letta-nightly 0.11.7.dev20251007104119__py3-none-any.whl → 0.12.0.dev20251009104148__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- letta/__init__.py +1 -1
- letta/adapters/letta_llm_adapter.py +1 -0
- letta/adapters/letta_llm_request_adapter.py +0 -1
- letta/adapters/letta_llm_stream_adapter.py +7 -2
- letta/adapters/simple_llm_request_adapter.py +88 -0
- letta/adapters/simple_llm_stream_adapter.py +192 -0
- letta/agents/agent_loop.py +6 -0
- letta/agents/ephemeral_summary_agent.py +2 -1
- letta/agents/helpers.py +142 -6
- letta/agents/letta_agent.py +13 -33
- letta/agents/letta_agent_batch.py +2 -4
- letta/agents/letta_agent_v2.py +87 -77
- letta/agents/letta_agent_v3.py +927 -0
- letta/agents/voice_agent.py +2 -6
- letta/constants.py +8 -4
- letta/database_utils.py +161 -0
- letta/errors.py +40 -0
- letta/functions/function_sets/base.py +84 -4
- letta/functions/function_sets/multi_agent.py +0 -3
- letta/functions/schema_generator.py +113 -71
- letta/groups/dynamic_multi_agent.py +3 -2
- letta/groups/helpers.py +1 -2
- letta/groups/round_robin_multi_agent.py +3 -2
- letta/groups/sleeptime_multi_agent.py +3 -2
- letta/groups/sleeptime_multi_agent_v2.py +1 -1
- letta/groups/sleeptime_multi_agent_v3.py +17 -17
- letta/groups/supervisor_multi_agent.py +84 -80
- letta/helpers/converters.py +3 -0
- letta/helpers/message_helper.py +4 -0
- letta/helpers/tool_rule_solver.py +92 -5
- letta/interfaces/anthropic_streaming_interface.py +409 -0
- letta/interfaces/gemini_streaming_interface.py +296 -0
- letta/interfaces/openai_streaming_interface.py +752 -1
- letta/llm_api/anthropic_client.py +127 -16
- letta/llm_api/bedrock_client.py +4 -2
- letta/llm_api/deepseek_client.py +4 -1
- letta/llm_api/google_vertex_client.py +124 -42
- letta/llm_api/groq_client.py +4 -1
- letta/llm_api/llm_api_tools.py +11 -4
- letta/llm_api/llm_client_base.py +6 -2
- letta/llm_api/openai.py +32 -2
- letta/llm_api/openai_client.py +423 -18
- letta/llm_api/xai_client.py +4 -1
- letta/main.py +9 -5
- letta/memory.py +1 -0
- letta/orm/__init__.py +2 -1
- letta/orm/agent.py +10 -0
- letta/orm/block.py +7 -16
- letta/orm/blocks_agents.py +8 -2
- letta/orm/files_agents.py +2 -0
- letta/orm/job.py +7 -5
- letta/orm/mcp_oauth.py +1 -0
- letta/orm/message.py +21 -6
- letta/orm/organization.py +2 -0
- letta/orm/provider.py +6 -2
- letta/orm/run.py +71 -0
- letta/orm/run_metrics.py +82 -0
- letta/orm/sandbox_config.py +7 -1
- letta/orm/sqlalchemy_base.py +0 -306
- letta/orm/step.py +6 -5
- letta/orm/step_metrics.py +5 -5
- letta/otel/tracing.py +28 -3
- letta/plugins/defaults.py +4 -4
- letta/prompts/system_prompts/__init__.py +2 -0
- letta/prompts/system_prompts/letta_v1.py +25 -0
- letta/schemas/agent.py +3 -2
- letta/schemas/agent_file.py +9 -3
- letta/schemas/block.py +23 -10
- letta/schemas/enums.py +21 -2
- letta/schemas/job.py +17 -4
- letta/schemas/letta_message_content.py +71 -2
- letta/schemas/letta_stop_reason.py +5 -5
- letta/schemas/llm_config.py +53 -3
- letta/schemas/memory.py +1 -1
- letta/schemas/message.py +564 -117
- letta/schemas/openai/responses_request.py +64 -0
- letta/schemas/providers/__init__.py +2 -0
- letta/schemas/providers/anthropic.py +16 -0
- letta/schemas/providers/ollama.py +115 -33
- letta/schemas/providers/openrouter.py +52 -0
- letta/schemas/providers/vllm.py +2 -1
- letta/schemas/run.py +48 -42
- letta/schemas/run_metrics.py +21 -0
- letta/schemas/step.py +2 -2
- letta/schemas/step_metrics.py +1 -1
- letta/schemas/tool.py +15 -107
- letta/schemas/tool_rule.py +88 -5
- letta/serialize_schemas/marshmallow_agent.py +1 -0
- letta/server/db.py +79 -408
- letta/server/rest_api/app.py +61 -10
- letta/server/rest_api/dependencies.py +14 -0
- letta/server/rest_api/redis_stream_manager.py +19 -8
- letta/server/rest_api/routers/v1/agents.py +364 -292
- letta/server/rest_api/routers/v1/blocks.py +14 -20
- letta/server/rest_api/routers/v1/identities.py +45 -110
- letta/server/rest_api/routers/v1/internal_templates.py +21 -0
- letta/server/rest_api/routers/v1/jobs.py +23 -6
- letta/server/rest_api/routers/v1/messages.py +1 -1
- letta/server/rest_api/routers/v1/runs.py +149 -99
- letta/server/rest_api/routers/v1/sandbox_configs.py +10 -19
- letta/server/rest_api/routers/v1/tools.py +281 -594
- letta/server/rest_api/routers/v1/voice.py +1 -1
- letta/server/rest_api/streaming_response.py +29 -29
- letta/server/rest_api/utils.py +122 -64
- letta/server/server.py +160 -887
- letta/services/agent_manager.py +236 -919
- letta/services/agent_serialization_manager.py +16 -0
- letta/services/archive_manager.py +0 -100
- letta/services/block_manager.py +211 -168
- letta/services/context_window_calculator/token_counter.py +1 -1
- letta/services/file_manager.py +1 -1
- letta/services/files_agents_manager.py +24 -33
- letta/services/group_manager.py +0 -142
- letta/services/helpers/agent_manager_helper.py +7 -2
- letta/services/helpers/run_manager_helper.py +69 -0
- letta/services/job_manager.py +96 -411
- letta/services/lettuce/__init__.py +6 -0
- letta/services/lettuce/lettuce_client_base.py +86 -0
- letta/services/mcp_manager.py +38 -6
- letta/services/message_manager.py +165 -362
- letta/services/organization_manager.py +0 -36
- letta/services/passage_manager.py +0 -345
- letta/services/provider_manager.py +0 -80
- letta/services/run_manager.py +364 -0
- letta/services/sandbox_config_manager.py +0 -234
- letta/services/step_manager.py +62 -39
- letta/services/summarizer/summarizer.py +9 -7
- letta/services/telemetry_manager.py +0 -16
- letta/services/tool_executor/builtin_tool_executor.py +35 -0
- letta/services/tool_executor/core_tool_executor.py +397 -2
- letta/services/tool_executor/files_tool_executor.py +3 -3
- letta/services/tool_executor/multi_agent_tool_executor.py +30 -15
- letta/services/tool_executor/tool_execution_manager.py +6 -8
- letta/services/tool_executor/tool_executor_base.py +3 -3
- letta/services/tool_manager.py +85 -339
- letta/services/tool_sandbox/base.py +24 -13
- letta/services/tool_sandbox/e2b_sandbox.py +16 -1
- letta/services/tool_schema_generator.py +123 -0
- letta/services/user_manager.py +0 -99
- letta/settings.py +20 -4
- letta/system.py +5 -1
- {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/METADATA +3 -5
- {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/RECORD +146 -135
- letta/agents/temporal/activities/__init__.py +0 -4
- letta/agents/temporal/activities/example_activity.py +0 -7
- letta/agents/temporal/activities/prepare_messages.py +0 -10
- letta/agents/temporal/temporal_agent_workflow.py +0 -56
- letta/agents/temporal/types.py +0 -25
- {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/WHEEL +0 -0
- {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/entry_points.txt +0 -0
- {letta_nightly-0.11.7.dev20251007104119.dist-info → letta_nightly-0.12.0.dev20251009104148.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,927 @@
|
|
1
|
+
