308
319
|
output = (logits,) + outputs[1:]
|
|
309
|
-
|
|
320
|
+
output = (loss,) + output if loss is not None else output
|
|
321
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
322
|
+
return output
|
|
310
323
|
|
|
311
|
-
return
|
|
324
|
+
return LigerGemma3CausalLMOutputWithPast(
|
|
312
325
|
loss=loss,
|
|
313
326
|
logits=logits,
|
|
314
327
|
past_key_values=outputs.past_key_values,
|
|
315
328
|
hidden_states=outputs.hidden_states,
|
|
316
329
|
attentions=outputs.attentions,
|
|
317
330
|
image_hidden_states=outputs.image_hidden_states,
|
|
331
|
+
token_accuracy=token_accuracy,
|
|
318
332
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
8
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -28,7 +29,7 @@ def lce_forward(
|
|
|
28
29
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
30
|
skip_logits: Optional[bool] = None,
|
|
30
31
|
**kwargs,
|
|
31
|
-
) -> Union[Tuple,
|
|
32
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
32
33
|
r"""
|
|
33
34
|
Args:
|
|
34
35
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -91,6 +92,7 @@ def lce_forward(
|
|
|
91
92
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
92
93
|
logits = None
|
|
93
94
|
loss = None
|
|
95
|
+
token_accuracy = None
|
|
94
96
|
|
|
95
97
|
if skip_logits and labels is None and shift_labels is None:
|
|
96
98
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -99,8 +101,9 @@ def lce_forward(
|
|
|
99
101
|
# By default, if in training mode, don't materialize logits
|
|
100
102
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
101
103
|
|
|
104
|
+
# Compute loss
|
|
102
105
|
if skip_logits:
|
|
103
|
-
|
|
106
|
+
result = LigerForCausalLMLoss(
|
|
104
107
|
hidden_states=kept_hidden_states,
|
|
105
108
|
lm_head_weight=self.lm_head.weight,
|
|
106
109
|
labels=labels,
|
|
@@ -108,6 +111,7 @@ def lce_forward(
|
|
|
108
111
|
hidden_size=self.config.hidden_size,
|
|
109
112
|
**kwargs,
|
|
110
113
|
)
|
|
114
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
111
115
|
|
|
112
116
|
else:
|
|
113
117
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -120,10 +124,18 @@ def lce_forward(
|
|
|
120
124
|
**kwargs,
|
|
121
125
|
)
|
|
122
126
|
|
|
123
|
-
|
|
127
|
+
if not return_dict:
|
|
128
|
+
output = (logits,) + outputs[1:]
|
|
129
|
+
output = ((loss,) + output) if loss is not None else output
|
|
130
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
131
|
+
return output
|
|
132
|
+
|
|
133
|
+
# Return custom output class with token_accuracy field
|
|
134
|
+
return LigerCausalLMOutputWithPast(
|
|
124
135
|
loss=loss,
|
|
125
136
|
logits=logits,
|
|
126
137
|
past_key_values=outputs.past_key_values,
|
|
127
138
|
hidden_states=outputs.hidden_states,
|
|
128
139
|
attentions=outputs.attentions,
|
|
140
|
+
token_accuracy=token_accuracy,
|
|
129
141
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
8
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -28,7 +29,7 @@ def lce_forward(
|
|
|
28
29
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
30
|
skip_logits: Optional[bool] = None,
|
|
30
31
|
**kwargs,
|
|
31
|
-
) -> Union[Tuple,
|
|
32
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
32
33
|
r"""
|
|
33
34
|
Args:
|
|
34
35
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -113,6 +114,7 @@ def lce_forward(
|
|
|
113
114
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
114
115
|
logits = None
|
|
115
116
|
loss = None
|
|
117
|
+
token_accuracy = None
|
|
116
118
|
|
|
117
119
|
if skip_logits and labels is None and shift_labels is None:
|
|
118
120
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -121,8 +123,9 @@ def lce_forward(
|
|
|
121
123
|
# By default, if in training mode, don't materialize logits
|
|
122
124
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
123
125
|
|
|
126
|
+
# Compute loss
|
|
124
127
|
if skip_logits:
|
|
125
|
-
|
|
128
|
+
result = LigerForCausalLMLoss(
|
|
126
129
|
hidden_states=kept_hidden_states,
|
|
127
130
|
lm_head_weight=self.lm_head.weight,
|
|
128
131
|
labels=labels,
|
|
@@ -130,6 +133,7 @@ def lce_forward(
|
|
|
130
133
|
hidden_size=self.config.hidden_size,
|
|
131
134
|
**kwargs,
|
|
132
135
|
)
|
|
136
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
