letta-nightly 0.11.7.dev20251007104119__py3-none-any.whl → 0.12.0.dev20251009104148__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (151) hide show
  1. letta/__init__.py +1 -1
  2. letta/adapters/letta_llm_adapter.py +1 -0
  3. letta/adapters/letta_llm_request_adapter.py +0 -1
  4. letta/adapters/letta_llm_stream_adapter.py +7 -2
  5. letta/adapters/simple_llm_request_adapter.py +88 -0
  6. letta/adapters/simple_llm_stream_adapter.py +192 -0
  7. letta/agents/agent_loop.py +6 -0
  8. letta/agents/ephemeral_summary_agent.py +2 -1
  9. letta/agents/helpers.py +142 -6
  10. letta/agents/letta_agent.py +13 -33
  11. letta/agents/letta_agent_batch.py +2 -4
  12. letta/agents/letta_agent_v2.py +87 -77
  13. letta/agents/letta_agent_v3.py +927 -0
  14. letta/agents/voice_agent.py +2 -6
  15. letta/constants.py +8 -4
  16. letta/database_utils.py +161 -0
  17. letta/errors.py +40 -0
  18. letta/functions/function_sets/base.py +84 -4
  19. letta/functions/function_sets/multi_agent.py +0 -3
  20. letta/functions/schema_generator.py +113 -71
  21. letta/groups/dynamic_multi_agent.py +3 -2
  22. letta/groups/helpers.py +1 -2
  23. letta/groups/round_robin_multi_agent.py +3 -2
  24. letta/groups/sleeptime_multi_agent.py +3 -2
  25. letta/groups/sleeptime_multi_agent_v2.py +1 -1
  26. letta/groups/sleeptime_multi_agent_v3.py +17 -17
  27. letta/groups/supervisor_multi_agent.py +84 -80
  28. letta/helpers/converters.py +3 -0
  29. letta/helpers/message_helper.py +4 -0
  30. letta/helpers/tool_rule_solver.py +92 -5
  31. letta/interfaces/anthropic_streaming_interface.py +409 -0
  32. letta/interfaces/gemini_streaming_interface.py +296 -0
  33. letta/interfaces/openai_streaming_interface.py +752 -1
  34. letta/llm_api/anthropic_client.py +127 -16
  35. letta/llm_api/bedrock_client.py +4 -2
  36. letta/llm_api/deepseek_client.py +4 -1
  37. letta/llm_api/google_vertex_client.py +124 -42
  38. letta/llm_api/groq_client.py +4 -1
  39. letta/llm_api/llm_api_tools.py +11 -4
  40. letta/llm_api/llm_client_base.py +6 -2
  41. letta/llm_api/openai.py +32 -2
  42. letta/llm_api/openai_client.py +423 -18
  43. letta/llm_api/xai_client.py +4 -1
  44. letta/main.py +9 -5
  45. letta/memory.py +1 -0
  46. letta/orm/__init__.py +2 -1
  47. letta/orm/agent.py +10 -0
  48. letta/orm/block.py +7 -16
  49. letta/orm/blocks_agents.py +8 -2
  50. letta/orm/files_agents.py +2 -0
  51. letta/orm/job.py +7 -5
  52. letta/orm/mcp_oauth.py +1 -0
  53. letta/orm/message.py +21 -6
  54. letta/orm/organization.py +2 -0
  55. letta/orm/provider.py +6 -2
  56. letta/orm/run.py +71 -0
  57. letta/orm/run_metrics.py +82 -0
  58. letta/orm/sandbox_config.py +7 -1
  59. letta/orm/sqlalchemy_base.py +0 -306
  60. letta/orm/step.py +6 -5
  61. letta/orm/step_metrics.py +5 -5
  62. letta/otel/tracing.py +28 -3
  63. letta/plugins/defaults.py +4 -4
  64. letta/prompts/system_prompts/__init__.py +2 -0
  65. letta/prompts/system_prompts/letta_v1.py +25 -0
  66. letta/schemas/agent.py +3 -2
  67. letta/schemas/agent_file.py +9 -3
  68. letta/schemas/block.py +23 -10
  69. letta/schemas/enums.py +21 -2
  70. letta/schemas/job.py +17 -4
  71. letta/schemas/letta_message_content.py +71 -2
  72. letta/schemas/letta_stop_reason.py +5 -5
  73. letta/schemas/llm_config.py +53 -3
  74. letta/schemas/memory.py +1 -1
  75. letta/schemas/message.py +564 -117
  76. letta/schemas/openai/responses_request.py +64 -0
  77. letta/schemas/providers/__init__.py +2 -0
  78. letta/schemas/providers/anthropic.py +16 -0
  79. letta/schemas/providers/ollama.py +115 -33
  80. letta/schemas/providers/openrouter.py +52 -0
  81. letta/schemas/providers/vllm.py +2 -1
  82. letta/schemas/run.py +48 -42
  83. letta/schemas/run_metrics.py +21 -0
  84. letta/schemas/step.py +2 -2
  85. letta/schemas/step_metrics.py +1 -1
  86. letta/schemas/tool.py +15 -107
  87. letta/schemas/tool_rule.py +88 -5
  88. letta/serialize_schemas/marshmallow_agent.py +1 -0
  89. letta/server/db.py +79 -408
  90. letta/server/rest_api/app.py +61 -10
  91. letta/server/rest_api/dependencies.py +14 -0
  92. letta/server/rest_api/redis_stream_manager.py +19 -8
  93. letta/server/rest_api/routers/v1/agents.py +364 -292
  94. letta/server/rest_api/routers/v1/blocks.py +14 -20
  95. letta/server/rest_api/routers/v1/identities.py +45 -110
  96. letta/server/rest_api/routers/v1/internal_templates.py +21 -0
  97. letta/server/rest_api/routers/v1/jobs.py +23 -6
  98. letta/server/rest_api/routers/v1/messages.py +1 -1
  99. letta/server/rest_api/routers/v1/runs.py +149 -99
  100. letta/server/rest_api/routers/v1/sandbox_configs.py +10 -19
  101. letta/server/rest_api/routers/v1/tools.py +281 -594
  102. letta/server/rest_api/routers/v1/voice.py +1 -1
  103. letta/server/rest_api/streaming_response.py +29 -29
  104. letta/server/rest_api/utils.py +122 -64
  105. letta/server/server.py +160 -887
  106. letta/services/agent_manager.py +236 -919
  107. letta/services/agent_serialization_manager.py +16 -0
  108. letta/services/archive_manager.py +0 -100
  109. letta/services/block_manager.py +211 -168
  110. letta/services/context_window_calculator/token_counter.py +1 -1
  111. letta/services/file_manager.py +1 -1
  112. letta/services/files_agents_manager.py +24 -33
  113. letta/services/group_manager.py +0 -142
  114. letta/services/helpers/agent_manager_helper.py +7 -2
  115. letta/services/helpers/run_manager_helper.py +69 -0
  116. letta/services/job_manager.py +96 -411
  117. letta/services/lettuce/__init__.py +6 -0
  118. letta/services/lettuce/lettuce_client_base.py +86 -0
  119. letta/services/mcp_manager.py +38 -6
  120. letta/services/message_manager.py +165 -362
  121. letta/services/organization_manager.py +0 -36
  122. letta/services/passage_manager.py +0 -345
  123. letta/services/provider_manager.py +0 -80
  124. letta/services/run_manager.py +364 -0
  125. letta/services/sandbox_config_manager.py +0 -234
  126. letta/services/step_manager.py +62 -39
  127. letta/services/summarizer/summarizer.py +9 -7
  128. letta/services/telemetry_manager.py +0 -16
  129. letta/services/tool_executor/builtin_tool_executor.py +35 -0
  130. letta/services/tool_executor/core_tool_executor.py +397 -2
  131. letta/services/tool_executor/files_tool_executor.py +3 -3
  132. letta/services/tool_executor/multi_agent_tool_executor.py +30 -15
  133. letta/services/tool_executor/tool_execution_manager.py +6 -8
  134. letta/services/tool_executor/tool_executor_base.py +3 -3
  135. letta/services/tool_manager.py +85 -339
  136. letta/services/tool_sandbox/base.py +24 -13
  137. letta/services/tool_sandbox/e2b_sandbox.py +16 -1
  138. letta/services/tool_schema_generator.py +123 -0
  139. letta/services/user_manager.py +0 -99
  140. letta/settings.py +20 -4
  141. letta/system.py +5 -1
  142. {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/METADATA +3 -5
  143. {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/RECORD +146 -135
  144. letta/agents/temporal/activities/__init__.py +0 -4
  145. letta/agents/temporal/activities/example_activity.py +0 -7
  146. letta/agents/temporal/activities/prepare_messages.py +0 -10
  147. letta/agents/temporal/temporal_agent_workflow.py +0 -56
  148. letta/agents/temporal/types.py +0 -25
  149. {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/WHEEL +0 -0
  150. {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/entry_points.txt +0 -0
  151. {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/licenses/LICENSE +0 -0
@@ -5,6 +5,28 @@ from typing import Optional
5
5
 
6
6
  from openai import AsyncStream
7
7
  from openai.types.chat.chat_completion_chunk import ChatCompletionChunk
8
+ from openai.types.responses import (
9
+ ResponseCompletedEvent,
10
+ ResponseContentPartAddedEvent,
11
+ ResponseContentPartDoneEvent,
12
+ ResponseCreatedEvent,
13
+ ResponseFunctionCallArgumentsDeltaEvent,
14
+ ResponseFunctionCallArgumentsDoneEvent,
15
