liger-kernel-nightly 0.5.2.dev20241223032630__py3-none-any.whl → 0.5.2.dev20241223042135__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. liger_kernel/chunked_loss/cpo_loss.py +5 -11
  2. liger_kernel/chunked_loss/dpo_loss.py +1 -4
  3. liger_kernel/chunked_loss/fused_linear_distillation.py +37 -37
  4. liger_kernel/chunked_loss/fused_linear_preference.py +40 -64
  5. liger_kernel/chunked_loss/orpo_loss.py +2 -6
  6. liger_kernel/chunked_loss/simpo_loss.py +4 -8
  7. liger_kernel/env_report.py +4 -11
  8. liger_kernel/ops/cross_entropy.py +7 -10
  9. liger_kernel/ops/experimental/embedding.py +1 -3
  10. liger_kernel/ops/experimental/mm_int8int2.py +3 -9
  11. liger_kernel/ops/fused_linear_cross_entropy.py +7 -15
  12. liger_kernel/ops/fused_linear_jsd.py +11 -29
  13. liger_kernel/ops/geglu.py +6 -17
  14. liger_kernel/ops/group_norm.py +11 -28
  15. liger_kernel/ops/jsd.py +2 -6
  16. liger_kernel/ops/kl_div.py +4 -7
  17. liger_kernel/ops/layer_norm.py +3 -5
  18. liger_kernel/ops/qwen2vl_mrope.py +8 -25
  19. liger_kernel/ops/rms_norm.py +11 -29
  20. liger_kernel/ops/rope.py +8 -24
  21. liger_kernel/ops/swiglu.py +4 -8
  22. liger_kernel/ops/utils.py +2 -0
  23. liger_kernel/transformers/__init__.py +16 -24
  24. liger_kernel/transformers/auto_model.py +6 -13
  25. liger_kernel/transformers/cross_entropy.py +1 -3
  26. liger_kernel/transformers/experimental/embedding.py +1 -3
  27. liger_kernel/transformers/functional.py +2 -6
  28. liger_kernel/transformers/fused_linear_cross_entropy.py +2 -6
  29. liger_kernel/transformers/geglu.py +1 -4
  30. liger_kernel/transformers/group_norm.py +3 -9
  31. liger_kernel/transformers/jsd.py +1 -3
  32. liger_kernel/transformers/kl_div.py +1 -3
  33. liger_kernel/transformers/layer_norm.py +3 -9
  34. liger_kernel/transformers/model/gemma.py +18 -40
  35. liger_kernel/transformers/model/gemma2.py +19 -41
  36. liger_kernel/transformers/model/llama.py +22 -48
  37. liger_kernel/transformers/model/mistral.py +14 -26
  38. liger_kernel/transformers/model/mixtral.py +23 -53
  39. liger_kernel/transformers/model/mllama.py +16 -36
  40. liger_kernel/transformers/model/phi3.py +18 -40
  41. liger_kernel/transformers/model/qwen2.py +18 -40
  42. liger_kernel/transformers/model/qwen2_vl.py +16 -30
  43. liger_kernel/transformers/monkey_patch.py +43 -117
  44. liger_kernel/transformers/rms_norm.py +4 -4
  45. liger_kernel/transformers/swiglu.py +2 -8
  46. liger_kernel/transformers/trainer/__init__.py +1 -3
  47. liger_kernel/transformers/trainer/orpo_trainer.py +13 -16
  48. liger_kernel/triton/__init__.py +1 -3
  49. liger_kernel/triton/monkey_patch.py +1 -3
  50. {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/METADATA +1 -1
  51. liger_kernel_nightly-0.5.2.dev20241223042135.dist-info/RECORD +66 -0
  52. liger_kernel_nightly-0.5.2.dev20241223032630.dist-info/RECORD +0 -66
  53. {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/LICENSE +0 -0
  54. {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/NOTICE +0 -0
  55. {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/WHEEL +0 -0
  56. {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/top_level.txt +0 -0
@@ -1,26 +1,22 @@
1
- from typing import List, Optional, Tuple, Union
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
2
5
 