import uuid
|
2
|
+
from typing import AsyncGenerator, Optional
|
3
|
+
|
4
|
+
from opentelemetry.trace import Span
|
5
|
+
|
6
|
+
from letta.adapters.letta_llm_adapter import LettaLLMAdapter
|
7
|
+
from letta.adapters.simple_llm_request_adapter import SimpleLLMRequestAdapter
|
8
|
+
from letta.adapters.simple_llm_stream_adapter import SimpleLLMStreamAdapter
|
9
|
+
from letta.agents.helpers import (
|
10
|
+
_build_rule_violation_result,
|
11
|
+
_load_last_function_response,
|
12
|
+
_maybe_get_approval_messages,
|
13
|
+
_prepare_in_context_messages_no_persist_async,
|
14
|
+
_safe_load_tool_call_str,
|
15
|
+
generate_step_id,
|
16
|
+
merge_and_validate_prefilled_args,
|
17
|
+
)
|
18
|
+
from letta.agents.letta_agent_v2 import LettaAgentV2
|
19
|
+
from letta.constants import DEFAULT_MAX_STEPS, NON_USER_MSG_PREFIX, REQUEST_HEARTBEAT_PARAM
|
20
|
+
from letta.errors import ContextWindowExceededError, LLMError
|
21
|
+
from letta.helpers import ToolRulesSolver
|
22
|
+
from letta.helpers.datetime_helpers import get_utc_timestamp_ns
|
23
|
+
from letta.helpers.tool_execution_helper import enable_strict_mode
|
24
|
+
from letta.local_llm.constants import INNER_THOUGHTS_KWARG
|
25
|
+
from letta.otel.tracing import trace_method
|
26
|
+
from letta.schemas.agent import AgentState
|
27
|
+
from letta.schemas.letta_message import LettaMessage, MessageType
|
28
|
+
from letta.schemas.letta_message_content import OmittedReasoningContent, ReasoningContent, RedactedReasoningContent, TextContent
|
29
|
+
from letta.schemas.letta_response import LettaResponse
|
30
|
+
from letta.schemas.letta_stop_reason import LettaStopReason, StopReasonType
|
31
|
+
from letta.schemas.message import Message, MessageCreate
|
32
|
+
from letta.schemas.openai.chat_completion_response import ToolCall, UsageStatistics
|
33
|
+
from letta.schemas.step import StepProgression
|
34
|
+
from letta.schemas.step_metrics import StepMetrics
|
35
|
+
from letta.schemas.tool_execution_result import ToolExecutionResult
|
36
|
+
from letta.server.rest_api.utils import create_approval_request_message_from_llm_response, create_letta_messages_from_llm_response
|
37
|
+
from letta.services.helpers.tool_parser_helper import runtime_override_tool_json_schema
|
38
|
+
from letta.settings import settings, summarizer_settings
|
39
|
+
from letta.system import package_function_response
|
40
|
+
from letta.utils import log_telemetry, validate_function_response
|
41
|
+
|
42
|
+
|
43
|
+
class LettaAgentV3(LettaAgentV2):
|
44
|
+
"""
|
45
|
+
Similar to V2, but stripped down / simplified, while also generalized:
|
46
|
+
* Supports non-tool returns
|
47
|
+
* No inner thoughts in kwargs
|
48
|
+
* No heartbeats (loops happen on tool calls)
|
49
|
+
|
50
|
+
TODOs:
|
51
|
+
* Support tool rules
|
52
|
+
* Support Gemini / OpenAI client
|
53
|
+
"""
|
54
|
+
|
55
|
+
def _initialize_state(self):
|
56
|
+
super()._initialize_state()
|
57
|
+
self._require_tool_call = False
|
58
|
+
|
59
|
+
@trace_method
|
60
|
+
async def step(
|
61
|
+
self,
|
62
|
+
input_messages: list[MessageCreate],
|
63
|
+
max_steps: int = DEFAULT_MAX_STEPS,
|
64
|
+
run_id: str | None = None,
|
65
|
+
use_assistant_message: bool = True, # NOTE: not used
|
66
|
+
include_return_message_types: list[MessageType] | None = None,
|
67
|
+
request_start_timestamp_ns: int | None = None,
|
68
|
+
) -> LettaResponse:
|
69
|
+
"""
|
70
|
+
Execute the agent loop in blocking mode, returning all messages at once.
|
71
|
+
|
72
|
+
Args:
|
73
|
+
input_messages: List of new messages to process
|
74
|
+
max_steps: Maximum number of agent steps to execute
|
75
|
+
run_id: Optional job/run ID for tracking
|
76
|
+
use_assistant_message: Whether to use assistant message format
|
77
|
+
include_return_message_types: Filter for which message types to return
|
78
|
+
request_start_timestamp_ns: Start time for tracking request duration
|
79
|
+
|
80
|
+
Returns:
|
81
|
+
LettaResponse: Complete response with all messages and metadata
|
82
|
+
"""
|
83
|
+
self._initialize_state()
|
84
|
+
request_span = self._request_checkpoint_start(request_start_timestamp_ns=request_start_timestamp_ns)
|
85
|
+
|
86
|
+
in_context_messages, input_messages_to_persist = await _prepare_in_context_messages_no_persist_async(
|
87
|
+
input_messages, self.agent_state, self.message_manager, self.actor, run_id
|
88
|
+
)
|
89
|
+
in_context_messages = in_context_messages + input_messages_to_persist
|
90
|
+
response_letta_messages = []
|
91
|
+
for i in range(max_steps):
|
92
|
+
response = self._step(
|
93
|
+
messages=in_context_messages + self.response_messages,
|
94
|
+
input_messages_to_persist=input_messages_to_persist,
|
95
|
+
# TODO need to support non-streaming adapter too
|
96
|
+
llm_adapter=SimpleLLMRequestAdapter(llm_client=self.llm_client, llm_config=self.agent_state.llm_config),
|
97
|
+
run_id=run_id,
|
98
|
+
# use_assistant_message=use_assistant_message,
|
99
|
+
include_return_message_types=include_return_message_types,
|
100
|
+
request_start_timestamp_ns=request_start_timestamp_ns,
|
101
|
+
)
|
102
|
+
|
103
|
+
async for chunk in response:
|
104
|
+
response_letta_messages.append(chunk)
|
105
|
+
|
106
|
+
if not self.should_continue:
|
107
|
+
break
|
108
|
+
|
109
|
+
input_messages_to_persist = []
|
110
|
+
|
111
|
+
# Rebuild context window after stepping
|
112
|
+
if not self.agent_state.message_buffer_autoclear:
|
113
|
+
await self.summarize_conversation_history(
|
114
|
+
in_context_messages=in_context_messages,
|
115
|
+
new_letta_messages=self.response_messages,
|
116
|
+
total_tokens=self.usage.total_tokens,
|
117
|
+
force=False,
|
118
|
+
)
|
119
|
+
|
120
|
+
if self.stop_reason is None:
|
121
|
+
self.stop_reason = LettaStopReason(stop_reason=StopReasonType.end_turn.value)
|
122
|
+
|
123
|
+
result = LettaResponse(messages=response_letta_messages, stop_reason=self.stop_reason, usage=self.usage)
|
124
|
+
if run_id:
|
125
|
+
if self.job_update_metadata is None:
|
126
|
+
self.job_update_metadata = {}
|
127
|
+
self.job_update_metadata["result"] = result.model_dump(mode="json")
|
128
|
+
|
129
|
+
await self._request_checkpoint_finish(
|
130
|
+
request_span=request_span, request_start_timestamp_ns=request_start_timestamp_ns, run_id=run_id
|
131
|
+
)
|
132
|
+
return result
|
133
|
+
|
134
|
+
@trace_method
|
135
|
+
async def stream(
|
136
|
+
self,
|
137
|
+
input_messages: list[MessageCreate],
|
138
|
+
max_steps: int = DEFAULT_MAX_STEPS,
|
139
|
+
stream_tokens: bool = False,
|
140
|
+
run_id: str | None = None,
|
141
|
+
use_assistant_message: bool = True, # NOTE: not used
|
142
|
+
include_return_message_types: list[MessageType] | None = None,
|
143
|
+
request_start_timestamp_ns: int | None = None,
|
144
|
+
) -> AsyncGenerator[str, None]:
|
145
|
+
"""
|
146
|
+
Execute the agent loop in streaming mode, yielding chunks as they become available.
