learning3d 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- learning3d/__init__.py +2 -0
- learning3d/data_utils/__init__.py +4 -0
- learning3d/data_utils/dataloaders.py +454 -0
- learning3d/data_utils/user_data.py +119 -0
- learning3d/examples/test_dcp.py +139 -0
- learning3d/examples/test_deepgmr.py +144 -0
- learning3d/examples/test_flownet.py +113 -0
- learning3d/examples/test_masknet.py +159 -0
- learning3d/examples/test_masknet2.py +162 -0
- learning3d/examples/test_pcn.py +118 -0
- learning3d/examples/test_pcrnet.py +120 -0
- learning3d/examples/test_pnlk.py +121 -0
- learning3d/examples/test_pointconv.py +126 -0
- learning3d/examples/test_pointnet.py +121 -0
- learning3d/examples/test_prnet.py +126 -0
- learning3d/examples/test_rpmnet.py +120 -0
- learning3d/examples/train_PointNetLK.py +240 -0
- learning3d/examples/train_dcp.py +249 -0
- learning3d/examples/train_deepgmr.py +244 -0
- learning3d/examples/train_flownet.py +259 -0
- learning3d/examples/train_masknet.py +239 -0
- learning3d/examples/train_pcn.py +216 -0
- learning3d/examples/train_pcrnet.py +228 -0
- learning3d/examples/train_pointconv.py +245 -0
- learning3d/examples/train_pointnet.py +244 -0
- learning3d/examples/train_prnet.py +229 -0
- learning3d/examples/train_rpmnet.py +228 -0
- learning3d/losses/__init__.py +12 -0
- learning3d/losses/chamfer_distance.py +51 -0
- learning3d/losses/classification.py +14 -0
- learning3d/losses/correspondence_loss.py +10 -0
- learning3d/losses/cuda/chamfer_distance/__init__.py +1 -0
- learning3d/losses/cuda/chamfer_distance/chamfer_distance.cpp +185 -0
- learning3d/losses/cuda/chamfer_distance/chamfer_distance.cu +209 -0
- learning3d/losses/cuda/chamfer_distance/chamfer_distance.py +66 -0
- learning3d/losses/cuda/emd_torch/pkg/emd_loss_layer.py +41 -0
- learning3d/losses/cuda/emd_torch/pkg/include/cuda/emd.cuh +347 -0
- learning3d/losses/cuda/emd_torch/pkg/include/cuda_helper.h +18 -0
- learning3d/losses/cuda/emd_torch/pkg/include/emd.h +54 -0
- learning3d/losses/cuda/emd_torch/pkg/layer/__init__.py +1 -0
- learning3d/losses/cuda/emd_torch/pkg/layer/emd_loss_layer.py +40 -0
- learning3d/losses/cuda/emd_torch/pkg/src/cuda/emd.cu +70 -0
- learning3d/losses/cuda/emd_torch/pkg/src/emd.cpp +1 -0
- learning3d/losses/cuda/emd_torch/setup.py +29 -0
- learning3d/losses/emd.py +16 -0
- learning3d/losses/frobenius_norm.py +21 -0
- learning3d/losses/rmse_features.py +16 -0
- learning3d/models/__init__.py +23 -0
- learning3d/models/classifier.py +41 -0
- learning3d/models/dcp.py +92 -0
- learning3d/models/deepgmr.py +165 -0
- learning3d/models/dgcnn.py +92 -0
- learning3d/models/flownet3d.py +446 -0
- learning3d/models/masknet.py +84 -0
- learning3d/models/masknet2.py +264 -0
- learning3d/models/pcn.py +164 -0
- learning3d/models/pcrnet.py +74 -0
- learning3d/models/pointconv.py +108 -0
- learning3d/models/pointnet.py +108 -0
- learning3d/models/pointnetlk.py +173 -0
- learning3d/models/pooling.py +15 -0
- learning3d/models/ppfnet.py +102 -0
- learning3d/models/prnet.py +431 -0
- learning3d/models/rpmnet.py +359 -0
- learning3d/models/segmentation.py +38 -0
- learning3d/ops/__init__.py +0 -0
- learning3d/ops/data_utils.py +45 -0
- learning3d/ops/invmat.py +134 -0
- learning3d/ops/quaternion.py +218 -0
- learning3d/ops/se3.py +157 -0
- learning3d/ops/sinc.py +229 -0
- learning3d/ops/so3.py +213 -0
- learning3d/ops/transform_functions.py +342 -0
- learning3d/utils/__init__.py +9 -0
- learning3d/utils/lib/build/lib.linux-x86_64-3.5/pointnet2_cuda.cpython-35m-x86_64-linux-gnu.so +0 -0