3
6
  import torch
7
+
4
8
  from torch.nn import CrossEntropyLoss
5
9
  from transformers.modeling_outputs import CausalLMOutputWithPast
6
- from transformers.models.phi3.modeling_phi3 import (
7
- _CONFIG_FOR_DOC,
8
- PHI3_INPUTS_DOCSTRING,
9
- )
10
- from transformers.utils import (
11
- add_start_docstrings_to_model_forward,
12
- replace_return_docstrings,
13
- )
10
+ from transformers.models.phi3.modeling_phi3 import _CONFIG_FOR_DOC
11
+ from transformers.models.phi3.modeling_phi3 import PHI3_INPUTS_DOCSTRING
12
+ from transformers.utils import add_start_docstrings_to_model_forward
13
+ from transformers.utils import replace_return_docstrings
14
14
 
15
- from liger_kernel.transformers.fused_linear_cross_entropy import (
16
- LigerFusedLinearCrossEntropyLoss,
17
- )
15
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
18
16
 
19
17
 
20
18
  @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
21
- @replace_return_docstrings(
22
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
23
- )
19
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
24
20
  def lce_forward_deprecated(
25
21
  self,
26
22
  input_ids: torch.LongTensor = None,
@@ -64,19 +60,11 @@ def lce_forward_deprecated(
64
60
  'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
65
61
  ```"""
66
62
 
67
- output_attentions = (
68
- output_attentions
69
- if output_attentions is not None
70
- else self.config.output_attentions
71
- )
63
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
72
64
  output_hidden_states = (
73
- output_hidden_states
74
- if output_hidden_states is not None
75
- else self.config.output_hidden_states
76
- )
77
- return_dict = (
78
- return_dict if return_dict is not None else self.config.use_return_dict
65
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
79
66
  )
67
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
80
68
 
81
69
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
82
70
  outputs = self.model(
@@ -138,9 +126,7 @@ def lce_forward_deprecated(
138
126
 
139
127
 
140
128
  @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
141
- @replace_return_docstrings(
142
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
143
- )
129
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
144
130
  def lce_forward(
145
131
  self,
146
132
  input_ids: torch.LongTensor = None,
@@ -202,19 +188,11 @@ def lce_forward(
202
188
  f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed."
203
189
  )
204
190
 
205
- output_attentions = (
206
- output_attentions
207
- if output_attentions is not None
208
- else self.config.output_attentions
209
- )
191
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
210
192
  output_hidden_states = (
211
- output_hidden_states
212
- if output_hidden_states is not None
213
- else self.config.output_hidden_states
214
- )
215
- return_dict = (
216
- return_dict if return_dict is not None else self.config.use_return_dict
193
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
217
194
  )
195
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
218
196
 
219
197
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
220
198
  outputs = self.model(
@@ -1,26 +1,22 @@
1
- from typing import List, Optional, Tuple, Union
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
2
5
 
3
6
  import torch
7
+
4
8
  from torch.nn import CrossEntropyLoss
5
9
  from transformers.modeling_outputs import CausalLMOutputWithPast
6
- from transformers.models.qwen2.modeling_qwen2 import (
7
- _CONFIG_FOR_DOC,
8
- QWEN2_INPUTS_DOCSTRING,
9
- )
10
- from transformers.utils import (
11
- add_start_docstrings_to_model_forward,
12
- replace_return_docstrings,
13
- )
10
+ from transformers.models.qwen2.modeling_qwen2 import _CONFIG_FOR_DOC
11
+ from transformers.models.qwen2.modeling_qwen2 import QWEN2_INPUTS_DOCSTRING
12
+ from transformers.utils import add_start_docstrings_to_model_forward
13
+ from transformers.utils import replace_return_docstrings
14
14
 
15
- from liger_kernel.transformers.fused_linear_cross_entropy import (
16
- LigerFusedLinearCrossEntropyLoss,
17
- )
15
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
18
16
 
19
17
 
20
18
  @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
21
- @replace_return_docstrings(
22
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
23
- )
19
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
24
20
  def lce_forward_deprecated(
25
21
  self,
26
22
  input_ids: torch.LongTensor = None,
@@ -63,19 +59,11 @@ def lce_forward_deprecated(
63
59
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
64
60
  "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
65
61
  ```"""
66
- output_attentions = (
67
- output_attentions
68
- if output_attentions is not None
69
- else self.config.output_attentions
70
- )
62
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
71
63
  output_hidden_states = (
72
- output_hidden_states
73
- if output_hidden_states is not None
74
- else self.config.output_hidden_states
75
- )
76
- return_dict = (
77
- return_dict if return_dict is not None else self.config.use_return_dict
64
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
78
65
  )
66
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
79
67
 