|
147
|
+
If stream_tokens is True, individual tokens are streamed as they arrive from the LLM,
|
148
|
+
providing the lowest latency experience, otherwise each complete step (reasoning +
|
149
|
+
tool call + tool return) is yielded as it completes.
|
150
|
+
|
151
|
+
Args:
|
152
|
+
input_messages: List of new messages to process
|
153
|
+
max_steps: Maximum number of agent steps to execute
|
154
|
+
stream_tokens: Whether to stream back individual tokens. Not all llm
|
155
|
+
providers offer native token streaming functionality; in these cases,
|
156
|
+
this api streams back steps rather than individual tokens.
|
157
|
+
run_id: Optional job/run ID for tracking
|
158
|
+
use_assistant_message: Whether to use assistant message format
|
159
|
+
include_return_message_types: Filter for which message types to return
|
160
|
+
request_start_timestamp_ns: Start time for tracking request duration
|
161
|
+
|
162
|
+
Yields:
|
163
|
+
str: JSON-formatted SSE data chunks for each completed step
|
164
|
+
"""
|
165
|
+
self._initialize_state()
|
166
|
+
request_span = self._request_checkpoint_start(request_start_timestamp_ns=request_start_timestamp_ns)
|
167
|
+
first_chunk = True
|
168
|
+
|
169
|
+
if stream_tokens:
|
170
|
+
llm_adapter = SimpleLLMStreamAdapter(
|
171
|
+
llm_client=self.llm_client,
|
172
|
+
llm_config=self.agent_state.llm_config,
|
173
|
+
run_id=run_id,
|
174
|
+
)
|
175
|
+
else:
|
176
|
+
llm_adapter = SimpleLLMRequestAdapter(
|
177
|
+
llm_client=self.llm_client,
|
178
|
+
llm_config=self.agent_state.llm_config,
|
179
|
+
)
|
180
|
+
|
181
|
+
try:
|
182
|
+
in_context_messages, input_messages_to_persist = await _prepare_in_context_messages_no_persist_async(
|
183
|
+
input_messages, self.agent_state, self.message_manager, self.actor, run_id
|
184
|
+
)
|
185
|
+
in_context_messages = in_context_messages + input_messages_to_persist
|
186
|
+
for i in range(max_steps):
|
187
|
+
response = self._step(
|
188
|
+
messages=in_context_messages + self.response_messages,
|
189
|
+
input_messages_to_persist=input_messages_to_persist,
|
190
|
+
llm_adapter=llm_adapter,
|
191
|
+
run_id=run_id,
|
192
|
+
# use_assistant_message=use_assistant_message,
|
193
|
+
include_return_message_types=include_return_message_types,
|
194
|
+
request_start_timestamp_ns=request_start_timestamp_ns,
|
195
|
+
)
|
196
|
+
async for chunk in response:
|
197
|
+
if first_chunk:
|
198
|
+
request_span = self._request_checkpoint_ttft(request_span, request_start_timestamp_ns)
|
199
|
+
yield f"data: {chunk.model_dump_json()}\n\n"
|
200
|
+
first_chunk = False
|
201
|
+
|
202
|
+
if not self.should_continue:
|
203
|
+
break
|
204
|
+
|
205
|
+
input_messages_to_persist = []
|
206
|
+
|
207
|
+
if not self.agent_state.message_buffer_autoclear:
|
208
|
+
await self.summarize_conversation_history(
|
209
|
+
in_context_messages=in_context_messages,
|
210
|
+
new_letta_messages=self.response_messages,
|
211
|
+
total_tokens=self.usage.total_tokens,
|
212
|
+
force=False,
|
213
|
+
)
|
214
|
+
|
215
|
+
except:
|
216
|
+
if self.stop_reason and not first_chunk:
|
217
|
+
yield f"data: {self.stop_reason.model_dump_json()}\n\n"
|
218
|
+
raise
|
219
|
+
|
220
|
+
if run_id:
|
221
|
+
letta_messages = Message.to_letta_messages_from_list(
|
222
|
+
self.response_messages,
|
223
|
+
use_assistant_message=False, # NOTE: set to false
|
224
|
+
reverse=False,
|
225
|
+
# text_is_assistant_message=(self.agent_state.agent_type == AgentType.react_agent),
|
226
|
+
text_is_assistant_message=True,
|
227
|
+
)
|
228
|
+
result = LettaResponse(messages=letta_messages, stop_reason=self.stop_reason, usage=self.usage)
|
229
|
+
if self.job_update_metadata is None:
|
230
|
+
self.job_update_metadata = {}
|
231
|
+
self.job_update_metadata["result"] = result.model_dump(mode="json")
|
232
|
+
|
233
|
+
await self._request_checkpoint_finish(
|
234
|
+
request_span=request_span, request_start_timestamp_ns=request_start_timestamp_ns, run_id=run_id
|
235
|
+
)
|
236
|
+
for finish_chunk in self.get_finish_chunks_for_stream(self.usage, self.stop_reason):
|
237
|
+
yield f"data: {finish_chunk}\n\n"
|
238
|
+
|
239
|
+
@trace_method
|
240
|
+
async def _step(
|
241
|
+
self,
|
242
|
+
messages: list[Message],
|
243
|
+
llm_adapter: LettaLLMAdapter,
|
244
|
+
input_messages_to_persist: list[Message] | None = None,
|
245
|
+
run_id: str | None = None,
|
246
|
+
# use_assistant_message: bool = True,
|
247
|
+
include_return_message_types: list[MessageType] | None = None,
|
248
|
+
request_start_timestamp_ns: int | None = None,
|
249
|
+
remaining_turns: int = -1,
|
250
|
+
dry_run: bool = False,
|
251
|
+
) -> AsyncGenerator[LettaMessage | dict, None]:
|
252
|
+
"""
|
253
|
+
Execute a single agent step (one LLM call and tool execution).
|
254
|
+
|
255
|
+
This is the core execution method that all public methods (step, stream_steps,
|
256
|
+
stream_tokens) funnel through. It handles the complete flow of making an LLM
|
257
|
+
request, processing the response, executing tools, and persisting messages.
