liger-kernel-nightly 0.5.2.dev20241223032630__py3-none-any.whl → 0.5.2.dev20241223042135__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/cpo_loss.py +5 -11
- liger_kernel/chunked_loss/dpo_loss.py +1 -4
- liger_kernel/chunked_loss/fused_linear_distillation.py +37 -37
- liger_kernel/chunked_loss/fused_linear_preference.py +40 -64
- liger_kernel/chunked_loss/orpo_loss.py +2 -6
- liger_kernel/chunked_loss/simpo_loss.py +4 -8
- liger_kernel/env_report.py +4 -11
- liger_kernel/ops/cross_entropy.py +7 -10
- liger_kernel/ops/experimental/embedding.py +1 -3
- liger_kernel/ops/experimental/mm_int8int2.py +3 -9
- liger_kernel/ops/fused_linear_cross_entropy.py +7 -15
- liger_kernel/ops/fused_linear_jsd.py +11 -29
- liger_kernel/ops/geglu.py +6 -17
- liger_kernel/ops/group_norm.py +11 -28
- liger_kernel/ops/jsd.py +2 -6
- liger_kernel/ops/kl_div.py +4 -7
- liger_kernel/ops/layer_norm.py +3 -5
- liger_kernel/ops/qwen2vl_mrope.py +8 -25
- liger_kernel/ops/rms_norm.py +11 -29
- liger_kernel/ops/rope.py +8 -24
- liger_kernel/ops/swiglu.py +4 -8
- liger_kernel/ops/utils.py +2 -0
- liger_kernel/transformers/__init__.py +16 -24
- liger_kernel/transformers/auto_model.py +6 -13
- liger_kernel/transformers/cross_entropy.py +1 -3
- liger_kernel/transformers/experimental/embedding.py +1 -3
- liger_kernel/transformers/functional.py +2 -6
- liger_kernel/transformers/fused_linear_cross_entropy.py +2 -6
- liger_kernel/transformers/geglu.py +1 -4
- liger_kernel/transformers/group_norm.py +3 -9
- liger_kernel/transformers/jsd.py +1 -3
- liger_kernel/transformers/kl_div.py +1 -3
- liger_kernel/transformers/layer_norm.py +3 -9
- liger_kernel/transformers/model/gemma.py +18 -40
- liger_kernel/transformers/model/gemma2.py +19 -41
- liger_kernel/transformers/model/llama.py +22 -48
- liger_kernel/transformers/model/mistral.py +14 -26
- liger_kernel/transformers/model/mixtral.py +23 -53
- liger_kernel/transformers/model/mllama.py +16 -36
- liger_kernel/transformers/model/phi3.py +18 -40
- liger_kernel/transformers/model/qwen2.py +18 -40
- liger_kernel/transformers/model/qwen2_vl.py +16 -30
- liger_kernel/transformers/monkey_patch.py +43 -117
- liger_kernel/transformers/rms_norm.py +4 -4
- liger_kernel/transformers/swiglu.py +2 -8
- liger_kernel/transformers/trainer/__init__.py +1 -3
- liger_kernel/transformers/trainer/orpo_trainer.py +13 -16
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -3
- {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/METADATA +1 -1
- liger_kernel_nightly-0.5.2.dev20241223042135.dist-info/RECORD +66 -0
- liger_kernel_nightly-0.5.2.dev20241223032630.dist-info/RECORD +0 -66
- {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.2.dev20241223032630.dist-info → liger_kernel_nightly-0.5.2.dev20241223042135.dist-info}/top_level.txt +0 -0
@@ -13,18 +13,12 @@ class LigerLayerNorm(nn.Module):
|
|
13
13
|
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
14
14
|
self.hidden_size = hidden_size
|
15
15
|
self.eps = eps
|
16
|
-
self.weight = nn.Parameter(
|
17
|
-
|
18
|
-
)
|
19
|
-
self.bias = nn.Parameter(
|
20
|
-
torch.randn(hidden_size) if bias else torch.zeros(hidden_size)
|
21
|
-
)
|
16
|
+
self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
|
17
|
+
self.bias = nn.Parameter(torch.randn(hidden_size) if bias else torch.zeros(hidden_size))