80
68
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
81
69
  outputs = self.model(
@@ -137,9 +125,7 @@ def lce_forward_deprecated(
137
125
 
138
126
 
139
127
  @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
140
- @replace_return_docstrings(
141
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
142
- )
128
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
143
129
  def lce_forward(
144
130
  self,
145
131
  input_ids: torch.LongTensor = None,
@@ -187,19 +173,11 @@ def lce_forward(
187
173
  "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
188
174
  ```"""
189
175
 
190
- output_attentions = (
191
- output_attentions
192
- if output_attentions is not None
193
- else self.config.output_attentions
194
- )
176
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
195
177
  output_hidden_states = (
196
- output_hidden_states
197
- if output_hidden_states is not None
198
- else self.config.output_hidden_states
199
- )
200
- return_dict = (
201
- return_dict if return_dict is not None else self.config.use_return_dict
178
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
202
179
  )
180
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
203
181
 
204
182
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
205
183
  outputs = self.model(
@@ -1,28 +1,24 @@
1
- from typing import List, Optional, Tuple, Union
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
2
5
 
3
6
  import torch
7
+
4
8
  from packaging import version
5
9
  from torch.nn import CrossEntropyLoss
6
10
  from transformers import __version__ as transformers_version
7
- from transformers.models.qwen2_vl.modeling_qwen2_vl import (
8
- _CONFIG_FOR_DOC,
9
- QWEN2_VL_INPUTS_DOCSTRING,
10
- Qwen2VLCausalLMOutputWithPast,
11
- )
12
- from transformers.utils import (
13
- add_start_docstrings_to_model_forward,
14
- replace_return_docstrings,
15
- )
11
+ from transformers.models.qwen2_vl.modeling_qwen2_vl import _CONFIG_FOR_DOC
12
+ from transformers.models.qwen2_vl.modeling_qwen2_vl import QWEN2_VL_INPUTS_DOCSTRING
13
+ from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast
14
+ from transformers.utils import add_start_docstrings_to_model_forward
15
+ from transformers.utils import replace_return_docstrings
16
16
 
17
- from liger_kernel.transformers.fused_linear_cross_entropy import (
18
- LigerFusedLinearCrossEntropyLoss,
19
- )
17
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
20
18
 
21
19
 
22
20
  @add_start_docstrings_to_model_forward(QWEN2_VL_INPUTS_DOCSTRING)
23
- @replace_return_docstrings(
24
- output_type=Qwen2VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
25
- )
21
+ @replace_return_docstrings(output_type=Qwen2VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
26
22
  def lce_forward(
27
23
  self,
28
24
  input_ids: torch.LongTensor = None,
@@ -82,19 +78,11 @@ def lce_forward(
82
78
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
83
79
  "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
84
80
  ```"""
85
- output_attentions = (
86
- output_attentions
87
- if output_attentions is not None
88
- else self.config.output_attentions
89
- )
81
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
90
82
  output_hidden_states = (
91
- output_hidden_states
92
- if output_hidden_states is not None
93
- else self.config.output_hidden_states
94
- )
95
- return_dict = (
96
- return_dict if return_dict is not None else self.config.use_return_dict
83
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
97
84
  )
85
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
98
86
 