|
258
|
+
|
259
|
+
Args:
|
260
|
+
messages: Current in-context messages
|
261
|
+
llm_adapter: Adapter for LLM interaction (blocking or streaming)
|
262
|
+
input_messages_to_persist: New messages to persist after execution
|
263
|
+
run_id: Optional job/run ID for tracking
|
264
|
+
include_return_message_types: Filter for which message types to yield
|
265
|
+
request_start_timestamp_ns: Start time for tracking request duration
|
266
|
+
remaining_turns: Number of turns remaining (for max_steps enforcement)
|
267
|
+
dry_run: If true, only build and return the request without executing
|
268
|
+
|
269
|
+
Yields:
|
270
|
+
LettaMessage or dict: Chunks for streaming mode, or request data for dry_run
|
271
|
+
"""
|
272
|
+
step_progression = StepProgression.START
|
273
|
+
# TODO(@caren): clean this up
|
274
|
+
tool_call, content, agent_step_span, first_chunk, step_id, logged_step, step_start_ns, step_metrics = (
|
275
|
+
None,
|
276
|
+
None,
|
277
|
+
None,
|
278
|
+
None,
|
279
|
+
None,
|
280
|
+
None,
|
281
|
+
None,
|
282
|
+
None,
|
283
|
+
)
|
284
|
+
try:
|
285
|
+
self.last_function_response = _load_last_function_response(messages)
|
286
|
+
valid_tools = await self._get_valid_tools()
|
287
|
+
require_tool_call = self.tool_rules_solver.should_force_tool_call()
|
288
|
+
|
289
|
+
if self._require_tool_call != require_tool_call:
|
290
|
+
if require_tool_call:
|
291
|
+
self.logger.info("switching to constrained mode (forcing tool call)")
|
292
|
+
else:
|
293
|
+
self.logger.info("switching to unconstrained mode (allowing non-tool responses)")
|
294
|
+
self._require_tool_call = require_tool_call
|
295
|
+
|
296
|
+
approval_request, approval_response = _maybe_get_approval_messages(messages)
|
297
|
+
if approval_request and approval_response:
|
298
|
+
tool_call = approval_request.tool_calls[0]
|
299
|
+
content = approval_request.content
|
300
|
+
step_id = approval_request.step_id
|
301
|
+
step_metrics = await self.step_manager.get_step_metrics_async(step_id=step_id, actor=self.actor)
|
302
|
+
else:
|
303
|
+
# Check for job cancellation at the start of each step
|
304
|
+
if run_id and await self._check_run_cancellation(run_id):
|
305
|
+
self.stop_reason = LettaStopReason(stop_reason=StopReasonType.cancelled.value)
|
306
|
+
self.logger.info(f"Agent execution cancelled for run {run_id}")
|
307
|
+
return
|
308
|
+
|
309
|
+
step_id = generate_step_id()
|
310
|
+
step_progression, logged_step, step_metrics, agent_step_span = await self._step_checkpoint_start(
|
311
|
+
step_id=step_id, run_id=run_id
|
312
|
+
)
|
313
|
+
|
314
|
+
messages = await self._refresh_messages(messages)
|
315
|
+
force_tool_call = valid_tools[0]["name"] if len(valid_tools) == 1 and self._require_tool_call else None
|
316
|
+
for llm_request_attempt in range(summarizer_settings.max_summarizer_retries + 1):
|
317
|
+
try:
|
318
|
+
request_data = self.llm_client.build_request_data(
|
319
|
+
agent_type=self.agent_state.agent_type,
|
320
|
+
messages=messages,
|
321
|
+
llm_config=self.agent_state.llm_config,
|
322
|
+
tools=valid_tools,
|
323
|
+
force_tool_call=force_tool_call,
|
324
|
+
requires_subsequent_tool_call=self._require_tool_call,
|
325
|
+
)
|
326
|
+
if dry_run:
|
327
|
+
yield request_data
|
328
|
+
return
|
329
|
+
|
330
|
+
step_progression, step_metrics = self._step_checkpoint_llm_request_start(step_metrics, agent_step_span)
|
331
|
+
|
332
|
+
invocation = llm_adapter.invoke_llm(
|
333
|
+
request_data=request_data,
|
334
|
+
messages=messages,
|
335
|
+
tools=valid_tools,
|
336
|
+
use_assistant_message=False, # NOTE: set to false
|
337
|
+
requires_approval_tools=self.tool_rules_solver.get_requires_approval_tools(
|
338
|
+
set([t["name"] for t in valid_tools])
|
339
|
+
),
|
340
|
+
step_id=step_id,
|
341
|
+
actor=self.actor,
|
342
|
+
)
|
343
|
+
async for chunk in invocation:
|
344
|
+
if llm_adapter.supports_token_streaming():
|
345
|
+
if include_return_message_types is None or chunk.message_type in include_return_message_types:
|
346
|
+
first_chunk = True
|
347
|
+
yield chunk
|
348
|
+
# If you've reached this point without an error, break out of retry loop
|
349
|
+
break
|
350
|
+
except ValueError as e:
|
351
|
+
self.stop_reason = LettaStopReason(stop_reason=StopReasonType.invalid_llm_response.value)
|
352
|
+
raise e
|
353
|
+
except LLMError as e:
|
354
|
+
self.stop_reason = LettaStopReason(stop_reason=StopReasonType.llm_api_error.value)
|
355
|
+
raise e
|
356
|
+
except Exception as e:
|
357
|
+
if isinstance(e, ContextWindowExceededError) and llm_request_attempt < summarizer_settings.max_summarizer_retries:
|
358
|
+
# Retry case
|
359
|
+
messages = await self.summarize_conversation_history(
|
360
|
+
in_context_messages=messages,
|
361
|
+
new_letta_messages=self.response_messages,
|
362
|
+
llm_config=self.agent_state.llm_config,
|
363
|
+
force=True,
|
364
|
+
)
|
365
|
+
else:
|
366
|
+
raise e
|
367
|
+
|
368
|
+
step_progression, step_metrics = self._step_checkpoint_llm_request_finish(
|
369
|
+
step_metrics, agent_step_span, llm_adapter.llm_request_finish_timestamp_ns
|
370
|
+
)
|
371
|
+
|
372
|
+
self._update_global_usage_stats(llm_adapter.usage)
|
373
|
+
|
374
|
+
# Handle the AI response with the extracted data
|
375
|
+
# NOTE: in v3 loop, no tool call is OK
|
376
|
+
# if tool_call is None and llm_adapter.tool_call is None:
|
377
|
+
|
378
|
+
persisted_messages, self.should_continue, self.stop_reason = await self._handle_ai_response(
|
379
|
+
tool_call=tool_call or llm_adapter.tool_call,
|
380
|
+
valid_tool_names=[tool["name"] for tool in valid_tools],
|
381
|
+
agent_state=self.agent_state,
|
382
|
+
tool_rules_solver=self.tool_rules_solver,
|
383
|
+
usage=UsageStatistics(
|
384
|
+
completion_tokens=self.usage.completion_tokens,
|
385
|
+
prompt_tokens=self.usage.prompt_tokens,
|
386
|
+
total_tokens=self.usage.total_tokens,
|
387
|
+
),
|
388
|
+
# reasoning_content=reasoning_content or llm_adapter.reasoning_content,
|
389
|
+
content=content or llm_adapter.content,
|
390
|
+
pre_computed_assistant_message_id=llm_adapter.message_id,
|
391
|
+
step_id=step_id,
|
392
|
+
initial_messages=input_messages_to_persist,
|
393
|
+
agent_step_span=agent_step_span,
|
394
|
+
is_final_step=(remaining_turns == 0),
|
395
|
+
run_id=run_id,
|
396
|
+
step_metrics=step_metrics,
|
397
|
+
is_approval=approval_response.approve if approval_response is not None else False,
|
398
|
+
is_denial=(approval_response.approve == False) if approval_response is not None else False,
|
399
|
+
denial_reason=approval_response.denial_reason if approval_response is not None else None,
|
400
|
+
)
|
401
|
+
# NOTE: there is an edge case where persisted_messages is empty (the LLM did a "no-op")
|
402
|
+
|
403
|
+
new_message_idx = len(input_messages_to_persist) if input_messages_to_persist else 0
|
404
|
+
self.response_messages.extend(persisted_messages[new_message_idx:])
|
405
|
+
|
406
|
+
if llm_adapter.supports_token_streaming():