133
137
|
|
|
134
138
|
else:
|
|
135
139
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -142,10 +146,18 @@ def lce_forward(
|
|
|
142
146
|
**kwargs,
|
|
143
147
|
)
|
|
144
148
|
|
|
145
|
-
|
|
149
|
+
if not return_dict:
|
|
150
|
+
output = (logits,) + outputs[1:]
|
|
151
|
+
output = ((loss,) + output) if loss is not None else output
|
|
152
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
153
|
+
return output
|
|
154
|
+
|
|
155
|
+
# Return custom output class with token_accuracy field
|
|
156
|
+
return LigerCausalLMOutputWithPast(
|
|
146
157
|
loss=loss,
|
|
147
158
|
logits=logits,
|
|
148
159
|
past_key_values=outputs.past_key_values,
|
|
149
160
|
hidden_states=outputs.hidden_states,
|
|
150
161
|
attentions=outputs.attentions,
|
|
162
|
+
token_accuracy=token_accuracy,
|
|
151
163
|
)
|
|
@@ -4,10 +4,11 @@ from typing import Union
|
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
|
|
7
|
-
from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeCausalLMOutputWithPast
|
|
8
7
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
9
8
|
|
|
10
9
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
11
|
+
from liger_kernel.transformers.model.output_classes import LigerGlm4vMoeCausalLMOutputWithPast
|
|
11
12
|
|
|
12
13
|
|
|
13
14
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -27,8 +28,9 @@ def lce_forward(
|
|
|
27
28
|
cache_position: Optional[torch.LongTensor] = None,
|
|
28
29
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
30
|
skip_logits: Optional[bool] = None,
|
|
31
|
+
return_dict: Optional[bool] = None,
|
|
30
32
|
**kwargs,
|
|
31
|
-
) -> Union[Tuple,
|
|
33
|
+
) -> Union[Tuple, LigerGlm4vMoeCausalLMOutputWithPast]:
|
|
32
34
|
r"""
|
|
33
35
|
Args:
|
|
34
36
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -90,6 +92,7 @@ def lce_forward(
|
|
|
90
92
|
>>> output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
|
|
91
93
|
```
|
|
92
94
|
"""
|
|
95
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
93
96
|
|
|
94
97
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
95
98
|
outputs = self.model(
|
|
@@ -114,6 +117,7 @@ def lce_forward(
|
|
|
114
117
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
115
118
|
logits = None
|
|
116
119
|
loss = None
|
|
120
|
+
token_accuracy = None
|
|
117
121
|
|
|
118
122
|
if skip_logits and labels is None and shift_labels is None:
|
|
119
123
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -122,8 +126,9 @@ def lce_forward(
|
|
|
122
126
|
# By default, if in training mode, don't materialize logits
|
|
123
127
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
124
128
|
|
|
129
|
+
# Compute loss
|
|
125
130
|
if skip_logits:
|
|
126
|
-
|
|
131
|
+
result = LigerForCausalLMLoss(
|
|
127
132
|
hidden_states=kept_hidden_states,
|
|
128
133
|
lm_head_weight=self.lm_head.weight,
|
|
129
134
|
labels=labels,
|
|
@@ -131,6 +136,7 @@ def lce_forward(
|
|
|
131
136
|
hidden_size=self.config.hidden_size,
|
|
132
137
|
**kwargs,
|
|
133
138
|
)
|
|
139
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
134
140
|
|
|
135
141
|
else:
|
|
136
142
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -143,11 +149,24 @@ def lce_forward(
|
|
|
143
149
|
**kwargs,
|
|
144
150
|
)
|
|
145
151
|
|
|
146
|
-
|
|
152
|
+
if not return_dict:
|
|
153
|
+
output = (logits,) + outputs[1:]
|
|
154
|
+
output = ((loss,) + output) if loss is not None else output
|
|
155
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
156
|
+
return output
|
|
157
|
+
|
|
158
|
+
# Build output kwargs and include aux_loss only if present (depends on transformers version)
|
|
159
|
+
output_kwargs = dict(
|
|
147
160
|
loss=loss,
|
|
148
161
|
logits=logits,
|
|
149
162
|
past_key_values=outputs.past_key_values,
|
|
150
163
|
hidden_states=outputs.hidden_states,
|
|
151
164
|
attentions=outputs.attentions,
|
|
152
165
|
rope_deltas=outputs.rope_deltas,
|
|
166
|
+
token_accuracy=token_accuracy,
|
|
153
167
|
)
|
|
168
|
+
if hasattr(outputs, "aux_loss"):
|
|
169
|
+
output_kwargs["aux_loss"] = outputs.aux_loss
|
|
170
|
+
|
|
171
|
+
# Return GLM4V MoE output with accuracy
|
|
172
|
+
return LigerGlm4vMoeCausalLMOutputWithPast(**output_kwargs)
|