99
87
  if inputs_embeds is None:
100
88
  inputs_embeds = self.model.embed_tokens(input_ids)
@@ -144,9 +132,7 @@ def lce_forward(
144
132
  # transformers and leads to failed tests or users noticing differences in results.
145
133
  # TODO: remove above conditional when liger drops support for transformers<4.47.0
146
134
  if position_ids is None and input_ids is not None:
147
- position_ids, _ = self.get_rope_index(
148
- input_ids, image_grid_thw, video_grid_thw, attention_mask
149
- )
135
+ position_ids, _ = self.get_rope_index(input_ids, image_grid_thw, video_grid_thw, attention_mask)
150
136
 
151
137
  outputs = self.model(
152
138
  input_ids=None,
@@ -1,9 +1,11 @@
1
1
  import inspect
2
2
  import logging
3
+
3
4
  from functools import partial
4
5
  from typing import Callable
5
6
 
6
7
  import transformers
8
+
7
9
  from packaging import version
8
10
  from transformers import PreTrainedModel
9
11
 
@@ -12,38 +14,24 @@ from liger_kernel.transformers.functional import liger_cross_entropy
12
14
  from liger_kernel.transformers.geglu import LigerGEGLUMLP
13
15
  from liger_kernel.transformers.layer_norm import LigerLayerNorm
14
16
  from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forward
15
- from liger_kernel.transformers.model.gemma import (
16
- lce_forward_deprecated as gemma_lce_forward_deprecated,
17
- )
17
+ from liger_kernel.transformers.model.gemma import lce_forward_deprecated as gemma_lce_forward_deprecated
18
18
  from liger_kernel.transformers.model.gemma2 import lce_forward as gemma2_lce_forward
19
- from liger_kernel.transformers.model.gemma2 import (
20
- lce_forward_deprecated as gemma2_lce_forward_deprected,
21
- )
19
+ from liger_kernel.transformers.model.gemma2 import lce_forward_deprecated as gemma2_lce_forward_deprected
22
20
  from liger_kernel.transformers.model.llama import lce_forward as llama_lce_forward
23
- from liger_kernel.transformers.model.llama import (
24
- lce_forward_deprecated as llama_lce_forward_deprecated,
25
- )
21
+ from liger_kernel.transformers.model.llama import lce_forward_deprecated as llama_lce_forward_deprecated
26
22
  from liger_kernel.transformers.model.mistral import lce_forward as mistral_lce_forward
27
23
  from liger_kernel.transformers.model.mixtral import lce_forward as mixtral_lce_forward
28
- from liger_kernel.transformers.model.mixtral import (
29
- lce_forward_deprecated as mixtral_lce_forward_deprecated,
30
- )
24
+ from liger_kernel.transformers.model.mixtral import lce_forward_deprecated as mixtral_lce_forward_deprecated
31
25
  from liger_kernel.transformers.model.phi3 import lce_forward as phi3_lce_forward
32
- from liger_kernel.transformers.model.phi3 import (
33
- lce_forward_deprecated as phi3_lce_forward_deprecated,
34
- )
26
+ from liger_kernel.transformers.model.phi3 import lce_forward_deprecated as phi3_lce_forward_deprecated
35
27
  from liger_kernel.transformers.model.qwen2 import lce_forward as qwen2_lce_forward
36
- from liger_kernel.transformers.model.qwen2 import (
37
- lce_forward_deprecated as qwen2_lce_forward_deprecated,
38
- )
28
+ from liger_kernel.transformers.model.qwen2 import lce_forward_deprecated as qwen2_lce_forward_deprecated
39
29
  from liger_kernel.transformers.qwen2vl_mrope import liger_multimodal_rotary_pos_emb
40
30
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
41
31
  from liger_kernel.transformers.rope import liger_rotary_pos_emb
42
- from liger_kernel.transformers.swiglu import (
43
- LigerBlockSparseTop2MLP,
44
- LigerPhi3SwiGLUMLP,
45
- LigerSwiGLUMLP,
46
- )
32
+ from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP
33
+ from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP
34
+ from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
47
35
 
48
36
  transformer_version = version.parse(transformers.__version__)
49
37
 
@@ -57,23 +45,17 @@ def _bind_method_to_module(module, method_name: str, new_method: Callable):
57
45
  module.__dict__[method_name] = new_method.__get__(module, module.__class__)
58
46
 