- learning3d/utils/lib/build/temp.linux-x86_64-3.5/src/ball_query.o +0 -0
- learning3d/utils/lib/build/temp.linux-x86_64-3.5/src/ball_query_gpu.o +0 -0
- learning3d/utils/lib/build/temp.linux-x86_64-3.5/src/group_points.o +0 -0
- learning3d/utils/lib/build/temp.linux-x86_64-3.5/src/group_points_gpu.o +0 -0
- learning3d/utils/lib/build/temp.linux-x86_64-3.5/src/interpolate.o +0 -0
- learning3d/utils/lib/build/temp.linux-x86_64-3.5/src/interpolate_gpu.o +0 -0
- learning3d/utils/lib/build/temp.linux-x86_64-3.5/src/pointnet2_api.o +0 -0
- learning3d/utils/lib/build/temp.linux-x86_64-3.5/src/sampling.o +0 -0
- learning3d/utils/lib/build/temp.linux-x86_64-3.5/src/sampling_gpu.o +0 -0
- learning3d/utils/lib/dist/pointnet2-0.0.0-py3.5-linux-x86_64.egg +0 -0
- learning3d/utils/lib/pointnet2.egg-info/SOURCES.txt +14 -0
- learning3d/utils/lib/pointnet2.egg-info/dependency_links.txt +1 -0
- learning3d/utils/lib/pointnet2.egg-info/top_level.txt +1 -0
- learning3d/utils/lib/pointnet2_modules.py +160 -0
- learning3d/utils/lib/pointnet2_utils.py +318 -0
- learning3d/utils/lib/pytorch_utils.py +236 -0
- learning3d/utils/lib/setup.py +23 -0
- learning3d/utils/lib/src/ball_query.cpp +25 -0
- learning3d/utils/lib/src/ball_query_gpu.cu +67 -0
- learning3d/utils/lib/src/ball_query_gpu.h +15 -0
- learning3d/utils/lib/src/cuda_utils.h +15 -0
- learning3d/utils/lib/src/group_points.cpp +36 -0
- learning3d/utils/lib/src/group_points_gpu.cu +86 -0
- learning3d/utils/lib/src/group_points_gpu.h +22 -0
- learning3d/utils/lib/src/interpolate.cpp +65 -0
- learning3d/utils/lib/src/interpolate_gpu.cu +233 -0
- learning3d/utils/lib/src/interpolate_gpu.h +36 -0
- learning3d/utils/lib/src/pointnet2_api.cpp +25 -0
- learning3d/utils/lib/src/sampling.cpp +46 -0
- learning3d/utils/lib/src/sampling_gpu.cu +253 -0
- learning3d/utils/lib/src/sampling_gpu.h +29 -0
- learning3d/utils/pointconv_util.py +382 -0
- learning3d/utils/ppfnet_util.py +244 -0
- learning3d/utils/svd.py +59 -0
- learning3d/utils/transformer.py +243 -0
- learning3d-0.0.1.dist-info/LICENSE +21 -0
- learning3d-0.0.1.dist-info/METADATA +271 -0
- learning3d-0.0.1.dist-info/RECORD +115 -0
- learning3d-0.0.1.dist-info/WHEEL +5 -0
- learning3d-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,162 @@
|
|
1
|
+
import open3d as o3d
|