|
22
18
|
self.variance_epsilon = eps
|
23
19
|
|
24
20
|
def forward(self, hidden_states):
|
25
|
-
return LigerLayerNormFunction.apply(
|
26
|
-
hidden_states, self.weight, self.bias, self.variance_epsilon
|
27
|
-
)
|
21
|
+
return LigerLayerNormFunction.apply(hidden_states, self.weight, self.bias, self.variance_epsilon)
|
28
22
|
|
29
23
|
def extra_repr(self):
|
30
24
|
return f"{self.hidden_size}, eps={self.eps}"
|
@@ -1,27 +1,23 @@
|
|
1
|
-
from typing import List
|
1
|
+
from typing import List
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Tuple
|
4
|
+
from typing import Union
|
2
5
|
|
3
6
|
import torch
|
7
|
+
|
4
8
|
from torch.nn import CrossEntropyLoss
|
5
9
|
from transformers.cache_utils import Cache
|
6
10
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
7
|
-
from transformers.models.gemma.modeling_gemma import
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
from transformers.utils import (
|
12
|
-
add_start_docstrings_to_model_forward,
|
13
|
-
replace_return_docstrings,
|
14
|
-
)
|
11
|
+
from transformers.models.gemma.modeling_gemma import _CONFIG_FOR_DOC
|
12
|
+
from transformers.models.gemma.modeling_gemma import GEMMA_INPUTS_DOCSTRING
|
13
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
14
|
+
from transformers.utils import replace_return_docstrings
|
15
15
|
|
16
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import
|
17
|
-
LigerFusedLinearCrossEntropyLoss,
|
18
|
-
)
|
16
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
19
17
|
|
20
18
|
|
21
19
|
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
22
|
-
@replace_return_docstrings(
|
23
|
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
24
|
-
)
|
20
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
25
21
|
def lce_forward_deprecated(
|
26
22
|
self,
|
27
23
|
input_ids: torch.LongTensor = None,
|
@@ -64,19 +60,11 @@ def lce_forward_deprecated(
|
|
64
60
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
65
61
|
"What is your favorite condiment?"
|
66
62
|
```"""
|
67
|
-
output_attentions =
|
68
|
-
output_attentions
|
69
|
-
if output_attentions is not None
|
70
|
-
else self.config.output_attentions
|
71
|
-
)
|
63
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
72
64
|
output_hidden_states = (
|
73
|
-
output_hidden_states
|
74
|
-
if output_hidden_states is not None
|
75
|
-
else self.config.output_hidden_states
|
76
|
-
)
|
77
|
-
return_dict = (
|
78
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
65
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
79
66
|
)
|
67
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
80
68
|
|
81
69
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
82
70
|
outputs = self.model(
|
@@ -139,9 +127,7 @@ def lce_forward_deprecated(
|
|
139
127
|
|
140
128
|
|
141
129
|
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
142
|
-
@replace_return_docstrings(
|
143
|
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
144
|
-
)
|
130
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
145
131
|
def lce_forward(
|
146
132
|
self,
|
147
133
|
input_ids: torch.LongTensor = None,
|
@@ -188,19 +174,11 @@ def lce_forward(
|
|
188
174
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
189
175
|
"What is your favorite condiment?"