+ ResponseFunctionToolCall,
16
+ ResponseInProgressEvent,
17
+ ResponseOutputItemAddedEvent,
18
+ ResponseOutputItemDoneEvent,
19
+ ResponseOutputMessage,
20
+ ResponseOutputText,
21
+ ResponseReasoningItem,
22
+ ResponseReasoningSummaryPartAddedEvent,
23
+ ResponseReasoningSummaryPartDoneEvent,
24
+ ResponseReasoningSummaryTextDeltaEvent,
25
+ ResponseReasoningSummaryTextDoneEvent,
26
+ ResponseTextDeltaEvent,
27
+ ResponseTextDoneEvent,
28
+ )
29
+ from openai.types.responses.response_stream_event import ResponseStreamEvent
8
30
 
9
31
  from letta.constants import DEFAULT_MESSAGE_TOOL, DEFAULT_MESSAGE_TOOL_KWARG
10
32
  from letta.llm_api.openai_client import is_openai_reasoning_model
@@ -19,7 +41,12 @@ from letta.schemas.letta_message import (
19
41
  ToolCallDelta,
20
42
  ToolCallMessage,
21
43
  )
22
- from letta.schemas.letta_message_content import OmittedReasoningContent, TextContent
44
+ from letta.schemas.letta_message_content import (
45
+ OmittedReasoningContent,
46
+ SummarizedReasoningContent,
47
+ SummarizedReasoningContentPart,
48
+ TextContent,
49
+ )
23
50
  from letta.schemas.letta_stop_reason import LettaStopReason, StopReasonType
24
51
  from letta.schemas.message import Message
25
52
  from letta.schemas.openai.chat_completion_response import FunctionCall, ToolCall
@@ -49,11 +76,15 @@ class OpenAIStreamingInterface:
49
76
  tools: Optional[list] = None,
50
77
  put_inner_thoughts_in_kwarg: bool = True,
51
78
  requires_approval_tools: list = [],
79
+ run_id: str | None = None,
80
+ step_id: str | None = None,
52
81
  ):
53
82
  self.use_assistant_message = use_assistant_message
54
83
  self.assistant_message_tool_name = DEFAULT_MESSAGE_TOOL
55
84
  self.assistant_message_tool_kwarg = DEFAULT_MESSAGE_TOOL_KWARG
56
85
  self.put_inner_thoughts_in_kwarg = put_inner_thoughts_in_kwarg
86
+ self.run_id = run_id
87
+ self.step_id = step_id
57
88
 
58
89
  self.optimistic_json_parser: OptimisticJSONParser = OptimisticJSONParser()
59
90
  self.function_args_reader = JSONInnerThoughtsExtractor(wait_for_first_key=put_inner_thoughts_in_kwarg)
@@ -217,6 +248,8 @@ class OpenAIStreamingInterface:
217
248
  state="omitted",
218
249
  hidden_reasoning=None,
219
250
  otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
251
+ run_id=self.run_id,
252
+ step_id=self.step_id,
220
253
  )
221
254
  yield hidden_message
222
255
  prev_message_type = hidden_message.message_type
@@ -256,6 +289,8 @@ class OpenAIStreamingInterface:
256
289
  reasoning=updates_inner_thoughts,
257
290
  # name=name,
258
291
  otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
292
+ run_id=self.run_id,
293
+ step_id=self.step_id,
259
294
  )
260
295
  prev_message_type = reasoning_message.message_type
261
296
  yield reasoning_message
@@ -297,6 +332,8 @@ class OpenAIStreamingInterface:
297
332
  tool_call_id=self.function_id_buffer,
298
333
  ),
299
334
  otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
335
+ run_id=self.run_id,
336
+ step_id=self.step_id,
300
337
  )
301
338
  else:
302
339
  tool_call_msg = ToolCallMessage(
@@ -308,6 +345,8 @@ class OpenAIStreamingInterface:
308
345
  tool_call_id=self.function_id_buffer,
309
346
  ),
310
347
  otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
348
+ run_id=self.run_id,
349
+ step_id=self.step_id,
311
350
  )
312
351
  prev_message_type = tool_call_msg.message_type
313
352
  yield tool_call_msg
@@ -353,6 +392,8 @@ class OpenAIStreamingInterface:
353
392
  date=datetime.now(timezone.utc),
354
393
  content=extracted,
355
394
  otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
395
+ run_id=self.run_id,
396
+ step_id=self.step_id,
356
397
  )
357
398
  prev_message_type = assistant_message.message_type
358
399
  yield assistant_message
@@ -378,6 +419,8 @@ class OpenAIStreamingInterface:
378
419
  ),
379
420
  # name=name,
380
421
  otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
422
+ run_id=self.run_id,
423
+ step_id=self.step_id,
381
424
  )
382
425
  else:
383
426
  tool_call_msg = ToolCallMessage(
@@ -390,6 +433,8 @@ class OpenAIStreamingInterface:
390
433
  ),
391
434
  # name=name,
392
435
  otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
436
+ run_id=self.run_id,
437
+ step_id=self.step_id,
393
438
  )
394
439
  prev_message_type = tool_call_msg.message_type
395
440
  yield tool_call_msg
@@ -411,6 +456,8 @@ class OpenAIStreamingInterface:
411
456
  ),
412
457
  # name=name,
413
458
  otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
459
+ run_id=self.run_id,
460
+ step_id=self.step_id,
414
461
  )
415
462
  else:
416
463
  tool_call_msg = ToolCallMessage(
@@ -423,7 +470,711 @@ class OpenAIStreamingInterface:
423
470
  ),
424
471
  # name=name,
425
472
  otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
473
+ run_id=self.run_id,
474
+ step_id=self.step_id,
426
475
  )
427
476
  prev_message_type = tool_call_msg.message_type
428
477
  yield tool_call_msg
429
478
  self.function_id_buffer = None
479
+
480
+
481
+ class SimpleOpenAIStreamingInterface:
482
+ """
483
+ Encapsulates the logic for streaming responses from OpenAI.
484
+ This class handles parsing of partial tokens, pre-execution messages,
485
+ and detection of tool call events.
486
+ """
487
+
488
+ def __init__(
489
+ self,
490
+ is_openai_proxy: bool = False,
491
+ messages: Optional[list] = None,
492
+ tools: Optional[list] = None,
493
+ requires_approval_tools: list = [],
494
+ model: str = None,
495
+ run_id: str | None = None,
496
+ step_id: str | None = None,
497
+ ):
498
+ self.run_id = run_id
499
+ self.step_id = step_id
500
+ # Premake IDs for database writes
501
+ self.letta_message_id = Message.generate_id()
502
+
503
+ self.message_id = None
504
+ self.model = model
505
+
506
+ # Token counters (from OpenAI usage)
507
+ self.input_tokens = 0
508
+ self.output_tokens = 0
509
+
510
+ # Fallback token counters (using tiktoken cl200k-base)
511
+ self.fallback_input_tokens = 0
512
+ self.fallback_output_tokens = 0
513
+
514
+ # Store messages and tools for fallback counting
515
+ self.is_openai_proxy = is_openai_proxy
516
+ self.messages = messages or []
517
+ self.tools = tools or []
518
+
519
+ # Buffers to hold accumulating tools
520
+ self.tool_call_name = ""
521
+ self.tool_call_args = ""
522
+ self.tool_call_id = ""
523
+
524
+ self.content_messages = []
525
+ self.emitted_hidden_reasoning = False # Track if we've emitted hidden reasoning message
526
+
527
+ self.requires_approval_tools = requires_approval_tools
528
+
529
+ def get_content(self) -> list[TextContent | OmittedReasoningContent]:
530
+ shown_omitted = False
531
+ concat_content = ""
532
+ merged_messages = []
533
+ for msg in self.content_messages:
534
+ if isinstance(msg, HiddenReasoningMessage) and not shown_omitted:
535
+ merged_messages.append(OmittedReasoningContent())
536
+ shown_omitted = True
537
+ elif isinstance(msg, AssistantMessage):
538
+ if isinstance(msg.content, list):
539
+ concat_content += "".join([c.text for c in msg.content])
540
+ else:
541
+ concat_content += msg.content
542
+ merged_messages.append(TextContent(text=concat_content))
543
+ return merged_messages
544
+
545
+ def get_tool_call_object(self) -> ToolCall:
546
+ """Useful for agent loop"""
547
+ if not self.tool_call_name:
548
+ raise ValueError("No tool call name available")
549
+ if not self.tool_call_args:
550
+ raise ValueError("No tool call arguments available")
551
+ if not self.tool_call_id:
552
+ raise ValueError("No tool call ID available")
553
+
554
+ return ToolCall(
555
+ id=self.tool_call_id,
556
+ function=FunctionCall(arguments=self.tool_call_args, name=self.tool_call_name),
557
+ )
558
+
559
+ async def process(
560
+ self,
561
+ stream: AsyncStream[ChatCompletionChunk],
562
+ ttft_span: Optional["Span"] = None,
563
+ ) -> AsyncGenerator[LettaMessage | LettaStopReason, None]:
564
+ """
565
+ Iterates over the OpenAI stream, yielding SSE events.