|
407
|
+
# Stream the tool return if a tool was actually executed.
|
408
|
+
# In the normal streaming path, the tool call is surfaced via the streaming interface
|
409
|
+
# (llm_adapter.tool_call), so don't rely solely on the local `tool_call` variable.
|
410
|
+
has_tool_return = any(m.role == "tool" for m in persisted_messages)
|
411
|
+
if len(persisted_messages) > 0 and persisted_messages[-1].role != "approval" and has_tool_return:
|
412
|
+
tool_return = [msg for msg in persisted_messages if msg.role == "tool"][-1].to_letta_messages()[0]
|
413
|
+
if include_return_message_types is None or tool_return.message_type in include_return_message_types:
|
414
|
+
yield tool_return
|
415
|
+
else:
|
416
|
+
filter_user_messages = [m for m in persisted_messages[new_message_idx:] if m.role != "user"]
|
417
|
+
letta_messages = Message.to_letta_messages_from_list(
|
418
|
+
filter_user_messages,
|
419
|
+
use_assistant_message=False, # NOTE: set to false
|
420
|
+
reverse=False,
|
421
|
+
# text_is_assistant_message=(self.agent_state.agent_type == AgentType.react_agent),
|
422
|
+
text_is_assistant_message=True,
|
423
|
+
)
|
424
|
+
for message in letta_messages:
|
425
|
+
if include_return_message_types is None or message.message_type in include_return_message_types:
|
426
|
+
yield message
|
427
|
+
|
428
|
+
# Persist approval responses immediately to prevent agent from getting into a bad state
|
429
|
+
if (
|
430
|
+
len(input_messages_to_persist) == 1
|
431
|
+
and input_messages_to_persist[0].role == "approval"
|
432
|
+
and persisted_messages[0].role == "approval"
|
433
|
+
and persisted_messages[1].role == "tool"
|
434
|
+
):
|
435
|
+
self.agent_state.message_ids = self.agent_state.message_ids + [m.id for m in persisted_messages[:2]]
|
436
|
+
await self.agent_manager.update_message_ids_async(
|
437
|
+
agent_id=self.agent_state.id, message_ids=self.agent_state.message_ids, actor=self.actor
|
438
|
+
)
|
439
|
+
# TODO should we be logging this even if persisted_messages is empty? Technically, there still was an LLM call
|
440
|
+
step_progression, step_metrics = await self._step_checkpoint_finish(step_metrics, agent_step_span, logged_step)
|
441
|
+
except Exception as e:
|
442
|
+
import traceback
|
443
|
+
|
444
|
+
self.logger.error(f"Error during step processing: {e}")
|
445
|
+
self.logger.error(f"Error traceback: {traceback.format_exc()}")
|
446
|
+
# self.logger.error(f"Error during step processing: {e}")
|
447
|
+
self.job_update_metadata = {"error": str(e)}
|
448
|
+
|
449
|
+
# This indicates we failed after we decided to stop stepping, which indicates a bug with our flow.
|
450
|
+
if not self.stop_reason:
|
451
|
+
self.stop_reason = LettaStopReason(stop_reason=StopReasonType.error.value)
|
452
|
+
elif self.stop_reason.stop_reason in (StopReasonType.end_turn, StopReasonType.max_steps, StopReasonType.tool_rule):
|
453
|
+
self.logger.error("Error occurred during step processing, with valid stop reason: %s", self.stop_reason.stop_reason)
|
454
|
+
elif self.stop_reason.stop_reason not in (
|
455
|
+
StopReasonType.no_tool_call,
|
456
|
+
StopReasonType.invalid_tool_call,
|
457
|
+
StopReasonType.invalid_llm_response,
|
458
|
+
StopReasonType.llm_api_error,
|
459
|
+
):
|
460
|
+
self.logger.error("Error occurred during step processing, with unexpected stop reason: %s", self.stop_reason.stop_reason)
|
461
|
+
raise e
|
462
|
+
finally:
|
463
|
+
self.logger.debug("Running cleanup for agent loop run: %s", run_id)
|
464
|
+
self.logger.info("Running final update. Step Progression: %s", step_progression)
|
465
|
+
try:
|
466
|
+
if step_progression == StepProgression.FINISHED:
|
467
|
+
if not self.should_continue:
|
468
|
+
if self.stop_reason is None:
|
469
|
+
self.stop_reason = LettaStopReason(stop_reason=StopReasonType.end_turn.value)
|
470
|
+
if logged_step and step_id:
|
471
|
+
await self.step_manager.update_step_stop_reason(self.actor, step_id, self.stop_reason.stop_reason)
|
472
|
+
return
|
473
|
+
if step_progression < StepProgression.STEP_LOGGED:
|
474
|
+
# Error occurred before step was fully logged
|
475
|
+
import traceback
|
476
|
+
|
477
|
+
if logged_step:
|
478
|
+
await self.step_manager.update_step_error_async(
|
479
|
+
actor=self.actor,
|
480
|
+
step_id=step_id, # Use original step_id for telemetry
|
481
|
+
error_type=type(e).__name__ if "e" in locals() else "Unknown",
|
482
|
+
error_message=str(e) if "e" in locals() else "Unknown error",
|
483
|
+
error_traceback=traceback.format_exc(),
|
484
|
+
stop_reason=self.stop_reason,
|
485
|
+
)
|
486
|
+
if step_progression <= StepProgression.STREAM_RECEIVED:
|
487
|
+
if first_chunk and settings.track_errored_messages and input_messages_to_persist:
|
488
|
+
for message in input_messages_to_persist:
|
489
|
+
message.is_err = True
|
490
|
+
message.step_id = step_id
|
491
|
+
message.run_id = run_id
|
492
|
+
await self.message_manager.create_many_messages_async(
|
493
|
+
input_messages_to_persist,
|
494
|
+
actor=self.actor,
|
495
|
+
run_id=run_id,
|
496
|
+
project_id=self.agent_state.project_id,
|
497
|
+
template_id=self.agent_state.template_id,
|
498
|
+
)
|
499
|
+
elif step_progression <= StepProgression.LOGGED_TRACE:
|
500
|
+
if self.stop_reason is None:
|
501
|
+
self.logger.error("Error in step after logging step")
|
502
|
+
self.stop_reason = LettaStopReason(stop_reason=StopReasonType.error.value)
|
503
|
+
if logged_step:
|
504
|
+
await self.step_manager.update_step_stop_reason(self.actor, step_id, self.stop_reason.stop_reason)
|
505
|
+
else:
|
506
|
+
self.logger.error("Invalid StepProgression value")