|
190
176
|
```"""
|
191
|
-
output_attentions =
|
192
|
-
output_attentions
|
193
|
-
if output_attentions is not None
|
194
|
-
else self.config.output_attentions
|
195
|
-
)
|
177
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
196
178
|
output_hidden_states = (
|
197
|
-
output_hidden_states
|
198
|
-
if output_hidden_states is not None
|
199
|
-
else self.config.output_hidden_states
|
200
|
-
)
|
201
|
-
return_dict = (
|
202
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
179
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
203
180
|
)
|
181
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
204
182
|
|
205
183
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
206
184
|
outputs = self.model(
|
@@ -1,22 +1,20 @@
|
|
1
1
|
import logging
|
2
|
-
|
2
|
+
|
3
|
+
from typing import Optional
|
4
|
+
from typing import Tuple
|
5
|
+
from typing import Union
|
3
6
|
|
4
7
|
import torch
|
8
|
+
|
5
9
|
from torch.nn import CrossEntropyLoss
|
6
10
|
from transformers.cache_utils import HybridCache
|
7
11
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
8
|
-
from transformers.models.gemma2.modeling_gemma2 import
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
replace_return_docstrings,
|
15
|
-
)
|
16
|
-
|
17
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import (
|
18
|
-
LigerFusedLinearCrossEntropyLoss,
|
19
|
-
)
|
12
|
+
from transformers.models.gemma2.modeling_gemma2 import _CONFIG_FOR_DOC
|
13
|
+
from transformers.models.gemma2.modeling_gemma2 import GEMMA2_INPUTS_DOCSTRING
|
14
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
15
|
+
from transformers.utils import replace_return_docstrings
|
16
|
+
|
17
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
20
18
|
|
21
19
|
logger = logging.getLogger(__name__)
|
22
20
|
|
@@ -63,19 +61,11 @@ def lce_forward_deprecated(
|
|
63
61
|
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
|
64
62
|
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
65
63
|
)
|
66
|
-
output_attentions =
|
67
|
-
output_attentions
|
68
|
-
if output_attentions is not None
|
69
|
-
else self.config.output_attentions
|
70
|
-
)
|
64
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
71
65
|
output_hidden_states = (
|
72
|
-
output_hidden_states
|
73
|
-
if output_hidden_states is not None
|
74
|
-
else self.config.output_hidden_states
|
75
|
-
)
|
76
|
-
return_dict = (
|
77
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
66
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
78
67
|
)
|
68
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
79
69
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
80
70
|
outputs = self.model(
|
81
71
|
input_ids=input_ids,
|
@@ -104,9 +94,7 @@ def lce_forward_deprecated(
|
|
104
94
|
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
105
95
|
shift_labels = shift_labels.view(-1)
|
106
96
|
|
107
|
-
lce = LigerFusedLinearCrossEntropyLoss(
|
108
|
-
softcap=self.config.final_logit_softcapping
|
109
|
-
)
|
97
|
+
lce = LigerFusedLinearCrossEntropyLoss(softcap=self.config.final_logit_softcapping)
|
110
98
|
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
111
99
|
|
112
100
|
else:
|
@@ -146,9 +134,7 @@ def lce_forward_deprecated(
|
|
146
134
|
|
147
135
|
|
148
136
|
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
149
|
-
@replace_return_docstrings(
|
150
|
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
151
|
-
)
|
137
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
152
138
|
def lce_forward(
|
153
139
|
self,
|
154
140
|
input_ids: torch.LongTensor = None,
|
@@ -201,19 +187,11 @@ def lce_forward(
|
|
201
187
|
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
|
202
188
|
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
203
189
|
)
|
204
|
-
output_attentions =
|
205
|
-
output_attentions
|
206
|
-
if output_attentions is not None
|
207
|
-
else self.config.output_attentions
|
208
|
-
)
|
190
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
209
191
|
output_hidden_states = (
|
210
|
-
output_hidden_states
|
211
|
-
if output_hidden_states is not None
|
212
|
-
else self.config.output_hidden_states
|
213
|
-
)
|
214
|
-
return_dict = (
|
215
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
192
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
216
193
|
)
|
194
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
217
195
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
218
196
|
outputs = self.model(
|
219
197
|
input_ids=input_ids,
|
@@ -1,30 +1,27 @@
|
|
1
|
-
from typing import TYPE_CHECKING
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
from typing import List
|
3
|
+
from typing import Optional
|
4
|
+
from typing import Tuple
|
5
|
+
from typing import Union
|
2
6
|
|
3
7
|
import torch
|
4
8
|