59
47
 
60
- def _patch_rms_norm_module(
61
- module, offset=0.0, eps=1e-6, casting_mode="llama", in_place=True
62
- ):
48
+ def _patch_rms_norm_module(module, offset=0.0, eps=1e-6, casting_mode="llama", in_place=True):
63
49
  module.offset = offset
64
50
  module.casting_mode = casting_mode
65
- module.variance_epsilon = (
66
- getattr(module, "variance_epsilon", None) or getattr(module, "eps", None) or eps
67
- )
51
+ module.variance_epsilon = getattr(module, "variance_epsilon", None) or getattr(module, "eps", None) or eps
68
52
  module.in_place = in_place
69
53
  _bind_method_to_module(module, "forward", LigerRMSNorm.forward)
70
54
  _bind_method_to_module(module, "extra_repr", LigerRMSNorm.extra_repr)
71
55
 
72
56
 
73
57
  def _patch_layer_norm_module(module, eps=1e-6):
74
- module.variance_epsilon = (
75
- getattr(module, "variance_epsilon", None) or getattr(module, "eps", None) or eps
76
- )
58
+ module.variance_epsilon = getattr(module, "variance_epsilon", None) or getattr(module, "eps", None) or eps
77
59
  module.hidden_size = module.normalized_shape
78
60
  _bind_method_to_module(module, "forward", LigerLayerNorm.forward)
79
61
  _bind_method_to_module(module, "extra_repr", LigerLayerNorm.extra_repr)
@@ -145,9 +127,7 @@ def apply_liger_kernel_to_llama(
145
127
 
146
128
  for decoder_layer in base_model.layers:
147
129
  if swiglu:
148
- _bind_method_to_module(
149
- decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
150
- )
130
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward)
151
131
  if rms_norm:
152
132
  _patch_rms_norm_module(decoder_layer.input_layernorm)
153
133
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
@@ -184,17 +164,13 @@ def apply_liger_kernel_to_mllama(
184
164
  ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
185
165
 
186
166
  from transformers.models.mllama import modeling_mllama
187
- from transformers.models.mllama.modeling_mllama import (
188
- MllamaForCausalLM,
189
- MllamaForConditionalGeneration,
190
- MllamaTextModel,
191
- MllamaVisionModel,
192
- )
167
+ from transformers.models.mllama.modeling_mllama import MllamaForCausalLM
168
+ from transformers.models.mllama.modeling_mllama import MllamaForConditionalGeneration
169
+ from transformers.models.mllama.modeling_mllama import MllamaTextModel
170
+ from transformers.models.mllama.modeling_mllama import MllamaVisionModel
193
171
 
194
172
  from liger_kernel.transformers.model.mllama import lce_forward as mllama_lce_forward
195
- from liger_kernel.transformers.model.mllama import (
196
- lce_forward_deprecated as mllama_lce_forward_deprecated,
197
- )
173
+ from liger_kernel.transformers.model.mllama import lce_forward_deprecated as mllama_lce_forward_deprecated
198
174
 
199
175
  if rope:
200
176
  modeling_mllama.apply_rotary_pos_emb = liger_rotary_pos_emb
@@ -241,9 +217,7 @@ def apply_liger_kernel_to_mllama(
241
217
  _patch_rms_norm_module(text_model.norm)
242
218
  for decoder_layer in text_model.layers:
243
219
  if swiglu:
244
- _bind_method_to_module(
245
- decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
246
- )
220
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward)
247
221
  if rms_norm:
248
222
  _patch_rms_norm_module(decoder_layer.input_layernorm)
249
223
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
@@ -317,9 +291,7 @@ def apply_liger_kernel_to_mistral(
317
291
 