|
507
|
+
|
508
|
+
# Do tracking for failure cases. Can consolidate with success conditions later.
|
509
|
+
if settings.track_stop_reason:
|
510
|
+
await self._log_request(request_start_timestamp_ns, None, self.job_update_metadata, is_error=True, run_id=run_id)
|
511
|
+
|
512
|
+
# Record partial step metrics on failure (capture whatever timing data we have)
|
513
|
+
if logged_step and step_metrics and step_progression < StepProgression.FINISHED:
|
514
|
+
# Calculate total step time up to the failure point
|
515
|
+
step_metrics.step_ns = get_utc_timestamp_ns() - step_metrics.step_start_ns
|
516
|
+
|
517
|
+
await self._record_step_metrics(
|
518
|
+
step_id=step_id,
|
519
|
+
step_metrics=step_metrics,
|
520
|
+
run_id=run_id,
|
521
|
+
)
|
522
|
+
except Exception as e:
|
523
|
+
self.logger.error(f"Error during post-completion step tracking: {e}")
|
524
|
+
|
525
|
+
@trace_method
|
526
|
+
async def _handle_ai_response(
|
527
|
+
self,
|
528
|
+
tool_call: Optional[ToolCall], # NOTE: should only be None for react agents
|
529
|
+
valid_tool_names: list[str],
|
530
|
+
agent_state: AgentState,
|
531
|
+
tool_rules_solver: ToolRulesSolver,
|
532
|
+
usage: UsageStatistics,
|
533
|
+
# reasoning_content: list[TextContent | ReasoningContent | RedactedReasoningContent | OmittedReasoningContent] | None = None,
|
534
|
+
content: list[TextContent | ReasoningContent | RedactedReasoningContent | OmittedReasoningContent] | None = None,
|
535
|
+
pre_computed_assistant_message_id: str | None = None,
|
536
|
+
step_id: str | None = None,
|
537
|
+
initial_messages: list[Message] | None = None,
|
538
|
+
agent_step_span: Span | None = None,
|
539
|
+
is_final_step: bool | None = None,
|
540
|
+
run_id: str | None = None,
|
541
|
+
step_metrics: StepMetrics = None,
|
542
|
+
is_approval: bool | None = None,
|
543
|
+
is_denial: bool | None = None,
|
544
|
+
denial_reason: str | None = None,
|
545
|
+
) -> tuple[list[Message], bool, LettaStopReason | None]:
|
546
|
+
"""
|
547
|
+
Handle the final AI response once streaming completes, execute / validate the
|
548
|
+
tool call, decide whether we should keep stepping, and persist state.
|
549
|
+
"""
|
550
|
+
if tool_call is None:
|
551
|
+
# NOTE: in v3 loop, no tool call is OK
|
552
|
+
tool_call_id = None
|
553
|
+
else:
|
554
|
+
tool_call_id: str = tool_call.id or f"call_{uuid.uuid4().hex[:8]}"
|
555
|
+
|
556
|
+
if is_denial:
|
557
|
+
continue_stepping = True
|
558
|
+
stop_reason = None
|
559
|
+
tool_call_messages = create_letta_messages_from_llm_response(
|
560
|
+
agent_id=agent_state.id,
|
561
|
+
model=agent_state.llm_config.model,
|
562
|
+
function_name=tool_call.function.name,
|
563
|
+
function_arguments={},
|
564
|
+
tool_execution_result=ToolExecutionResult(status="error"),
|
565
|
+
tool_call_id=tool_call_id,
|
566
|
+
function_response=f"Error: request to call tool denied. User reason: {denial_reason}",
|
567
|
+
timezone=agent_state.timezone,
|
568
|
+
continue_stepping=continue_stepping,
|
569
|
+
# NOTE: we may need to change this to not have a "heartbeat" prefix for v3?
|
570
|
+
heartbeat_reason=f"{NON_USER_MSG_PREFIX}Continuing: user denied request to call tool.",
|
571
|
+
reasoning_content=None,
|
572
|
+
pre_computed_assistant_message_id=None,
|
573
|
+
step_id=step_id,
|
574
|
+
run_id=run_id,
|
575
|
+
is_approval_response=True,
|
576
|
+
force_set_request_heartbeat=False,
|
577
|
+
add_heartbeat_on_continue=False,
|
578
|
+
)
|
579
|
+
messages_to_persist = (initial_messages or []) + tool_call_messages
|
580
|
+
|
581
|
+
# Set run_id on all messages before persisting
|
582
|
+
for message in messages_to_persist:
|
583
|
+
if message.run_id is None:
|
584
|
+
message.run_id = run_id
|
585
|
+
|
586
|
+
persisted_messages = await self.message_manager.create_many_messages_async(
|
587
|
+
messages_to_persist,
|
588
|
+
actor=self.actor,
|
589
|
+
run_id=run_id,
|
590
|
+
project_id=agent_state.project_id,
|
591
|
+
template_id=agent_state.template_id,
|
592
|
+
)
|
593
|
+
return persisted_messages, continue_stepping, stop_reason
|
594
|
+
|
595
|
+
# -1. no tool call, no content
|
596
|
+
if tool_call is None and (content is None or len(content) == 0):
|
597
|
+
# Edge case is when there's also no content - basically, the LLM "no-op'd"
|
598
|
+
# If RequiredBeforeExitToolRule exists and not all required tools have been called,
|
599
|
+
# inject a rule-violation heartbeat to keep looping and inform the model.
|
600
|
+
uncalled = tool_rules_solver.get_uncalled_required_tools(available_tools=set([t.name for t in agent_state.tools]))
|
601
|
+
if uncalled:
|
602
|
+
# TODO: we may need to change this to not have a "heartbeat" prefix for v3?
|
603
|
+
heartbeat_reason = (
|
604
|
+
f"{NON_USER_MSG_PREFIX}ToolRuleViolated: You must call {', '.join(uncalled)} at least once to exit the loop."
|
605
|
+
)
|
606
|
+
from letta.server.rest_api.utils import create_heartbeat_system_message
|
607
|
+
|
608
|
+
heartbeat_msg = create_heartbeat_system_message(
|
609
|
+
agent_id=agent_state.id,
|
610
|
+
model=agent_state.llm_config.model,
|
611
|
+
function_call_success=True,
|
612
|
+
timezone=agent_state.timezone,
|
613
|
+
heartbeat_reason=heartbeat_reason,
|
614
|
+
run_id=run_id,
|
615
|
+
)
|
616
|
+
messages_to_persist = (initial_messages or []) + [heartbeat_msg]
|
617
|
+
continue_stepping, stop_reason = True, None
|
618
|
+
else:
|
619
|
+
# In this case, we actually do not want to persist the no-op message
|
620
|
+
continue_stepping, heartbeat_reason, stop_reason = False, None, LettaStopReason(stop_reason=StopReasonType.end_turn.value)
|
621
|
+
messages_to_persist = initial_messages or []
|
622
|
+
|
623
|
+
# 0. If there's no tool call, we can early exit
|
624
|
+
elif tool_call is None:
|
625
|
+
# TODO could just hardcode the line here instead of calling the function...
|
626
|
+
continue_stepping, heartbeat_reason, stop_reason = self._decide_continuation(
|
627
|
+
agent_state=agent_state,
|
628
|
+
tool_call_name=None,
|
629
|
+
tool_rule_violated=False,
|
630
|
+
tool_rules_solver=tool_rules_solver,
|
631
|
+
is_final_step=is_final_step,
|
632
|
+
)