import torch.nn.functional as F
|
9
|
+
|
5
10
|
from torch.nn import CrossEntropyLoss
|
6
11
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
7
|
-
from transformers.models.llama.modeling_llama import
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
replace_return_docstrings,
|
14
|
-
)
|
15
|
-
|
16
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import (
|
17
|
-
LigerFusedLinearCrossEntropyLoss,
|
18
|
-
)
|
12
|
+
from transformers.models.llama.modeling_llama import _CONFIG_FOR_DOC
|
13
|
+
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
|
14
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
15
|
+
from transformers.utils import replace_return_docstrings
|
16
|
+
|
17
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
19
18
|
|
20
19
|
if TYPE_CHECKING:
|
21
20
|
from transformers.cache_utils import Cache
|
22
21
|
|
23
22
|
|
24
23
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
25
|
-
@replace_return_docstrings(
|
26
|
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
27
|
-
)
|
24
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
28
25
|
def lce_forward_deprecated(
|
29
26
|
self,
|
30
27
|
input_ids: torch.LongTensor = None,
|
@@ -67,19 +64,11 @@ def lce_forward_deprecated(
|
|
67
64
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
68
65
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
69
66
|
```"""
|
70
|
-
output_attentions =
|
71
|
-
output_attentions
|
72
|
-
if output_attentions is not None
|
73
|
-
else self.config.output_attentions
|
74
|
-
)
|
67
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
75
68
|
output_hidden_states = (
|
76
|
-
output_hidden_states
|
77
|
-
if output_hidden_states is not None
|
78
|
-
else self.config.output_hidden_states
|
79
|
-
)
|
80
|
-
return_dict = (
|
81
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
69
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
82
70
|
)
|
71
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
83
72
|
|
84
73
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
85
74
|
outputs = self.model(
|
@@ -113,13 +102,8 @@ def lce_forward_deprecated(
|
|
113
102
|
|
114
103
|
else:
|
115
104
|
if self.config.pretraining_tp > 1:
|
116
|
-
lm_head_slices = self.lm_head.weight.split(
|
117
|
-
|
118
|
-
)
|
119
|
-
logits = [
|
120
|
-
F.linear(hidden_states, lm_head_slices[i])
|
121
|
-
for i in range(self.config.pretraining_tp)
|
122
|
-
]
|
105
|
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
106
|
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
123
107
|
logits = torch.cat(logits, dim=-1)
|
124
108
|
else:
|
125
109
|
logits = self.lm_head(hidden_states)
|
@@ -151,9 +135,7 @@ def lce_forward_deprecated(
|
|
151
135
|
|
152
136
|
|
153
137
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
154
|
-
@replace_return_docstrings(
|
155
|
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
156
|
-
)
|
138
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
157
139
|
def lce_forward(
|
158
140
|
self,
|
159
141
|
input_ids: torch.LongTensor = None,
|
@@ -201,19 +183,11 @@ def lce_forward(
|
|
201
183
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
202
184
|
```"""
|
203
185
|
|
204
|
-
output_attentions =
|
205
|
-
output_attentions
|
206
|
-
if output_attentions is not None
|
207
|
-
else self.config.output_attentions
|
208
|
-
)
|
186
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
209
187
|
output_hidden_states = (
|
210
|
-
output_hidden_states
|
211
|
-
if output_hidden_states is not None
|
212
|
-
else self.config.output_hidden_states
|
213
|
-
)
|
214
|
-
return_dict = (
|
215
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
188
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
216
189
|
)
|
190
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
217
191
|
|
218
192
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
219
193
|
outputs = self.model(
|
@@ -1,27 +1,23 @@
|
|
1
|
-
from typing import List
|
1
|
+
from typing import List
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Tuple
|
4
|
+
from typing import Union
|
2
5
|
|
3
6
|
import torch
|
7
|
+
|
4
8
|
from torch.nn import CrossEntropyLoss
|
5
9
|
from transformers.cache_utils import Cache
|
6
10
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
7
|
-
from transformers.models.mistral.modeling_mistral import
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
from transformers.utils import (
|
12
|
-
add_start_docstrings_to_model_forward,
|
13
|
-
replace_return_docstrings,
|
14
|
-
)
|
11
|
+
from transformers.models.mistral.modeling_mistral import _CONFIG_FOR_DOC
|
12
|
+
from transformers.models.mistral.modeling_mistral import MISTRAL_INPUTS_DOCSTRING
|
13
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
14
|
+
from transformers.utils import replace_return_docstrings