318
292
  for decoder_layer in base_model.layers:
319
293
  if swiglu:
320
- _bind_method_to_module(
321
- decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
322
- )
294
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward)
323
295
  if rms_norm:
324
296
  _patch_rms_norm_module(decoder_layer.input_layernorm)
325
297
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
@@ -391,9 +363,7 @@ def apply_liger_kernel_to_mixtral(
391
363
  for decoder_layer in base_model.layers:
392
364
  if swiglu:
393
365
  for expert in decoder_layer.block_sparse_moe.experts:
394
- _bind_method_to_module(
395
- expert, "forward", LigerBlockSparseTop2MLP.forward
396
- )
366
+ _bind_method_to_module(expert, "forward", LigerBlockSparseTop2MLP.forward)
397
367
  if rms_norm:
398
368
  _patch_rms_norm_module(decoder_layer.input_layernorm)
399
369
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
@@ -431,12 +401,8 @@ def apply_liger_kernel_to_gemma(
431
401
  from transformers.models.gemma.modeling_gemma import GemmaModel
432
402
 
433
403
  # https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/gemma/modeling_gemma.py#L109
434
- LigerRMSNormForGemma = partial(
435
- LigerRMSNorm, offset=1.0, init_fn="zeros", casting_mode="gemma"
436
- )
437
- _patch_rms_norm_module_for_gemma = partial(
438
- _patch_rms_norm_module, casting_mode="gemma", offset=1.0
439
- )
404
+ LigerRMSNormForGemma = partial(LigerRMSNorm, offset=1.0, init_fn="zeros", casting_mode="gemma")
405
+ _patch_rms_norm_module_for_gemma = partial(_patch_rms_norm_module, casting_mode="gemma", offset=1.0)
440
406
 
441
407
  if rope:
442
408
  modeling_gemma.apply_rotary_pos_emb = liger_rotary_pos_emb
@@ -471,9 +437,7 @@ def apply_liger_kernel_to_gemma(
471
437
 
472
438
  for decoder_layer in base_model.layers:
473
439
  if geglu:
474
- _bind_method_to_module(
475
- decoder_layer.mlp, "forward", LigerGEGLUMLP.forward
476
- )
440
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerGEGLUMLP.forward)
477
441
  if rms_norm:
478
442
  _patch_rms_norm_module_for_gemma(decoder_layer.input_layernorm)
479
443
  _patch_rms_norm_module_for_gemma(decoder_layer.post_attention_layernorm)
@@ -510,9 +474,7 @@ def apply_liger_kernel_to_gemma2(
510
474
  from transformers.models.gemma2 import modeling_gemma2
511
475
  from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
512
476
 
513
- LigerRMSNormForGemma2 = partial(
514
- LigerRMSNorm, offset=1.0, casting_mode="gemma", init_fn="zeros", in_place=False
515
- )
477
+ LigerRMSNormForGemma2 = partial(LigerRMSNorm, offset=1.0, casting_mode="gemma", init_fn="zeros", in_place=False)
516
478
  _patch_rms_norm_module_for_gemma2 = partial(
517
479
  _patch_rms_norm_module, offset=1.0, casting_mode="gemma", in_place=False
518
480
  )
@@ -551,20 +513,12 @@ def apply_liger_kernel_to_gemma2(
551
513
 
552
514
  for decoder_layer in base_model.layers:
553
515
  if geglu:
554
- _bind_method_to_module(
555
- decoder_layer.mlp, "forward", LigerGEGLUMLP.forward
556
- )
516
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerGEGLUMLP.forward)
557
517
  if rms_norm:
558
518
  _patch_rms_norm_module_for_gemma2(decoder_layer.input_layernorm)
559
- _patch_rms_norm_module_for_gemma2(
560
- decoder_layer.post_attention_layernorm
561
- )
562
- _patch_rms_norm_module_for_gemma2(
563
- decoder_layer.pre_feedforward_layernorm
564
- )
565
- _patch_rms_norm_module_for_gemma2(
566
- decoder_layer.post_feedforward_layernorm
567
- )
519
+ _patch_rms_norm_module_for_gemma2(decoder_layer.post_attention_layernorm)
520
+ _patch_rms_norm_module_for_gemma2(decoder_layer.pre_feedforward_layernorm)
521
+ _patch_rms_norm_module_for_gemma2(decoder_layer.post_feedforward_layernorm)
568
522
 