566
+ It also collects tokens and detects if a tool call is triggered.
567
+ """
568
+ # Fallback input token counting - this should only be required for non-OpenAI providers using the OpenAI client (e.g. LMStudio)
569
+ if self.is_openai_proxy:
570
+ if self.messages:
571
+ # Convert messages to dict format for token counting
572
+ message_dicts = [msg.to_openai_dict() if hasattr(msg, "to_openai_dict") else msg for msg in self.messages]
573
+ message_dicts = [m for m in message_dicts if m is not None]
574
+ self.fallback_input_tokens = num_tokens_from_messages(message_dicts) # fallback to gpt-4 cl100k-base
575
+
576
+ if self.tools:
577
+ # Convert tools to dict format for token counting
578
+ tool_dicts = [tool["function"] if isinstance(tool, dict) and "function" in tool else tool for tool in self.tools]
579
+ self.fallback_input_tokens += num_tokens_from_functions(tool_dicts)
580
+
581
+ prev_message_type = None
582
+ message_index = 0
583
+ try:
584
+ async with stream:
585
+ # For reasoning models, emit a hidden reasoning message before the first chunk
586
+ if not self.emitted_hidden_reasoning and is_openai_reasoning_model(self.model):
587
+ self.emitted_hidden_reasoning = True
588
+ hidden_message = HiddenReasoningMessage(
589
+ id=self.letta_message_id,
590
+ date=datetime.now(timezone.utc),
591
+ state="omitted",
592
+ hidden_reasoning=None,
593
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
594
+ run_id=self.run_id,
595
+ step_id=self.step_id,
596
+ )
597
+ self.content_messages.append(hidden_message)
598
+ prev_message_type = hidden_message.message_type
599
+ message_index += 1 # Increment for the next message
600
+ yield hidden_message
601
+
602
+ async for chunk in stream:
603
+ try:
604
+ async for message in self._process_chunk(chunk, ttft_span, prev_message_type, message_index):
605
+ new_message_type = message.message_type
606
+ if new_message_type != prev_message_type:
607
+ if prev_message_type != None:
608
+ message_index += 1
609
+ prev_message_type = new_message_type
610
+ yield message
611
+ except asyncio.CancelledError as e:
612
+ import traceback
613
+
614
+ logger.info("Cancelled stream attempt but overriding %s: %s", e, traceback.format_exc())
615
+ async for message in self._process_chunk(chunk, ttft_span, prev_message_type, message_index):
616
+ new_message_type = message.message_type
617
+ if new_message_type != prev_message_type:
618
+ if prev_message_type != None:
619
+ message_index += 1
620
+ prev_message_type = new_message_type
621
+ yield message
622
+
623
+ # Don't raise the exception here
624
+ continue
625
+
626
+ except Exception as e:
627
+ import traceback
628
+
629
+ logger.error("Error processing stream: %s\n%s", e, traceback.format_exc())
630
+ if ttft_span:
631
+ ttft_span.add_event(
632
+ name="stop_reason",
633
+ attributes={"stop_reason": StopReasonType.error.value, "error": str(e), "stacktrace": traceback.format_exc()},
634
+ )
635
+ yield LettaStopReason(stop_reason=StopReasonType.error)
636
+ raise e
637
+ finally:
638
+ logger.info("OpenAIStreamingInterface: Stream processing complete.")
639
+
640
+ async def _process_chunk(
641
+ self,
642
+ chunk: ChatCompletionChunk,
643
+ ttft_span: Optional["Span"] = None,
644
+ prev_message_type: Optional[str] = None,
645
+ message_index: int = 0,
646
+ ) -> AsyncGenerator[LettaMessage | LettaStopReason, None]:
647
+ if not self.model or not self.message_id:
648
+ self.model = chunk.model
649
+ self.message_id = chunk.id
650
+
651
+ # track usage
652
+ if chunk.usage:
653
+ self.input_tokens += chunk.usage.prompt_tokens
654
+ self.output_tokens += chunk.usage.completion_tokens
655
+
656
+ if chunk.choices:
657
+ choice = chunk.choices[0]
658
+ message_delta = choice.delta
659
+
660
+ if message_delta.content is not None and message_delta.content != "":
661
+ assistant_msg = AssistantMessage(
662
+ id=self.letta_message_id,
663
+ content=[TextContent(text=message_delta.content)],
664
+ date=datetime.now(timezone.utc).isoformat(),
665
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
666
+ run_id=self.run_id,
667
+ step_id=self.step_id,
668
+ )
669
+ self.content_messages.append(assistant_msg)
670
+ prev_message_type = assistant_msg.message_type
671
+ message_index += 1 # Increment for the next message
672
+ yield assistant_msg
673
+
674
+ if message_delta.tool_calls is not None and len(message_delta.tool_calls) > 0:
675
+ tool_call = message_delta.tool_calls[0]
676
+
677
+ # For OpenAI reasoning models, emit a hidden reasoning message before the first tool call
678
+ # if not self.emitted_hidden_reasoning and is_openai_reasoning_model(self.model):
679
+ # self.emitted_hidden_reasoning = True
680
+ # if prev_message_type and prev_message_type != "hidden_reasoning_message":
681
+ # message_index += 1
682
+ # hidden_message = HiddenReasoningMessage(
683
+ # id=self.letta_message_id,
684
+ # date=datetime.now(timezone.utc),
685
+ # state="omitted",
686
+ # hidden_reasoning=None,
687
+ # otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
688
+ # )
689
+ # self.content_messages.append(hidden_message)
690
+ # prev_message_type = hidden_message.message_type
691
+ # message_index += 1 # Increment for the next message
692
+ # yield hidden_message
693
+
694
+ if not tool_call.function.name and not tool_call.function.arguments and not tool_call.id:
695
+ # No chunks to process, exit
696
+ return
697
+
698
+ if tool_call.function.name:
699
+ self.tool_call_name += tool_call.function.name
700
+ if tool_call.function.arguments:
701
+ self.tool_call_args += tool_call.function.arguments
702
+ if tool_call.id:
703
+ self.tool_call_id += tool_call.id
704
+
705
+ if self.requires_approval_tools:
706
+ tool_call_msg = ApprovalRequestMessage(
707
+ id=self.letta_message_id,
708
+ date=datetime.now(timezone.utc),
709
+ tool_call=ToolCallDelta(
710
+ name=tool_call.function.name,
711
+ arguments=tool_call.function.arguments,
712
+ tool_call_id=tool_call.id,
713
+ ),
714
+ # name=name,
715
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
716
+ run_id=self.run_id,
717
+ step_id=self.step_id,
718
+ )
719
+ else:
720
+ tool_call_msg = ToolCallMessage(
721
+ id=self.letta_message_id,
722
+ date=datetime.now(timezone.utc),
723
+ tool_call=ToolCallDelta(
724
+ name=tool_call.function.name,
725
+ arguments=tool_call.function.arguments,
726
+ tool_call_id=tool_call.id,
727
+ ),
728
+ # name=name,
729
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
730
+ run_id=self.run_id,
731
+ step_id=self.step_id,
732
+ )
733
+ prev_message_type = tool_call_msg.message_type
734
+ message_index += 1 # Increment for the next message
735
+ yield tool_call_msg
736
+
737
+
738
+ class SimpleOpenAIResponsesStreamingInterface:
739
+ """
740
+ Encapsulates the logic for streaming responses from OpenAI Responses API.
741
+ """
742
+
743
+ def __init__(
744
+ self,
745
+ is_openai_proxy: bool = False,
746
+ messages: Optional[list] = None,
747
+ tools: Optional[list] = None,
748
+ requires_approval_tools: list = [],
749
+ model: str = None,
750
+ run_id: str | None = None,
751
+ step_id: str | None = None,
752
+ ):
753
+ self.is_openai_proxy = is_openai_proxy
754
+ self.messages = messages
755
+ self.tools = tools
756
+ self.requires_approval_tools = requires_approval_tools
757
+ # We need to store the name for approvals
758
+ self.tool_call_name = None
759
+ # ID responses used
760
+ self.message_id = None
761
+ self.run_id = run_id
762
+ self.step_id = step_id
763
+
764
+ # Premake IDs for database writes
765
+ self.letta_message_id = Message.generate_id()
766
+ self.model = model
767
+ self.final_response = None
768
+
769
+ def get_content(self) -> list[TextContent | SummarizedReasoningContent]:
770
+ """This includes both SummarizedReasoningContent and TextContent"""
771
+ if self.final_response is None:
772
+ raise ValueError("No final response available")
773
+
774
+ content = []
775
+ for response in self.final_response.output:
776
+ if isinstance(response, ResponseReasoningItem):
777
+ # TODO consider cleaning up our representation to not require indexing
778
+ letta_summary = [SummarizedReasoningContentPart(index=i, text=part.text) for i, part in enumerate(response.summary)]
779
+ content.append(
780
+ SummarizedReasoningContent(
781
+ id=response.id,
782
+ summary=letta_summary,
783
+ encrypted_content=response.encrypted_content,
784
+ )
785
+ )
786
+ elif isinstance(response, ResponseOutputMessage):
787
+ if len(response.content) == 1:
788
+ content.append(
789
+ TextContent(
790
+ text=response.content[0].text,
791
+ )
792
+ )
793
+ else:
794
+ raise ValueError(f"Got {len(response.content)} content parts, expected 1")
795
+
796
+ return content
797
+
798
+ def get_tool_call_object(self) -> ToolCall:
799
+ """Useful for agent loop"""
800
+ if self.final_response is None:
801
+ raise ValueError("No final response available")
802
+
803
+ tool_calls = []
804
+ for response in self.final_response.output:
805
+ # TODO make sure this shouldn't be ResponseCustomToolCall?