|
15
15
|
|
16
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import
|
17
|
-
LigerFusedLinearCrossEntropyLoss,
|
18
|
-
)
|
16
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
19
17
|
|
20
18
|
|
21
19
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
22
|
-
@replace_return_docstrings(
|
23
|
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
24
|
-
)
|
20
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
25
21
|
def lce_forward(
|
26
22
|
self,
|
27
23
|
input_ids: torch.LongTensor = None,
|
@@ -65,19 +61,11 @@ def lce_forward(
|
|
65
61
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
66
62
|
```"""
|
67
63
|
|
68
|
-
output_attentions =
|
69
|
-
output_attentions
|
70
|
-
if output_attentions is not None
|
71
|
-
else self.config.output_attentions
|
72
|
-
)
|
64
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
73
65
|
output_hidden_states = (
|
74
|
-
output_hidden_states
|
75
|
-
if output_hidden_states is not None
|
76
|
-
else self.config.output_hidden_states
|
77
|
-
)
|
78
|
-
return_dict = (
|
79
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
66
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
80
67
|
)
|
68
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
81
69
|
|
82
70
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
83
71
|
outputs = self.model(
|
@@ -1,27 +1,23 @@
|
|
1
|
-
from typing import List
|
1
|
+
from typing import List
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Tuple
|
4
|
+
from typing import Union
|
2
5
|
|
3
6
|
import torch
|
7
|
+
|
4
8
|
from torch.nn import CrossEntropyLoss
|
5
9
|
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
6
|
-
from transformers.models.mixtral.modeling_mixtral import
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
from transformers.utils import (
|
12
|
-
add_start_docstrings_to_model_forward,
|
13
|
-
replace_return_docstrings,
|
14
|
-
)
|
10
|
+
from transformers.models.mixtral.modeling_mixtral import _CONFIG_FOR_DOC
|
11
|
+
from transformers.models.mixtral.modeling_mixtral import MIXTRAL_INPUTS_DOCSTRING
|
12
|
+
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
|
13
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
14
|
+
from transformers.utils import replace_return_docstrings
|
15
15
|
|
16
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import
|
17
|
-
LigerFusedLinearCrossEntropyLoss,
|
18
|
-
)
|
16
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
19
17
|
|
20
18
|
|
21
19
|
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
22
|
-
@replace_return_docstrings(
|
23
|
-
output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
24
|
-
)
|
20
|
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
25
21
|
def lce_forward_deprecated(
|
26
22
|
self,
|
27
23
|
input_ids: torch.LongTensor = None,
|
@@ -66,25 +62,15 @@ def lce_forward_deprecated(
|
|
66
62
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
67
63
|
```"""
|
68
64
|
|
69
|
-
output_attentions =
|
70
|
-
output_attentions
|
71
|
-
if output_attentions is not None
|
72
|
-
else self.config.output_attentions
|
73
|
-
)
|
65
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
74
66
|
output_router_logits = (
|
75
|
-
output_router_logits
|
76
|
-
if output_router_logits is not None
|
77
|
-
else self.config.output_router_logits
|
67
|
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
78
68
|
)
|
79
69
|
|
80
70
|
output_hidden_states = (
|
81
|
-
output_hidden_states
|
82
|
-
if output_hidden_states is not None
|
83
|
-
else self.config.output_hidden_states
|
84
|
-
)
|
85
|
-
return_dict = (
|
86
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
71
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
87
72
|
)
|
73
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
88
74
|
|
89
75
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
90
76
|
outputs = self.model(
|
@@ -138,9 +124,7 @@ def lce_forward_deprecated(
|
|
138
124
|
attention_mask,
|
139
125
|
)
|
140
126
|
if labels is not None:
|
141
|
-
loss += self.router_aux_loss_coef * aux_loss.to(
|
142
|
-
loss.device
|
143
|
-
) # make sure to reside in the same device
|
127
|
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
144
128
|
|
145
129
|
if not return_dict:
|
146
130
|
output = (logits,) + outputs[1:]
|
@@ -160,9 +144,7 @@ def lce_forward_deprecated(
|
|
160
144
|
|
161
145
|
|
162
146
|
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
163
|
-
@replace_return_docstrings(
|
164
|
-
output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
165
|
-
)
|
147
|
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
166
148
|
# Ignore copy
|
167
149
|
def lce_forward(
|
168
150
|
self,
|
@@ -212,25 +194,15 @@ def lce_forward(
|
|
212
194
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