|
633
|
+
assistant_message = create_letta_messages_from_llm_response(
|
634
|
+
agent_id=agent_state.id,
|
635
|
+
model=agent_state.llm_config.model,
|
636
|
+
function_name=None,
|
637
|
+
function_arguments=None,
|
638
|
+
tool_execution_result=None,
|
639
|
+
tool_call_id=None,
|
640
|
+
function_response=None,
|
641
|
+
timezone=agent_state.timezone,
|
642
|
+
continue_stepping=continue_stepping,
|
643
|
+
heartbeat_reason=heartbeat_reason,
|
644
|
+
# NOTE: should probably rename this to `content`?
|
645
|
+
reasoning_content=content,
|
646
|
+
pre_computed_assistant_message_id=pre_computed_assistant_message_id,
|
647
|
+
step_id=step_id,
|
648
|
+
run_id=run_id,
|
649
|
+
is_approval_response=is_approval or is_denial,
|
650
|
+
force_set_request_heartbeat=False,
|
651
|
+
# If we're continuing due to a required-before-exit rule, include a heartbeat to guide the model
|
652
|
+
add_heartbeat_on_continue=bool(heartbeat_reason),
|
653
|
+
)
|
654
|
+
messages_to_persist = (initial_messages or []) + assistant_message
|
655
|
+
|
656
|
+
else:
|
657
|
+
# 1. Parse and validate the tool-call envelope
|
658
|
+
tool_call_name: str = tool_call.function.name
|
659
|
+
|
660
|
+
tool_args = _safe_load_tool_call_str(tool_call.function.arguments)
|
661
|
+
# NOTE: these are failsafes - for v3, we should eventually be able to remove these
|
662
|
+
# request_heartbeat: bool = _pop_heartbeat(tool_args)
|
663
|
+
tool_args.pop(REQUEST_HEARTBEAT_PARAM, None)
|
664
|
+
tool_args.pop(INNER_THOUGHTS_KWARG, None)
|
665
|
+
|
666
|
+
log_telemetry(
|
667
|
+
self.logger,
|
668
|
+
"_handle_ai_response execute tool start",
|
669
|
+
tool_name=tool_call_name,
|
670
|
+
tool_args=tool_args,
|
671
|
+
tool_call_id=tool_call_id,
|
672
|
+
# request_heartbeat=request_heartbeat,
|
673
|
+
)
|
674
|
+
|
675
|
+
if not is_approval and tool_rules_solver.is_requires_approval_tool(tool_call_name):
|
676
|
+
approval_message = create_approval_request_message_from_llm_response(
|
677
|
+
agent_id=agent_state.id,
|
678
|
+
model=agent_state.llm_config.model,
|
679
|
+
function_name=tool_call_name,
|
680
|
+
function_arguments=tool_args,
|
681
|
+
tool_call_id=tool_call_id,
|
682
|
+
actor=self.actor,
|
683
|
+
# continue_stepping=request_heartbeat,
|
684
|
+
continue_stepping=True,
|
685
|
+
# reasoning_content=reasoning_content,
|
686
|
+
reasoning_content=content,
|
687
|
+
pre_computed_assistant_message_id=pre_computed_assistant_message_id,
|
688
|
+
step_id=step_id,
|
689
|
+
run_id=run_id,
|
690
|
+
append_request_heartbeat=False,
|
691
|
+
)
|
692
|
+
messages_to_persist = (initial_messages or []) + [approval_message]
|
693
|
+
continue_stepping = False
|
694
|
+
stop_reason = LettaStopReason(stop_reason=StopReasonType.requires_approval.value)
|
695
|
+
else:
|
696
|
+
# 2. Execute the tool (or synthesize an error result if disallowed)
|
697
|
+
tool_rule_violated = tool_call_name not in valid_tool_names and not is_approval
|
698
|
+
if tool_rule_violated:
|
699
|
+
tool_execution_result = _build_rule_violation_result(tool_call_name, valid_tool_names, tool_rules_solver)
|
700
|
+
else:
|
701
|
+
# Prefill + validate args if a rule provided them
|
702
|
+
prefill_args = self.tool_rules_solver.last_prefilled_args_by_tool.get(tool_call_name)
|
703
|
+
if prefill_args:
|
704
|
+
# Find tool object for schema validation
|
705
|
+
target_tool = next((t for t in agent_state.tools if t.name == tool_call_name), None)
|
706
|
+
provenance = self.tool_rules_solver.last_prefilled_args_provenance.get(tool_call_name)
|
707
|
+
try:
|
708
|
+
tool_args = merge_and_validate_prefilled_args(
|
709
|
+
tool=target_tool,
|
710
|
+
llm_args=tool_args,
|
711
|
+
prefilled_args=prefill_args,
|
712
|
+
)
|
713
|
+
except ValueError as ve:
|
714
|
+
# Treat invalid prefilled args as user error and end the step
|
715
|
+
error_prefix = "Invalid prefilled tool arguments from tool rules"
|
716
|
+
prov_suffix = f" (source={provenance})" if provenance else ""
|
717
|
+
err_msg = f"{error_prefix}{prov_suffix}: {str(ve)}"
|
718
|
+
tool_execution_result = ToolExecutionResult(status="error", func_return=err_msg)
|
719
|
+
|
720
|
+
# Create messages and early return persistence path below
|
721
|
+
continue_stepping, heartbeat_reason, stop_reason = (
|
722
|
+
False,
|
723
|
+
None,
|
724
|
+
LettaStopReason(stop_reason=StopReasonType.invalid_tool_call.value),
|
725
|
+
)
|
726
|
+
tool_call_messages = create_letta_messages_from_llm_response(
|
727
|
+
agent_id=agent_state.id,
|
728
|
+
model=agent_state.llm_config.model,
|
729
|
+
function_name=tool_call_name,
|
730
|
+
function_arguments=tool_args,
|
731
|
+
tool_execution_result=tool_execution_result,
|
732
|
+
tool_call_id=tool_call_id,
|
733
|
+
function_response=tool_execution_result.func_return,
|
734
|
+
timezone=agent_state.timezone,
|
735
|
+
continue_stepping=continue_stepping,
|
736
|
+
heartbeat_reason=None,
|
737
|
+
reasoning_content=content,
|
738
|
+
pre_computed_assistant_message_id=pre_computed_assistant_message_id,
|
739
|
+
step_id=step_id,
|
740
|
+
run_id=run_id,
|
741
|
+
is_approval_response=is_approval or is_denial,
|
742
|
+
force_set_request_heartbeat=False,
|
743
|
+
add_heartbeat_on_continue=False,
|
744
|
+
)
|
745
|
+
messages_to_persist = (initial_messages or []) + tool_call_messages
|
746
|
+
|
747
|
+
# Set run_id on all messages before persisting
|
748
|
+
for message in messages_to_persist:
|
749
|
+
if message.run_id is None:
|
750
|
+
message.run_id = run_id
|
751
|
+
|
752
|
+
persisted_messages = await self.message_manager.create_many_messages_async(
|
753
|
+
messages_to_persist,
|
754
|
+
actor=self.actor,
|
755
|
+
run_id=run_id,
|
756
|
+
project_id=agent_state.project_id,
|
757
|
+
template_id=agent_state.template_id,
|
758
|
+
)
|
759
|
+
return persisted_messages, continue_stepping, stop_reason
|
760
|
+
|
761
|
+
# Track tool execution time
|
762
|
+
tool_start_time = get_utc_timestamp_ns()
|
763
|
+
tool_execution_result = await self._execute_tool(
|
764
|
+
tool_name=tool_call_name,
|
765
|
+
tool_args=tool_args,
|
766
|
+
agent_state=agent_state,
|
767
|
+
agent_step_span=agent_step_span,
|
768
|
+
step_id=step_id,
|
769
|
+
)
|
770
|
+
tool_end_time = get_utc_timestamp_ns()
|
771
|
+
|
772
|
+
# Store tool execution time in metrics
|
773
|
+
step_metrics.tool_execution_ns = tool_end_time - tool_start_time
|
774
|
+
|
775
|
+
log_telemetry(
|
776
|
+
self.logger,
|
777
|
+
"_handle_ai_response execute tool finish",
|
778
|
+
tool_execution_result=tool_execution_result,
|
779
|
+
tool_call_id=tool_call_id,
|
780
|
+
)
|
781
|
+
|
782
|
+
# 3. Prepare the function-response payload
|
783
|
+
truncate = tool_call_name not in {"conversation_search", "conversation_search_date", "archival_memory_search"}