806
+ if isinstance(response, ResponseFunctionToolCall):
807
+ tool_calls.append(
808
+ ToolCall(
809
+ id=response.call_id,
810
+ function=FunctionCall(
811
+ name=response.name,
812
+ arguments=response.arguments,
813
+ ),
814
+ )
815
+ )
816
+
817
+ if len(tool_calls) == 0:
818
+ raise ValueError("No tool calls available")
819
+ if len(tool_calls) > 1:
820
+ raise ValueError(f"Got {len(tool_calls)} tool calls, expected 1")
821
+
822
+ return tool_calls[0]
823
+
824
+ async def process(
825
+ self,
826
+ stream: AsyncStream[ResponseStreamEvent],
827
+ ttft_span: Optional["Span"] = None,
828
+ ) -> AsyncGenerator[LettaMessage | LettaStopReason, None]:
829
+ """
830
+ Iterates over the OpenAI stream, yielding SSE events.
831
+ It also collects tokens and detects if a tool call is triggered.
832
+ """
833
+ # Fallback input token counting - this should only be required for non-OpenAI providers using the OpenAI client (e.g. LMStudio)
834
+ if self.is_openai_proxy:
835
+ raise NotImplementedError("OpenAI proxy is not supported for OpenAI Responses API")
836
+
837
+ prev_message_type = None
838
+ message_index = 0
839
+ try:
840
+ async with stream:
841
+ async for event in stream:
842
+ try:
843
+ async for message in self._process_event(event, ttft_span, prev_message_type, message_index):
844
+ new_message_type = message.message_type
845
+ if new_message_type != prev_message_type:
846
+ if prev_message_type != None:
847
+ message_index += 1
848
+ prev_message_type = new_message_type
849
+ yield message
850
+ except asyncio.CancelledError as e:
851
+ import traceback
852
+
853
+ logger.info("Cancelled stream attempt but overriding %s: %s", e, traceback.format_exc())
854
+ async for message in self._process_event(event, ttft_span, prev_message_type, message_index):
855
+ new_message_type = message.message_type
856
+ if new_message_type != prev_message_type:
857
+ if prev_message_type != None:
858
+ message_index += 1
859
+ prev_message_type = new_message_type
860
+ yield message
861
+
862
+ # Don't raise the exception here
863
+ continue
864
+
865
+ except Exception as e:
866
+ import traceback
867
+
868
+ logger.error("Error processing stream: %s\n%s", e, traceback.format_exc())
869
+ if ttft_span:
870
+ ttft_span.add_event(
871
+ name="stop_reason",
872
+ attributes={"stop_reason": StopReasonType.error.value, "error": str(e), "stacktrace": traceback.format_exc()},
873
+ )
874
+ yield LettaStopReason(stop_reason=StopReasonType.error)
875
+ raise e
876
+ finally:
877
+ logger.info("OpenAIStreamingInterface: Stream processing complete.")
878
+
879
+ async def _process_event(
880
+ self,
881
+ event: ResponseStreamEvent,
882
+ ttft_span: Optional["Span"] = None,
883
+ prev_message_type: Optional[str] = None,
884
+ message_index: int = 0,
885
+ ) -> AsyncGenerator[LettaMessage | LettaStopReason, None]:
886
+ if isinstance(event, ResponseCreatedEvent):
887
+ # No-op, just had the input events
888
+ return
889
+ # or yield None?
890
+
891
+ elif isinstance(event, ResponseInProgressEvent):
892
+ # No-op, just an indicator that we've started
893
+ return
894
+
895
+ elif isinstance(event, ResponseOutputItemAddedEvent):
896
+ new_event_item = event.item
897
+
898
+ # New "item" was added, can be reasoning, tool call, or content
899
+ if isinstance(new_event_item, ResponseReasoningItem):
900
+ # Look for summary delta, or encrypted_content
901
+ summary = new_event_item.summary
902
+ content = new_event_item.content # NOTE: always none
903
+ encrypted_content = new_event_item.encrypted_content
904
+ # TODO change to summarize reasoning message, but we need to figure out the streaming indices of summary problem
905
+ concat_summary = "".join([s.text for s in summary])
906
+ if concat_summary != "":
907
+ if prev_message_type and prev_message_type != "reasoning_message":
908
+ message_index += 1
909
+ yield ReasoningMessage(
910
+ id=self.letta_message_id,
911
+ date=datetime.now(timezone.utc).isoformat(),
912
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
913
+ source="reasoner_model",
914
+ reasoning=concat_summary,
915
+ run_id=self.run_id,
916
+ step_id=self.step_id,
917
+ )
918
+ prev_message_type = "reasoning_message"
919
+ else:
920
+ return
921
+
922
+ elif isinstance(new_event_item, ResponseFunctionToolCall):
923
+ # Look for call_id, name, and possibly arguments (though likely always empty string)
924
+ call_id = new_event_item.call_id
925
+ name = new_event_item.name
926
+ arguments = new_event_item.arguments
927
+ # cache for approval if/elses
928
+ self.tool_call_name = name
929
+ if self.tool_call_name and self.tool_call_name in self.requires_approval_tools:
930
+ if prev_message_type and prev_message_type != "approval_request_message":
931
+ message_index += 1
932
+ yield ApprovalRequestMessage(
933
+ id=self.letta_message_id,
934
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
935
+ date=datetime.now(timezone.utc),
936
+ tool_call=ToolCallDelta(
937
+ name=name,
938
+ arguments=arguments if arguments != "" else None,
939
+ tool_call_id=call_id,
940
+ ),
941
+ run_id=self.run_id,
942
+ step_id=self.step_id,
943
+ )
944
+ prev_message_type = "tool_call_message"
945
+ else:
946
+ if prev_message_type and prev_message_type != "tool_call_message":
947
+ message_index += 1
948
+ yield ToolCallMessage(
949
+ id=self.letta_message_id,
950
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
951
+ date=datetime.now(timezone.utc),
952
+ tool_call=ToolCallDelta(
953
+ name=name,
954
+ arguments=arguments if arguments != "" else None,
955
+ tool_call_id=call_id,
956
+ ),
957
+ run_id=self.run_id,
958
+ step_id=self.step_id,
959
+ )
960
+ prev_message_type = "tool_call_message"
961
+
962
+ elif isinstance(new_event_item, ResponseOutputMessage):
963
+ # Look for content (may be empty list []), or contain ResponseOutputText
964
+ if len(new_event_item.content) > 0:
965
+ for content_item in new_event_item.content:
966
+ if isinstance(content_item, ResponseOutputText):
967
+ # Add this as a AssistantMessage part
968
+ if prev_message_type and prev_message_type != "assistant_message":
969
+ message_index += 1
970
+ yield AssistantMessage(
971
+ id=self.letta_message_id,
972
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
973
+ date=datetime.now(timezone.utc),
974
+ content=content_item.text,
975
+ run_id=self.run_id,
976
+ step_id=self.step_id,
977
+ )
978
+ prev_message_type = "assistant_message"
979
+ else:
980
+ return
981
+
982
+ else:
983
+ # Other types we don't handle, ignore
984
+ return
985
+
986
+ # Reasoning summary is streaming in
987
+ # TODO / FIXME return a SummaryReasoning type
988
+ elif isinstance(event, ResponseReasoningSummaryPartAddedEvent):
989
+ # This means the part got added, but likely no content yet (likely empty string)
990
+ summary_index = event.summary_index
991
+ part = event.part
992
+
993
+ # If this is a follow-up summary part, we need to add leading newlines
994
+ if summary_index > 1:
995
+ summary_text = "\n\n" + part.text
996
+ else:
997
+ summary_text = part.text
998
+
999
+ if prev_message_type and prev_message_type != "reasoning_message":
1000
+ message_index += 1
1001
+ yield ReasoningMessage(
1002
+ id=self.letta_message_id,
1003
+ date=datetime.now(timezone.utc).isoformat(),
1004
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
1005
+ source="reasoner_model",
1006
+ reasoning=summary_text,
1007
+ run_id=self.run_id,
1008
+ )
1009
+ prev_message_type = "reasoning_message"
1010
+
1011
+ # Reasoning summary streaming
1012
+ elif isinstance(event, ResponseReasoningSummaryTextDeltaEvent):
1013
+ # NOTE: the summary is a list with indices
1014
+ summary_index = event.summary_index
1015
+ delta = event.delta
1016
+ if delta != "":
1017
+ summary_index = event.summary_index
1018
+ # Check if we need to instantiate a fresh new part
1019
+ # NOTE: we can probably use the part added and part done events, but this is safer
1020
+ # TODO / FIXME return a SummaryReasoning type
1021
+ if prev_message_type and prev_message_type != "reasoning_message":
1022
+ message_index += 1
1023
+ yield ReasoningMessage(
1024
+ id=self.letta_message_id,
1025
+ date=datetime.now(timezone.utc).isoformat(),
1026
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
1027
+ source="reasoner_model",
1028
+ reasoning=delta,
1029
+ run_id=self.run_id,
1030
+ step_id=self.step_id,
1031
+ )
1032
+ prev_message_type = "reasoning_message"
1033
+ else:
1034
+ return
1035
+
1036
+ # Reasoning summary streaming
1037
+ elif isinstance(event, ResponseReasoningSummaryTextDoneEvent):
1038
+ # NOTE: is this inclusive of the deltas?