213
195
|
```"""
|
214
196
|
|
215
|
-
output_attentions =
|
216
|
-
output_attentions
|
217
|
-
if output_attentions is not None
|
218
|
-
else self.config.output_attentions
|
219
|
-
)
|
197
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
220
198
|
output_router_logits = (
|
221
|
-
output_router_logits
|
222
|
-
if output_router_logits is not None
|
223
|
-
else self.config.output_router_logits
|
199
|
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
224
200
|
)
|
225
201
|
|
226
202
|
output_hidden_states = (
|
227
|
-
output_hidden_states
|
228
|
-
if output_hidden_states is not None
|
229
|
-
else self.config.output_hidden_states
|
230
|
-
)
|
231
|
-
return_dict = (
|
232
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
203
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
233
204
|
)
|
205
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
234
206
|
|
235
207
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
236
208
|
outputs = self.model(
|
@@ -288,9 +260,7 @@ def lce_forward(
|
|
288
260
|
attention_mask,
|
289
261
|
)
|
290
262
|
if labels is not None:
|
291
|
-
loss += self.router_aux_loss_coef * aux_loss.to(
|
292
|
-
loss.device
|
293
|
-
) # make sure to reside in the same device
|
263
|
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
294
264
|
|
295
265
|
if not return_dict:
|
296
266
|
output = (logits,) + outputs[1:]
|
@@ -1,24 +1,22 @@
|
|
1
|
-
from typing import List
|
1
|
+
from typing import List
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Tuple
|
4
|
+
from typing import Union
|
2
5
|
|
3
6
|
import torch
|
7
|
+
|
4
8
|
from torch.nn import CrossEntropyLoss
|
5
9
|
from transformers.cache_utils import Cache
|
6
10
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
7
11
|
from transformers.models.mllama.modeling_mllama import MLLAMA_INPUTS_DOCSTRING
|
8
|
-
from transformers.utils import
|
9
|
-
|
10
|
-
replace_return_docstrings,
|
11
|
-
)
|
12
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
13
|
+
from transformers.utils import replace_return_docstrings
|
12
14
|
|
13
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import
|
14
|
-
LigerFusedLinearCrossEntropyLoss,
|
15
|
-
)
|
15
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
16
16
|
|
17
17
|
|
18
18
|
@add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
|
19
|
-
@replace_return_docstrings(
|
20
|
-
output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
|
21
|
-
)
|
19
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig")
|
22
20
|
def lce_forward_deprecated(
|
23
21
|
self,
|
24
22
|
input_ids: torch.LongTensor = None,
|
@@ -66,19 +64,11 @@ def lce_forward_deprecated(
|
|
66
64
|
I love the idea of snowflakes gently falling, each one
|
67
65
|
```
|
68
66
|
"""
|
69
|
-
output_attentions =
|
70
|
-
output_attentions
|
71
|
-
if output_attentions is not None
|
72
|
-
else self.config.output_attentions
|
73
|
-
)
|
67
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
74
68
|
output_hidden_states = (
|
75
|
-
output_hidden_states
|
76
|
-
if output_hidden_states is not None
|
77
|
-
else self.config.output_hidden_states
|
78
|
-
)
|
79
|
-
return_dict = (
|
80
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
69
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
81
70
|
)
|
71
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
82
72
|
|
83
73
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
84
74
|
outputs = self.model(
|
@@ -143,9 +133,7 @@ def lce_forward_deprecated(
|
|
143
133
|
|
144
134
|
|
145
135
|
@add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
|
146
|
-
@replace_return_docstrings(
|
147
|
-
output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
|
148
|
-
)
|
136
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig")
|
149
137
|
def lce_forward(
|
150
138
|
self,
|
151
139
|
input_ids: torch.LongTensor = None,
|
@@ -198,19 +186,11 @@ def lce_forward(
|
|
198
186
|
I love the idea of snowflakes gently falling, each one
|
199
187
|
```
|
200
188
|
"""
|
201
|
-
output_attentions =
|
202
|
-
output_attentions
|
203
|
-
if output_attentions is not None
|
204
|
-
else self.config.output_attentions
|
205
|
-
)
|
189
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
206
190
|
output_hidden_states = (
|
207
|
-
output_hidden_states
|
208
|
-
if output_hidden_states is not None
|
209
|
-
else self.config.output_hidden_states
|
210
|
-
)
|
211
|
-
return_dict = (
|
212
|
-
return_dict if return_dict is not None else self.config.use_return_dict
|
191
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
213
192
|
)
|
193
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
214
194
|
|
215
195
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
216
196
|
outputs = self.model(
|