569
523
 
570
524
  def apply_liger_kernel_to_qwen2(
@@ -633,9 +587,7 @@ def apply_liger_kernel_to_qwen2(
633
587
 
634
588
  for decoder_layer in base_model.layers:
635
589
  if swiglu:
636
- _bind_method_to_module(
637
- decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
638
- )
590
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward)
639
591
  if rms_norm:
640
592
  _patch_rms_norm_module(decoder_layer.input_layernorm)
641
593
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
@@ -674,14 +626,10 @@ def apply_liger_kernel_to_qwen2_vl(
674
626
  from transformers.models.qwen2_vl import modeling_qwen2_vl
675
627
  from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLModel
676
628
 
677
- from liger_kernel.transformers.model.qwen2_vl import (
678
- lce_forward as qwen2_vl_lce_forward,
679
- )
629
+ from liger_kernel.transformers.model.qwen2_vl import lce_forward as qwen2_vl_lce_forward
680
630
 
681
631
  if rope:
682
- modeling_qwen2_vl.apply_multimodal_rotary_pos_emb = (
683
- liger_multimodal_rotary_pos_emb
684
- )
632
+ modeling_qwen2_vl.apply_multimodal_rotary_pos_emb = liger_multimodal_rotary_pos_emb
685
633
  if rms_norm:
686
634
  # https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py#L439
687
635
  modeling_qwen2_vl.Qwen2RMSNorm = LigerRMSNorm
@@ -712,9 +660,7 @@ def apply_liger_kernel_to_qwen2_vl(
712
660
  _patch_rms_norm_module(base_model.norm)
713
661
  for decoder_layer in base_model.layers:
714
662
  if swiglu:
715
- _bind_method_to_module(
716
- decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward
717
- )
663
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward)
718
664
  if rms_norm:
719
665
  _patch_rms_norm_module(decoder_layer.input_layernorm)
720
666
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
@@ -783,9 +729,7 @@ def apply_liger_kernel_to_phi3(
783
729
 
784
730
  for decoder_layer in base_model.layers:
785
731
  if swiglu:
786
- _bind_method_to_module(
787
- decoder_layer.mlp, "forward", LigerPhi3SwiGLUMLP.forward
788
- )
732
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerPhi3SwiGLUMLP.forward)
789
733
  if rms_norm:
790
734
  _patch_rms_norm_module(decoder_layer.input_layernorm)
791
735
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
@@ -826,24 +770,16 @@ def _apply_liger_kernel(model_type: str, **kwargs) -> None:
826
770
  return
827
771
 
828
772
  if model_type not in MODEL_TYPE_TO_APPLY_LIGER_FN.keys():
829
- logger.info(
830
- f"There are currently no Liger kernels supported for model type: {model_type}."
831
- )
773
+ logger.info(f"There are currently no Liger kernels supported for model type: {model_type}.")
832
774
  return
833
775
 
834
776
  apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
835
777
  apply_fn_signature = inspect.signature(apply_fn)
836
778
 
837
779
  # Filter out the keyword arguments that are not supported by the apply function
838
- applicable_kwargs = {
839
- key: value
840
- for key, value in kwargs.items()
841
- if key in apply_fn_signature.parameters
842
- }
780
+ applicable_kwargs = {key: value for key, value in kwargs.items() if key in apply_fn_signature.parameters}
843
781
 
844
- logger.info(
845
- f"Applying Liger kernels for model type: {model_type} with kwargs: {applicable_kwargs}"
846
- )
782
+ logger.info(f"Applying Liger kernels for model type: {model_type} with kwargs: {applicable_kwargs}")
847
783
 