|
784
|
+
return_char_limit = next(
|
785
|
+
(t.return_char_limit for t in agent_state.tools if t.name == tool_call_name),
|
786
|
+
None,
|
787
|
+
)
|
788
|
+
function_response_string = validate_function_response(
|
789
|
+
tool_execution_result.func_return,
|
790
|
+
return_char_limit=return_char_limit,
|
791
|
+
truncate=truncate,
|
792
|
+
)
|
793
|
+
self.last_function_response = package_function_response(
|
794
|
+
was_success=tool_execution_result.success_flag,
|
795
|
+
response_string=function_response_string,
|
796
|
+
timezone=agent_state.timezone,
|
797
|
+
)
|
798
|
+
|
799
|
+
# 4. Decide whether to keep stepping (focal section simplified)
|
800
|
+
continue_stepping, heartbeat_reason, stop_reason = self._decide_continuation(
|
801
|
+
agent_state=agent_state,
|
802
|
+
tool_call_name=tool_call_name,
|
803
|
+
tool_rule_violated=tool_rule_violated,
|
804
|
+
tool_rules_solver=tool_rules_solver,
|
805
|
+
is_final_step=is_final_step,
|
806
|
+
)
|
807
|
+
|
808
|
+
# 5. Create messages (step was already created at the beginning)
|
809
|
+
tool_call_messages = create_letta_messages_from_llm_response(
|
810
|
+
agent_id=agent_state.id,
|
811
|
+
model=agent_state.llm_config.model,
|
812
|
+
function_name=tool_call_name,
|
813
|
+
function_arguments=tool_args,
|
814
|
+
tool_execution_result=tool_execution_result,
|
815
|
+
tool_call_id=tool_call_id,
|
816
|
+
function_response=function_response_string,
|
817
|
+
timezone=agent_state.timezone,
|
818
|
+
continue_stepping=continue_stepping,
|
819
|
+
# heartbeat_reason=heartbeat_reason,
|
820
|
+
heartbeat_reason=None,
|
821
|
+
# reasoning_content=reasoning_content,
|
822
|
+
reasoning_content=content,
|
823
|
+
pre_computed_assistant_message_id=pre_computed_assistant_message_id,
|
824
|
+
step_id=step_id,
|
825
|
+
run_id=run_id,
|
826
|
+
is_approval_response=is_approval or is_denial,
|
827
|
+
force_set_request_heartbeat=False,
|
828
|
+
add_heartbeat_on_continue=False,
|
829
|
+
)
|
830
|
+
messages_to_persist = (initial_messages or []) + tool_call_messages
|
831
|
+
|
832
|
+
# Set run_id on all messages before persisting
|
833
|
+
for message in messages_to_persist:
|
834
|
+
if message.run_id is None:
|
835
|
+
message.run_id = run_id
|
836
|
+
|
837
|
+
persisted_messages = await self.message_manager.create_many_messages_async(
|
838
|
+
messages_to_persist, actor=self.actor, run_id=run_id, project_id=agent_state.project_id, template_id=agent_state.template_id
|
839
|
+
)
|
840
|
+
|
841
|
+
return persisted_messages, continue_stepping, stop_reason
|
842
|
+
|
843
|
+
@trace_method
|
844
|
+
def _decide_continuation(
|
845
|
+
self,
|
846
|
+
agent_state: AgentState,
|
847
|
+
tool_call_name: Optional[str],
|
848
|
+
tool_rule_violated: bool,
|
849
|
+
tool_rules_solver: ToolRulesSolver,
|
850
|
+
is_final_step: bool | None,
|
851
|
+
) -> tuple[bool, str | None, LettaStopReason | None]:
|
852
|
+
"""
|
853
|
+
In v3 loop, we apply the following rules:
|
854
|
+
|
855
|
+
1. Did not call a tool? Loop ends
|
856
|
+
|
857
|
+
2. Called a tool? Loop continues. This can be:
|
858
|
+
2a. Called tool, tool executed successfully
|
859
|
+
2b. Called tool, tool failed to execute
|
860
|
+
2c. Called tool + tool rule violation (did not execute)
|
861
|
+
|
862
|
+
"""
|
863
|
+
continue_stepping = True # Default continue
|
864
|
+
continuation_reason: str | None = None
|
865
|
+
stop_reason: LettaStopReason | None = None
|
866
|
+
|
867
|
+
if tool_call_name is None:
|
868
|
+
# No tool call – if there are required-before-exit tools uncalled, keep stepping
|
869
|
+
# and provide explicit feedback to the model; otherwise end the loop.
|
870
|
+
uncalled = tool_rules_solver.get_uncalled_required_tools(available_tools=set([t.name for t in agent_state.tools]))
|
871
|
+
if uncalled and not is_final_step:
|
872
|
+
reason = f"{NON_USER_MSG_PREFIX}ToolRuleViolated: You must call {', '.join(uncalled)} at least once to exit the loop."
|
873
|
+
return True, reason, None
|
874
|
+
# No required tools remaining → end turn
|
875
|
+
return False, None, LettaStopReason(stop_reason=StopReasonType.end_turn.value)
|
876
|
+
else:
|
877
|
+
if tool_rule_violated:
|
878
|
+
continue_stepping = True
|
879
|
+
continuation_reason = f"{NON_USER_MSG_PREFIX}Continuing: tool rule violation."
|
880
|
+
else:
|
881
|
+
tool_rules_solver.register_tool_call(tool_call_name)
|
882
|
+
|
883
|
+
if tool_rules_solver.is_terminal_tool(tool_call_name):
|
884
|
+
stop_reason = LettaStopReason(stop_reason=StopReasonType.tool_rule.value)
|
885
|
+
continue_stepping = False
|
886
|
+
|
887
|
+
elif tool_rules_solver.has_children_tools(tool_call_name):
|
888
|
+
continue_stepping = True
|
889
|
+
continuation_reason = f"{NON_USER_MSG_PREFIX}Continuing: child tool rule."
|
890
|
+
|
891
|
+
elif tool_rules_solver.is_continue_tool(tool_call_name):
|
892
|
+
continue_stepping = True
|
893
|
+
continuation_reason = f"{NON_USER_MSG_PREFIX}Continuing: continue tool rule."
|
894
|
+
|
895
|
+
# – hard stop overrides –
|
896
|
+
if is_final_step:
|
897
|
+
continue_stepping = False
|
898
|
+
stop_reason = LettaStopReason(stop_reason=StopReasonType.max_steps.value)
|
899
|
+
else:
|
900
|
+
uncalled = tool_rules_solver.get_uncalled_required_tools(available_tools=set([t.name for t in agent_state.tools]))
|
901
|
+
if uncalled:
|
902
|
+
continue_stepping = True
|
903
|
+
continuation_reason = (
|
904
|
+
f"{NON_USER_MSG_PREFIX}Continuing, user expects these tools: [{', '.join(uncalled)}] to be called still."
|
905
|
+
)
|
906
|
+
|
907
|
+
stop_reason = None # reset – we’re still going
|
908
|
+
|
909
|
+
return continue_stepping, continuation_reason, stop_reason
|
910
|
+
|
911
|
+
@trace_method
|
912
|
+
async def _get_valid_tools(self):
|
913
|
+
tools = self.agent_state.tools
|
914
|
+
valid_tool_names = self.tool_rules_solver.get_allowed_tool_names(
|
915
|
+
available_tools=set([t.name for t in tools]),
|
916
|
+
last_function_response=self.last_function_response,
|
917
|
+
error_on_empty=False, # Return empty list instead of raising error
|
918
|
+
) or list(set(t.name for t in tools))
|
919
|
+
allowed_tools = [enable_strict_mode(t.json_schema) for t in tools if t.name in set(valid_tool_names)]
|
920
|
+
terminal_tool_names = {rule.tool_name for rule in self.tool_rules_solver.terminal_tool_rules}
|
921
|
+
allowed_tools = runtime_override_tool_json_schema(
|
922
|
+
tool_list=allowed_tools,
|
923
|
+
response_format=self.agent_state.response_format,
|
924
|
+
request_heartbeat=False, # NOTE: difference for v3 (don't add request heartbeat)
|
925
|
+
terminal_tools=terminal_tool_names,
|
926
|
+
)
|
927
|
+
return allowed_tools
|