1039
+ # If not, we should add it to the rolling
1040
+ summary_index = event.summary_index
1041
+ text = event.text
1042
+ return
1043
+
1044
+ # Reasoning summary streaming
1045
+ elif isinstance(event, ResponseReasoningSummaryPartDoneEvent):
1046
+ # NOTE: this one is definitely inclusive, so can skip
1047
+ summary_index = event.summary_index
1048
+ # text = event
1049
+ return
1050
+
1051
+ # Assistant message streaming
1052
+ elif isinstance(event, ResponseContentPartAddedEvent):
1053
+ part = event.part
1054
+ if isinstance(part, ResponseOutputText):
1055
+ # Append to running
1056
+ return # TODO
1057
+ else:
1058
+ # TODO handle
1059
+ return
1060
+
1061
+ # Assistant message streaming
1062
+ elif isinstance(event, ResponseTextDeltaEvent):
1063
+ delta = event.delta
1064
+ if delta != "":
1065
+ # Append to running
1066
+ if prev_message_type and prev_message_type != "assistant_message":
1067
+ message_index += 1
1068
+ yield AssistantMessage(
1069
+ id=self.letta_message_id,
1070
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
1071
+ date=datetime.now(timezone.utc),
1072
+ content=delta,
1073
+ run_id=self.run_id,
1074
+ step_id=self.step_id,
1075
+ )
1076
+ prev_message_type = "assistant_message"
1077
+ else:
1078
+ return
1079
+
1080
+ # Assistant message streaming
1081
+ elif isinstance(event, ResponseTextDoneEvent):
1082
+ # NOTE: inclusive, can skip
1083
+ text = event.text
1084
+ return
1085
+
1086
+ # Assistant message done
1087
+ elif isinstance(event, ResponseContentPartDoneEvent):
1088
+ # NOTE: inclusive, can skip
1089
+ part = event.part
1090
+ return
1091
+
1092
+ # Function calls
1093
+ elif isinstance(event, ResponseFunctionCallArgumentsDeltaEvent):
1094
+ # only includes delta on args
1095
+ delta = event.delta
1096
+
1097
+ if self.tool_call_name and self.tool_call_name in self.requires_approval_tools:
1098
+ if prev_message_type and prev_message_type != "approval_request_message":
1099
+ message_index += 1
1100
+ yield ApprovalRequestMessage(
1101
+ id=self.letta_message_id,
1102
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
1103
+ date=datetime.now(timezone.utc),
1104
+ tool_call=ToolCallDelta(
1105
+ name=None,
1106
+ arguments=delta,
1107
+ tool_call_id=None,
1108
+ ),
1109
+ run_id=self.run_id,
1110
+ step_id=self.step_id,
1111
+ )
1112
+ prev_message_type = "approval_request_message"
1113
+ else:
1114
+ if prev_message_type and prev_message_type != "tool_call_message":
1115
+ message_index += 1
1116
+ yield ToolCallMessage(
1117
+ id=self.letta_message_id,
1118
+ otid=Message.generate_otid_from_id(self.letta_message_id, message_index),
1119
+ date=datetime.now(timezone.utc),
1120
+ tool_call=ToolCallDelta(
1121
+ name=None,
1122
+ arguments=delta,
1123
+ tool_call_id=None,
1124
+ ),
1125
+ run_id=self.run_id,
1126
+ step_id=self.step_id,
1127
+ )
1128
+ prev_message_type = "tool_call_message"
1129
+
1130
+ # Function calls
1131
+ elif isinstance(event, ResponseFunctionCallArgumentsDoneEvent):
1132
+ # NOTE: inclusive
1133
+ full_args = event.arguments
1134
+ return
1135
+
1136
+ # Generic
1137
+ elif isinstance(event, ResponseOutputItemDoneEvent):
1138
+ # Inclusive, so skip
1139
+ return
1140
+
1141
+ # Generic finish
1142
+ elif isinstance(event, ResponseCompletedEvent):
1143
+ # NOTE we can "rebuild" the final state of the stream using the values in here, instead of relying on the accumulators
1144
+ self.final_response = event.response
1145
+ self.model = event.response.model
1146
+ self.input_tokens = event.response.usage.input_tokens
1147
+ self.output_tokens = event.response.usage.output_tokens
1148
+ self.message_id = event.response.id
1149
+ return
1150
+
1151
+ else:
1152
+ logger.debug(f"Unhandled event: {event}")
1153
+ return
1154
+
1155
+
1156
+ """
1157
+ ResponseCreatedEvent(response=Response(id='resp_0ad9f0876b2555790068c7b783d17c8192a1a12ecc0b83d381', created_at=1757919107.0, error=None, incomplete_details=None, instructions=None, metadata={}, model='gpt-5-2025-08-07', object='response', output=[], parallel_tool_calls=True, temperature=1.0, tool_choice='auto', tools=[], top_p=1.0, background=False, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, prompt_cache_key=None, reasoning=Reasoning(effort='high', generate_summary=None, summary='detailed'), safety_identifier=None, service_tier='auto', status='in_progress', text=ResponseTextConfig(format=ResponseFormatText(type='text'), verbosity='medium'), top_logprobs=0, truncation='disabled', usage=None, user=None, store=True), sequence_number=0, type='response.created')
1158
+ ResponseInProgressEvent(response=Response(id='resp_0ad9f0876b2555790068c7b783d17c8192a1a12ecc0b83d381', created_at=1757919107.0, error=None, incomplete_details=None, instructions=None, metadata={}, model='gpt-5-2025-08-07', object='response', output=[], parallel_tool_calls=True, temperature=1.0, tool_choice='auto', tools=[], top_p=1.0, background=False, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, prompt_cache_key=None, reasoning=Reasoning(effort='high', generate_summary=None, summary='detailed'), safety_identifier=None, service_tier='auto', status='in_progress', text=ResponseTextConfig(format=ResponseFormatText(type='text'), verbosity='medium'), top_logprobs=0, truncation='disabled', usage=None, user=None, store=True), sequence_number=1, type='response.in_progress')
1159