2
|
+
import argparse
|
3
|
+
import os
|
4
|
+
import sys
|
5
|
+
import numpy
|
6
|
+
import numpy as np
|
7
|
+
import torch
|
8
|
+
import torch.utils.data
|
9
|
+
from torch.utils.data import DataLoader
|
10
|
+
from tqdm import tqdm
|
11
|
+
|
12
|
+
# Only if the files are in example folder.
|
13
|
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
14
|
+
if BASE_DIR[-8:] == 'examples':
|
15
|
+
sys.path.append(os.path.join(BASE_DIR, os.pardir))
|
16
|
+
os.chdir(os.path.join(BASE_DIR, os.pardir))
|
17
|
+
|
18
|
+
from learning3d.models import MaskNet2
|
19
|
+
from learning3d.data_utils import RegistrationData, ModelNet40Data
|
20
|
+
|
21
|
+
def pc2open3d(data):
|
22
|
+
if torch.is_tensor(data): data = data.detach().cpu().numpy()
|
23
|
+
if len(data.shape) == 2:
|
24
|
+
pc = o3d.geometry.PointCloud()
|
25
|
+
pc.points = o3d.utility.Vector3dVector(data)
|
26
|
+
return pc
|
27
|
+
else:
|
28
|
+
print("Error in the shape of data given to Open3D!, Shape is ", data.shape)
|
29
|
+
|
30
|
+
def display_results(template, source, masked_template, masked_source):
|
31
|
+
template = pc2open3d(template)
|
32
|
+
source = pc2open3d(source)
|
33
|
+
masked_template = pc2open3d(masked_template)
|
34
|
+
masked_source = pc2open3d(masked_source)
|
35
|
+
|
36
|
+
template.paint_uniform_color([1, 0, 0])
|
37
|
+
source.paint_uniform_color([0, 1, 0])
|
38
|
+
# masked_template.paint_uniform_color([0, 0, 1])
|
39
|
+
masked_template.paint_uniform_color([1, 0, 0])
|
40
|
+
masked_source.paint_uniform_color([0, 1, 0])
|
41
|
+
|
42
|
+
o3d.visualization.draw_geometries([template, source])
|
43
|
+
o3d.visualization.draw_geometries([masked_template, masked_source])
|
44
|
+
|
45
|
+
def evaluate_metrics(TP, FP, FN, TN, gt_mask):
|
46
|
+
# TP, FP, FN, TN: True +ve, False +ve, False -ve, True -ve
|
47
|
+
# gt_mask: Ground Truth mask [Nt, 1]
|
48
|
+
|
49
|
+
accuracy = (TP + TN)/gt_mask.shape[1]
|
50
|
+
misclassification_rate = (FN + FP)/gt_mask.shape[1]
|
51
|
+
# Precision: (What portion of positive identifications are actually correct?)
|
52
|
+
precision = TP / (TP + FP)
|
53
|
+
# Recall: (What portion of actual positives are identified correctly?)
|
54
|
+
recall = TP / (TP + FN)
|
55
|
+
|
56
|
+
fscore = (2*precision*recall) / (precision + recall)