848
784
  # Assume this is invoked pre-model initialization, so we only need to patch transformers code
849
785
  apply_fn(**applicable_kwargs)
@@ -857,20 +793,14 @@ def _apply_liger_kernel_to_instance(model: PreTrainedModel, **kwargs) -> None:
857
793
  - model: the model instance to apply Liger kernels to
858
794
  - kwargs: keyword arguments that are passed to the corresponding apply_liger_kernel_to_* function.
859
795
  """
860
- model_type = getattr(model, "config", None) and getattr(
861
- model.config, "model_type", None
862
- )
796
+ model_type = getattr(model, "config", None) and getattr(model.config, "model_type", None)
863
797
 
864
798
  if not model_type:
865
- logger.info(
866
- "Model type could not be determined from model config. No Liger kernels will be applied."
867
- )
799
+ logger.info("Model type could not be determined from model config. No Liger kernels will be applied.")
868
800
  return
869
801
 
870
802
  if model_type not in MODEL_TYPE_TO_APPLY_LIGER_FN.keys():
871
- logger.info(
872
- f"There are currently no Liger kernels supported for model type: {model_type}."
873
- )
803
+ logger.info(f"There are currently no Liger kernels supported for model type: {model_type}.")
874
804
  return
875
805
 
876
806
  apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
@@ -878,11 +808,7 @@ def _apply_liger_kernel_to_instance(model: PreTrainedModel, **kwargs) -> None:
878
808
  apply_fn_signature = inspect.signature(apply_fn)
879
809
 
880
810
  # Filter out the keyword arguments that are not supported by the apply function
881
- applicable_kwargs = {
882
- key: value
883
- for key, value in kwargs.items()
884
- if key in apply_fn_signature.parameters
885
- }
811
+ applicable_kwargs = {key: value for key, value in kwargs.items() if key in apply_fn_signature.parameters}
886
812
  logger.info(
887
813
  f"Applying Liger kernels to model instance with model type: {model_type} with kwargs: {applicable_kwargs}"
888
814
  )
@@ -19,9 +19,7 @@ class LigerRMSNorm(nn.Module):
19
19
  "ones",
20
20
  "zeros",
21
21
  ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
22
- self.weight = nn.Parameter(
23
- torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size)
24
- )
22
+ self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
25
23
  self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (
26
24
  eps,
27
25
  offset,
@@ -40,4 +38,6 @@ class LigerRMSNorm(nn.Module):
40
38
  )
41
39
 
42
40
  def extra_repr(self):
43
- return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
41
+ return (
42
+ f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
43
+ )
@@ -16,10 +16,7 @@ class LigerSwiGLUMLP(nn.Module):
16
16
  raise ValueError(f"Activation function {config.hidden_act} not supported.")
17
17
 
18
18
  def forward(self, x):
19
-
20
- return self.down_proj(
21
- LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x))
22
- )
19
+ return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
23
20
 
24
21
 
25
22
  class LigerBlockSparseTop2MLP(nn.Module):
@@ -36,7 +33,6 @@ class LigerBlockSparseTop2MLP(nn.Module):
36
33
  raise ValueError(f"Activation function {config.hidden_act} not supported.")
37
34
 
38
35
  def forward(self, x):
39
-
40
36
  return self.w2(LigerSiLUMulFunction.apply(self.w1(x), self.w3(x)))
41
37
 
42
38
 
@@ -51,9 +47,7 @@ class LigerPhi3SwiGLUMLP(nn.Module):
51
47
  self.config = config
52
48
  self.hidden_size = config.hidden_size
53
49
  self.intermediate_size = config.intermediate_size
54
- self.gate_up_proj = nn.Linear(
55
- self.hidden_size, 2 * self.intermediate_size, bias=False
56
- )
50
+ self.gate_up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=False)
57
51
  self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
58
52
  if config.hidden_act not in ["silu", "swish"]:
59
53
  raise ValueError(f"Activation function {config.hidden_act} not supported.")
@@ -1,6 +1,4 @@
1
1
  try:
2
- from liger_kernel.transformers.trainer.orpo_trainer import ( # noqa: F401
3
- LigerORPOTrainer,
4
- )
2
+ from liger_kernel.transformers.trainer.orpo_trainer import LigerORPOTrainer # noqa: F401
5
3
  except ImportError:
6
4
  raise ImportError("Please `pip install trl` to use LigerORPOTrainer")