+ ResponseOutputItemAddedEvent(item=ResponseReasoningItem(id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', summary=[], type='reasoning', content=None, encrypted_content='gAAAAABox7eEiOVncSJVTjHrczwPKD0bueuhRmgzj6sBTQPnyB5TTE4T3CCoxXALshB1mkOnz48dkd8OkkqFSjZ90OmFi1uVZ9LdJQxoibXj2qUetqhwO_Lm8tcy5Yi4DHrqqhMPbGnDOuJr38PyI_Jx5BDPzJlPbDeU6a99Eg531W7nfSVCzwihekQxlcV9X0xYAvSaigCgbu75sSkx4mopcYDeBTxTjYtpJIAH4C-ygv_MyEeqTJqGdGoQ1NjmF6QJECIXir6llkHlvUHhGeAH6bUabUw7SDBk7gJnMAwDUOZVfp0GyWHRVbDfLCrP7G5nkz98iaEl9LFOcTolsrqxYI_e7k2rIejhfvvSEwgvhCOidNjjKNr3Jujt2ALJ6kGgG3fyWu81cLMobRTL6H0iQ2uT8u9XqZ2eiwHwImexRytC1sSDPK9LaBih46J66HVBKQTeRqMA7m379U8o-qLESN6AiS0PoiJvBpT3F89qJSl3rG19NwzJpPC99Ni1Dzgbr6VPqVmYBqJ5pRt98P-zcW4G72xNr1BLWgCGlCiuuNOxvn2fxPmdHt6S4422oNYb8mNkKeL7p0-6QB9C6L4WPrXUmCOr2_9-dcd1YIplHNQd7BGcbrotZIOj_kTgOvkbQa72ihDV6lNFg8w0_WO2JqubjxP4Ss22-hhtODP6dtuhWjAX5vhIS1j0lFlCRjnQsdC6j7nWhq8ymoPVrmoTE9Ej-evsvTnKO1QVXDKPrKd0y-fMmuvMghHCmhqJ5IiYT1xPX6X83HEXwZs2YY5aHHZkKcbgScAhcv0d1Rv4dp18XHzHUkM=', status=None), output_index=0, sequence_number=2, type='response.output_item.added')
1160
+ ResponseReasoningSummaryPartAddedEvent(item_id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', output_index=0, part=Part(text='', type='summary_text'), sequence_number=3, summary_index=0, type='response.reasoning_summary_part.added')
1161
+ ResponseReasoningSummaryTextDeltaEvent(delta='**Analy', item_id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', output_index=0, sequence_number=4, summary_index=0, type='response.reasoning_summary_text.delta', obfuscation='JdVJEL6G1')
1162
+ ResponseReasoningSummaryTextDeltaEvent(delta='zing', item_id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', output_index=0, sequence_number=5, summary_index=0, type='response.reasoning_summary_text.delta', obfuscation='3g4DefV5mIyG')
1163
+ ResponseReasoningSummaryTextDeltaEvent(delta=' r', item_id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', output_index=0, sequence_number=6, summary_index=0, type='response.reasoning_summary_text.delta', obfuscation='dCErh1m4eFG18w')
1164
+ ResponseReasoningSummaryTextDeltaEvent(delta=' things', item_id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', output_index=0, sequence_number=214, summary_index=1, type='response.reasoning_summary_text.delta', obfuscation='hPD6t2pv9')
1165
+ ResponseReasoningSummaryTextDeltaEvent(delta='!', item_id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', output_index=0, sequence_number=215, summary_index=1, type='response.reasoning_summary_text.delta', obfuscation='g1Sjo96fgHE4LQa')
1166
+ ResponseReasoningSummaryTextDoneEvent(item_id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', output_index=0, sequence_number=216, summary_index=1, text='**Clarifying letter counts**\n\nI realize this task is straightforward: I can provide both answers. If the user is counting uppercase R\'s, the answer would be 0. For a case-insensitive count, it\'s 3. It\'s good to give both for clarity. I should keep it brief; a concise response would be: "If you\'re asking about uppercase \'R\', there are 0. If counting \'r\' regardless of case, there are 3." This way, I cover all bases without overcomplicating things!', type='response.reasoning_summary_text.done')
1167
+ ResponseReasoningSummaryPartDoneEvent(item_id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', output_index=0, part=Part(text='**Clarifying letter counts**\n\nI realize this task is straightforward: I can provide both answers. If the user is counting uppercase R\'s, the answer would be 0. For a case-insensitive count, it\'s 3. It\'s good to give both for clarity. I should keep it brief; a concise response would be: "If you\'re asking about uppercase \'R\', there are 0. If counting \'r\' regardless of case, there are 3." This way, I cover all bases without overcomplicating things!', type='summary_text'), sequence_number=217, summary_index=1, type='response.reasoning_summary_part.done')
1168
+ ResponseOutputItemDoneEvent(item=ResponseReasoningItem(id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', summary=[Summary(text='**Analyzing riddle ambiguity**\n\nI’m thinking about a puzzle that mixes cases to mislead, but the answer should be \'3\'. There are gotcha riddles about counting letters, like asking how many R\'s are in "Strawberry." If it\'s capitalized, the answer differs. The typical trick is that there are no capital R\'s in "strawberry." Since the user asked about uppercase R\'s but quoted the lowercase version, it\'s confusing. I should clarify if they mean uppercase \'R\' or any \'r\'.', type='summary_text'), Summary(text='**Clarifying letter counts**\n\nI realize this task is straightforward: I can provide both answers. If the user is counting uppercase R\'s, the answer would be 0. For a case-insensitive count, it\'s 3. It\'s good to give both for clarity. I should keep it brief; a concise response would be: "If you\'re asking about uppercase \'R\', there are 0. If counting \'r\' regardless of case, there are 3." This way, I cover all bases without overcomplicating things!', type='summary_text')], type='reasoning', content=None, encrypted_content='gAAAAABox7eQs7K1F8qaKB_jhBgufrTLqEXk96f-M9YyeTQ7tvQO730WOtTZtmuQ7XLiAekqxt4yrNQEmgYZhS7qQx-5oq30NlfHezcgkYqmvBqFhGtJkg_Ea6eO9WVMYaXK6nbxXvyK-HS73GvF8AN6NE72rITUE0fdlT6_VeU_OLBSDtVJXUMqbr6V4MOllzXRklbIOJCemZWRax0tenrxaVBrR4IbGoXoFbz5q2Lt8-Xc4NtuUShrzv8AU8Lm46KGvZeX2bWtS0d7-x3in6HJNk4gAFmepYh-cNbk_Qd8UVMvARb2nBjK7jHTB6IP1fDbVYYMUvX6ox8q2jPdHA7ZFRF-YFDXUyX6lwvhLGhVodqyQ4IdmZv1sJ78mvLUpuEdJrHSapA83SN6oaqpoD5cO174UKxyZnrhwQCyxPQ__lS5ZaUgnsIfgtuF5_cKATDxJFBrVo-0SwPHJZdtiCD1CYaVgUKr6uBDtUk32WCDOSJbFK5ClYM1W41x7mBLUWwBJVJ4PZVz3Cc6lR6EMa4a3SAMtIRzMY3869ox6WwDUV8TAYpSMdsb_VW3aezj0hXhnGYUrfmrmtYJEmxy36kV9GsHoBSLwXwNYbjTnP-Pni_AqlCQgZWKTI9KzJ8Zi95l617XwDJ6PzaHt2D6OSX2pmiVPwMGjZDIR6o21fBw3ZwI9TGkJitwL5O9Xlc6PQfYnk-oAVt17OZet6tXQe8LA3wq-9BQXY-88OQRrIGsnFjuGKOmaEXXDmaT1u9lGwOfSdKtU-4X67iDmy5e--lKYZrbWEVy2aoMcwMh2gTsPl-nS_fLzPdOlIgXv4DKCFf_E93LjjdyVoSFctm928rqY_qayqvP5kGx4UjPGiIxFD7tI3lEGMMFA8P0h6nE6NnZgb7pgMtgsqF17SdBKAXFLF8JtuaZulzoBdJJ_2Skq0FO7X8xynq_hhIDdwK2QU9PEfaX7h0j-kGYwVuWs8C_zispG--pHveDqPE1j9GUVrRN9W72-qNHnXRMPEDan1jq4WFN4VknDVwbnK9HR_suKJOTKGZF0MJACtaL4_FyvGfqANLky3cfWeMLpYmXec2Buo-4x8XwlRASCyvK6KXnz7K-M0SuvtoEqTBw0Pa4PBO683OtssZ-ujqMgnzFy3tTKpAabGq-Tz3Dn5fxbYgZONpE6jdTEQxBhkkvplReda3GATlskQHrQtn5Q_tvYwOIQu3iFiP9uoTtfCVQ_Tm4CIGxcEDqWnVaP1fOe8LKHwCvPf7bm046YI3oL-2do70oBJEch0JRKiI3ijrqHzXpI6e-bam9inNnzKxq0HMornRJh37HMDtME0nbXvrNSTu7k7pldDJtQ7SVIoey_PnLirAL9WdfM0HTdsAVmHgXp8u6Ta3_aob-vdrYs19TnGAh6Hp5DqC47wrDeg4RqqSWTM5PLdj4kfdmzkBB90zLMTdR_7Xq7ox64NXfaOXkyLSdFNgz3vmMGyyI3RDeDfVN8tLWfmAWKnooXp866vmdkdWp2IGiq8VWFOe20oaugm8CtT54XLlL6Hh_nipMZy_4pLTVZSsSNd1lvUn-xPMu7WD3NMEdk5b61juYsa77CLHj71vzbPVfHhmOtxqQ_Iqeh4sgPhY0FKRhblvs6yIXy__Ab9MKMYz1Cba1qAr-m9_JGNR1PzUPb7CfS-gbwBwqGoNy5ig1ir-GccsA9hB0UPORaobOGkklDI6B-aEjf8DkzEGdzXQLpJkWwv4cjJAeU1oA9R0hNAwR_STZDvmjkos7j0opRUl-qOez4pBeoRcR8T6V3uqO6OD4j0WNMkLekAGi_BE9tt25v2ClWVSeBE7M9TjlG4uOJwp_IHJZRM3VwunJt9L6ZXALck5sEdIG1EYiAgSophCMqfqUUS2cG7QkDOH-N_jGQisoKRqWJKouERgIHT9TK5ZDeL3WVQL3a-6-HH3y-Lv8UJC1-F_V15FZTgAK3SxUqeHHts6EvDKEqde9QxxTPWwhMOk6dBxNQ0jxfKn9pzNNXhasVIHnk5zn1wWJkm8P3B5sG6Oxwpsxu6ywbY4AOFjBRwHGnnO06CykNaB6uR3KxIlDo2pdidOChI1uZrqYAEDKhjGHcKUQOlgq83wz4dLciiioDYPHfexfSl91QQaQZWrAIN77AbT6e9wxXaZZNQ4Jwo9JpQNjRkoBu2_4tW317nzLj31ayK-5w07imhOBh3ziD8yx3MC7AxuIbsAWo_scZgq8h7OxwRBih9NyiYMePLTLPOPahjDQvl-4XFj4NVNNnXKsiLrxPwtxmMREZraJxcmrSzDFiYDnqkibHXQ3eYyykcjCY3kWRCszoAEYhI3a2qsfbyePgPlfynf3_8rCsb2qaiXmu93lLqrRRg0ktRXtBb3lJVlpVGezUD6Itc_BDZQJAfC0PJbf_AoLfxIVw9-Pj5p5ssxuyybJn0thiqR5CnzcK_TO4jA2PJkjdfK5zLZbyNSYp4NKUpaL1u0jxiuD_vJ30qt3hJugsTv8EvCLdtoNwuvBwjhqplPPZ8_TWCVsowYm3n9LEYWCK-EEk6D2H4_Z8gQYNWz0O735CSiAVpSZpChBRwkfOhlerp8o6k8NJmf7VEqVCE5_iwrKqllB0o8hNLPDSlzQ97EacKz6wsLBorlqTRvGvRrJqwQHwybQLkJlCinqZV9XF52kc0c9GqdKdF-aPxv5VNoPenEBDo6EpAnDyM-TRxzsWtQ71kzRQgLIi-tvO9fTA2MExrF4tv_m1CULjF2jIoeG8RZPC4zhHVd9lvyflhCVSLflF6GR2qzSQua2zqqMsfM4qYGdW83in2U5KDWc7yD7FVi_IM5F1_AKeUaPQ_9MbwCkUO8zdDSQ-eVxY051PGiKHNKTP982Legft29skJqqDZv57Oju9wtI9PmmoeozaBPv4-spuuczsMsVbl6aRLs8xQsPQoke-MUMuelF1kGIqJnMktKiN8AGB8CoU_XzBjGSV-8yJj7tCBYquF66tj5wyn5tsVWwHsi8sl-IRMrVsza1LY0mVx-6ljo97j3WME1LuCTTNF5GOZMHUfRUXgHW5aENuENS9LhsqymVK8sAeQVMVVijC1Gnq2I0ddKLwodsrzCReaqLKx4y3Q4NB0Rom76UzyODd3vzDxjUS9k-IvRbzyXYC0YO-WsngpJr8sKZ8eQqJuBSE3rjT6CEx6-Ldxf8ad-iT6rh-nJRMn27jtHaUgQdZoexMDS1yons8r-MfUYayTaAGeIiimpuCj1A-f3zpQgqqehRkxoEJmjcGLe0oRI5H-kXEk8_LZt45nCiD86HnSCBqRasFNV0lAhWy2UF2cuu0AQuixUDRRgJU5ilWuDTcnJAo-Y4T7wh06xUGuCa50mLAszVnldO-JFrYGYE5UsWTe7qSNOSNsLIJqVoR4WLJJp-FaDFpiir14v1llvh1OumR03aDCA4gOQzeFNzfkUIQNRq0sU1ReZcxLUnlNjHWFqSBfB53rerSV8mdauA91EweO3cOJ1iTUFnAST_QPB2da03hINiRWd8jSkkiUdha-t6iajgOA2w_YlP2cyZ2b-L-cVhBFx0r1VSHocASSSTK1vU1vrPwtXJdMHq6c_EcMSirybtLzpIM3WR-z1wbr2gYvPF2KR_DvsybXE3DsX4qKInsykvBLmg-0RYWcFivmBgAGcIgYLjuCaWbpi5wYi_hNbPBJw07WpxN4QOS9_CaOn0AQh0NnqgPg9DH_am9mpOutvWMKWOqMcNKaRACDCpQkGDhX8yfF6W4EihLKam0vmiYYYtnFQ19Xl59cXf8gVcbNOnElOuA3gK_4PMCYHL66tPUdhKreBlboULKLm0xgYMf3lRrPh803TG0x5L0oYAGzXcGUZIs0AtX2wmkfYSSivFsqSThLY-q2VHtiNBigEZRIWr1lfNzLFYzNipiajvFAfB1EpDpfRkjnnoV5n656y11uFcyySyiskKxZqZryqfb3HPfn8VlK3baKLMk5a0i1CZp5LswGErlk2qgwaSYSWOcHmt6z1GfJOKzrGkHFTWMzzg', status=None), output_index=0, sequence_number=218, type='response.output_item.done')
1169
+ ResponseOutputItemAddedEvent(item=ResponseOutputMessage(id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', content=[], role='assistant', status='in_progress', type='message'), output_index=1, sequence_number=219, type='response.output_item.added')
1170
+ ResponseContentPartAddedEvent(content_index=0, item_id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', output_index=1, part=ResponseOutputText(annotations=[], text='', type='output_text', logprobs=[]), sequence_number=220, type='response.content_part.added')
1171
+ ResponseTextDeltaEvent(content_index=0, delta='Upper', item_id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', logprobs=[], output_index=1, sequence_number=221, type='response.output_text.delta', obfuscation='a8XGRatycGS')
1172
+ esponseTextDeltaEvent(content_index=0, delta=' ', item_id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', logprobs=[], output_index=1, sequence_number=234, type='response.output_text.delta', obfuscation='Ljhu9qR46fiOkfr')
1173
+ ...
1174
+ ResponseTextDeltaEvent(content_index=0, delta='3', item_id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', logprobs=[], output_index=1, sequence_number=235, type='response.output_text.delta', obfuscation='5auIEi4JmSFDF72')
1175
+ ResponseTextDeltaEvent(content_index=0, delta='.', item_id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', logprobs=[], output_index=1, sequence_number=236, type='response.output_text.delta', obfuscation='I78DIGKqtD2P6H2')
1176
+ ResponseTextDoneEvent(content_index=0, item_id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', logprobs=[], output_index=1, sequence_number=237, text='Uppercase R: 0. Counting r regardless of case: 3.', type='response.output_text.done')
1177
+ ResponseContentPartDoneEvent(content_index=0, item_id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', output_index=1, part=ResponseOutputText(annotations=[], text='Uppercase R: 0. Counting r regardless of case: 3.', type='output_text', logprobs=[]), sequence_number=238, type='response.content_part.done')
1178
+ ResponseOutputItemDoneEvent(item=ResponseOutputMessage(id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', content=[ResponseOutputText(annotations=[], text='Uppercase R: 0. Counting r regardless of case: 3.', type='output_text', logprobs=[])], role='assistant', status='completed', type='message'), output_index=1, sequence_number=239, type='response.output_item.done')
1179
+ ResponseCompletedEvent(response=Response(id='resp_0ad9f0876b2555790068c7b783d17c8192a1a12ecc0b83d381', created_at=1757919107.0, error=None, incomplete_details=None, instructions=None, metadata={}, model='gpt-5-2025-08-07', object='response', output=[ResponseReasoningItem(id='rs_0ad9f0876b2555790068c7b78439888192a40c50a09625bb26', summary=[Summary(text='**Analyzing riddle ambiguity**\n\nI’m thinking about a puzzle that mixes cases to mislead, but the answer should be \'3\'. There are gotcha riddles about counting letters, like asking how many R\'s are in "Strawberry." If it\'s capitalized, the answer differs. The typical trick is that there are no capital R\'s in "strawberry." Since the user asked about uppercase R\'s but quoted the lowercase version, it\'s confusing. I should clarify if they mean uppercase \'R\' or any \'r\'.', type='summary_text'), Summary(text='**Clarifying letter counts**\n\nI realize this task is straightforward: I can provide both answers. If the user is counting uppercase R\'s, the answer would be 0. For a case-insensitive count, it\'s 3. It\'s good to give both for clarity. I should keep it brief; a concise response would be: "If you\'re asking about uppercase \'R\', there are 0. If counting \'r\' regardless of case, there are 3." This way, I cover all bases without overcomplicating things!', type='summary_text')], type='reasoning', content=None, encrypted_content='gAAAAABox7eRIRNnSmrunATD6UBi-Hm77E5JggsaXTKrNH-6ZkwIcosPQPf4vVdjR3ywdcYr4pr2Od3C0ADYSUpyR35tyusZq8A8yR-EmpgA-7otyIGLk5zzZy3AqKv2zZElkvgcr8PEKpYpC8VS6AO4Qg3g_gvBD8eV8j2O_FtGTIQ5MKS_Q0_gf9BCJtkh-PgYjL-0bEXsmCfgPa37BogC4nYh42b5hc7vge3ZH_RmR3irxWontsGaUIkOxR8_oK3RGKvkLfR24QYd4U8BIiZk3G58cR1UDRmtvfHwM4E7W6mpog-dFe9D-V96q1OWBGsNObyHxJcoSNGLxHkxWRvGnq3aWts_Lh-srgJ50rIa19pnOzfXePfdNxdXy7dYXD0D1uiBibpX5nneKUr1C0QmQdwS_nW16pr1oNKZ2fVkZJDTn31rOR3WfvtY9gL7tKo_CMnJ8jT3YKhZxFHG9PhHEoA5OsE_QC-3To54meckPExJqrVJ-h3u_5S4lHK9xu8buzIv4WM92X91zeX98A3g_YkqqvoTUmkFyMoIr8PVxM6Cmg4JtooT9bL2FAVUo6MV2_tlX07hNNH-hWSgqZHMVdx3_cTDAfKW3cAbwaG16ApgK_VUUc7rIfygHxgxtW-YeZpbETlvdNrDIDhzhuPQqPB86DQFh9O262o3cvBHok7V0WVqq-KXH5mH-eio7MhZJ46Ri4qklU9Xn77Tw4zl1cw029FuDKwF0_KsFZ8Omayi5iWJoZFjzqhATR_qt2J3nr368skIHDQ1tSa1vUAJt4UM7A4Un9KG2syCydoAmVQYoRgc5niiWU9FFouzulKW_cfyLrJDlVN1EfaUx2xVzaJO-LhdimhDiP4CKk5DsvEuuhTDn9RkO19cz7eJdrt_wGthYRlcJ-5bSFsSG1UV4VlovcLjuqApc5Fsis9kRo0jkar53HM7rmI7t9uN3TcTCQWGpbDvi-OQblbdvNFZh8wy-BaC0SFtOwcVkhwR2CDCf-7FuB5HOJnzmSOtKDZoFrA9gspNZjXoV6LCKmKIGj_tRLaI9jsn9iZZ7Bdtv2SLw7blE53f4OesXbsC0evl9GzlJfIsiaO1I5pEGCT2sWitWyHrbQLJTWeUBi6SoeULpujVp_w25xJonbCD9HAV51bD6rmAI9LEj0bYOBJ1RmtESAqZpV2wj68i-tv5ejdQ-YXOXSuy4DwInYsALmGMRhFFf0tKhNLHMVdCOij0zo4fU24EhmfxMRZifapm4fDBe2bswE10_LJI2DhzLv_NwQfHMQ0qEDOZQss74qaggBnsr4N-OK6egO3RJYCFddDFUa9vwxYIBHjlqb2p7tX4YpugHQ0ZmDYpUAwRzUmcwYaLjs9lzskQzzpOCeKXmwksWWOax-aWkkw9ic17PTAqne84_LMSNnY4mPOYU4sQ0DxdfNX_2iGVrWSkP3XcLUut1OH6Mah-yWaioJbLoXIpxbngW-IAm3Uxafha94fOHSaMymRYG8ZIbKHvg6n3tud08gBfiiJON5CLCovoKkAeGC3-NQQC58341osMVKSRF6SEpsHMGd97lMdWTlkB3v29m-xf8nuCOqgk4Ig5gIodter_BWs2BEXLiw5ISDBvdl26FVUUoBOpexXFwf99wTroDPK85UYlH5W9m51FlSwfgm0Vg5N9nzivMGClDy_jvNDyI5UHnQjVuqnTAcK0nF6RJn-lnO6hT60qq9hRsqa84iUMqOmQZxXv1KbS0exoqfrqps6ILqifM93r87HVzrrCShWFB1A7hfJHoVqRq-PLsO2iv-V6v9S5_nFwYGG8srrNUuNgzLvLB9J7hlN6fPL4f6vWIJ9sBVpPukR-Pr_I8q8hZicr3YVshIuB544w-srUH4OvRx5v5pz9Jfcm2hHZZjO2yaVDAWKQ_PQk0xj43b-pyrjpAznYdG1QMmFcTfjqVDal97EQeMjIAIjlah0BOqhzHtT0dBjYLyBXZwzO7ii7z-6-jQk5FIDX-RqrdHm8D41dTHx-W7LMvNwpW6ueir7HVoYdIZAP0qaSU-Nf3oJTK8wGhRsh4G3PBsrGbamsfK7c2-AYi_f6kcvXWE4G7ch6c5H6cVqrriil8AcjUZ422dIkFIJHfhbPeAIFy6zuDm9ZnZvgjyqI_mnnK0hlLzfSgJFV6QRAYdkmiviit4qIwEOobM6zYeYPdb09Y15MDLcCOM1KpCecaSJDZm4PrnvP3F0nUpYHvVygA1C-CPenmCjeC_AqWMJ_BVXQyIcVx31fxZCvBIkEskI9Wm6qfJkN8IYw00_X4PnpV-u9d6poChA2smfOsFaeHqoNE_RmPO_QTqHE4m6xBH2RueVnIt4QZ2NVOFyZUI4vBEOsNOXYQpw8tkzONR3FcRRsp2qWNXfmTVdrkVR_-oQpUSlkhQKKo9thNq6SpDezaMUpWjMpi1lgaIZUbSU0WUq3A2EtpWW1yJQjuA2rosQYh2zgILAEtyYgu0Qh5qqsKQB_7oyv3LOB5JHVYa94H1xqHwk9XVfOM6Eeszb1-FYZ3ibagpOiIzPPrGhZA1FIfdVDLk3ulDR7l3-NZZD48SkbkxlnJqbjksgtoM-0AAPVV7q4OSH9MBHK29yVJRahzoFei9toYhD2qN3Mo-HVbWPOo89wJ8LKnwTTF02RUcA4xstjuD5B4IEGF2fMprohnlYVpULejRkkga3Mt6wdjLHzJY4WHkSaGfrDChgMfRpAhtPYQ4sSf4FVFaeT6up-1pU3o-n56zibIwHDfmB_rXEXHLIpaUBEDo7-X8TXZ8SvS-isKwmExJxDtjUI_pglFcThIfigVOJvyemEQ11iLmcoIw6vj5Zge3xzxR7pJgiHbGXhbUpYIJyvrol7NIBZwW_AhgE0WJEjrq9ffdoE9OB311ZZbES2q-ghlfGKgyFrrZNgpY_mYCjd8yx5APWvBYoj-w1WxL42Q0bE3DSyBM9JOwb8t1SPNNduz01MVsbj6_zbya7KDW4pHGiU-4Dh-YU8q9ndeuIezb7km6vQn6zjOfLLPXSkIH99RgAn-eNMPdk5CZWXm16nqgpL1ZtxivXhPItlq2p5akhj64_nreXLe2bKscR7syMZ_9xRC1u9EdomxyuJx6HAB-Jo7_AatJcYeI0BNLiGjnflLnbqwP0jH9_6Q2ucC9oNoNNtiyzq-Wy7zW9Q9eDCL8zVfKVAwNkyvzKSra8EJ6u-ukskCAXmN09_WUXQC00H7foIKOhhn4LXT9LoVgFblMsVjm_bBzXQuEA11Bc3RAJHUyLlpH9K-vz1Zebn-1AUDSlEQENIkzW6TpnoumA1m728tvaF8byNOqKgfRdftIixRHmKYUPrgKXrJErEz6P_n2MJvOvvCVH03o_Dpoh19PY6Rcvv1t56SaUCzdEyTcsVP9JRNh26HckesWjb2IfJsDuGrjlX5V5FabPImAKVRGzwNW5lJLwB59OBGkS4xXxI_vwzFiwrP6Pb2DPVgw3-Epe017D0atbZVs6Oik-14Q9uLrxBz4X2EV0HK_nnkg3mndj2LDBEXtCFky6sIrWer4W3i4Ksrfe5oxGiV02tjNNzFSqHg_z9QX43kTbcBePuYDlMRJ2DwmBykJUXdLcT4j9FlQ9BwOSAKHNaE35j-YZkASDYKqRn5SL9zC71C2qyJVDQ-5cw9GRaFZfLDKO6ySv7yZb367UpQ1uUUzqsyivAYA8jqez7LV0Yxz_hq5mBKE-NdHf-EU9uHHg1zkB73pk1wFOqE5siD0fjr7IkU3R3OcTsNSXEMa63jfeiODcSEoKwcOB8gxG-3Xwh1ueQO6sGvP7Z6sWBfPeWlmA662QytXV7njzFerjuXVRLbCfUg1v26xoPdh2jCKN_GZXroctfpV5LuOGfXd6xjgEpDq4CxNLFmNfVAZBKMQ-Fxk_szAtGpOB3lPcJTdy73VelN_L-adhUGmJmETqqK77CFTYze80l1c_lzWn6zNvS6T5HmLaNFdf5m-Rl_DSEijvJiqZrkY-Ff_R3FthqM4NZDrxwkkX99uXbkEqXjReJ', status=None), ResponseOutputMessage(id='msg_0ad9f0876b2555790068c7b790e5388192aa7d4d442882790a', content=[ResponseOutputText(annotations=[], text='Uppercase R: 0. Counting r regardless of case: 3.', type='output_text', logprobs=[])], role='assistant', status='completed', type='message')], parallel_tool_calls=True, temperature=1.0, tool_choice='auto', tools=[], top_p=1.0, background=False, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, prompt_cache_key=None, reasoning=Reasoning(effort='high', generate_summary=None, summary='detailed'), safety_identifier=None, service_tier='default', status='completed', text=ResponseTextConfig(format=ResponseFormatText(type='text'), verbosity='medium'), top_logprobs=0, truncation='disabled', usage=ResponseUsage(input_tokens=19, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=598, output_tokens_details=OutputTokensDetails(reasoning_tokens=576), total_tokens=617), user=None, store=True), sequence_number=240, type='response.completed')
1180
+ """