|
57
|
+
return accuracy, precision, recall, fscore
|
58
|
+
|
59
|
+
# Function used to evaluate the predicted mask with ground truth mask.
|
60
|
+
def evaluate_mask(gt_mask, predicted_mask, predicted_mask_idx):
|
61
|
+
# gt_mask: Ground Truth Mask [Nt, 1]
|
62
|
+
# predicted_mask: Mask predicted by network [Nt, 1]
|
63
|
+
# predicted_mask_idx: Point indices chosen by network [Ns, 1]
|
64
|
+
|
65
|
+
if torch.is_tensor(gt_mask): gt_mask = gt_mask.detach().cpu().numpy()
|
66
|
+
if torch.is_tensor(gt_mask): predicted_mask = predicted_mask.detach().cpu().numpy()
|
67
|
+
if torch.is_tensor(predicted_mask_idx): predicted_mask_idx = predicted_mask_idx.detach().cpu().numpy()
|
68
|
+
gt_mask, predicted_mask, predicted_mask_idx = gt_mask.reshape(1,-1), predicted_mask.reshape(1,-1), predicted_mask_idx.reshape(1,-1)
|
69
|
+
|
70
|
+
gt_idx = np.where(gt_mask == 1)[1].reshape(1,-1) # Find indices of points which are actually in source.
|
71
|
+
|
72
|
+
# TP + FP = number of source points.
|
73
|
+
TP = np.intersect1d(predicted_mask_idx[0], gt_idx[0]).shape[0] # is inliner and predicted as inlier (True Positive) (Find common indices in predicted_mask_idx, gt_idx)
|
74
|
+
FP = len([x for x in predicted_mask_idx[0] if x not in gt_idx]) # isn't inlier but predicted as inlier (False Positive)
|
75
|
+
FN = FP # is inlier but predicted as outlier (False Negative) (due to binary classification)
|
76
|
+
TN = gt_mask.shape[1] - gt_idx.shape[1] - FN # is outlier and predicted as outlier (True Negative)
|
77
|
+
return evaluate_metrics(TP, FP, FN, TN, gt_mask)
|
78
|
+
|
79
|
+
def test_one_epoch(args, model, test_loader):
|
80
|
+
model.eval()
|
81
|
+
test_loss = 0.0
|
82
|
+
pred = 0.0
|
83
|
+
count = 0
|
84
|
+
|
85
|
+
for i, data in enumerate(tqdm(test_loader)):
|
86
|
+
template, source, igt, gt_template_mask, gt_source_mask = data
|
87
|
+
|
88
|
+
template = template.to(args.device)
|
89
|
+
source = source.to(args.device)
|
90
|
+
igt = igt.to(args.device) # [source] = [igt]*[template]
|
91
|
+
gt_template_mask = gt_template_mask.to(args.device)
|
92
|
+
gt_source_mask = gt_source_mask.to(args.device)
|
93
|
+
|
94
|
+
masked_template, masked_source, template_mask, source_mask = model(template, source)
|
95
|
+
|
96
|
+
# TODO: Implement evaluation strategy.
|
97
|
+
'''
|
98
|
+
Evaluate mask based on classification metrics.
|
99
|
+
accuracy, precision, recall, fscore = evaluate_mask(gt_template_mask, template_mask, predicted_mask_idx = model.mask_idx)
|
100
|
+
precision_list.append(precision)
|
101
|
+
'''
|
102
|
+
|
103
|
+
# Different ways to visualize results.
|
104
|
+
display_results(template.detach().cpu().numpy()[0], source.detach().cpu().numpy()[0], masked_template.detach().cpu().numpy()[0], masked_source.detach().cpu().numpy()[0])
|
105
|
+
|
106
|
+
def test(args, model, test_loader):
|
107
|
+
test_one_epoch(args, model, test_loader)
|
108
|
+
|
109
|
+
def options():
|
110
|
+
parser = argparse.ArgumentParser(description='MaskNet: A Fully-Convolutional Network For Inlier Estimation (Testing)')
|
111
|
+
|
112
|
+
# settings for input data
|
113
|
+
parser.add_argument('--num_points', default=1024, type=int,
|
114
|
+
metavar='N', help='points in point-cloud (default: 1024)')
|
115
|
+
parser.add_argument('--partial_source', default=True, type=bool,
|
116
|
+
help='create partial source point cloud in dataset.')
|
117
|
+
parser.add_argument('--partial_template', default=True, type=bool,
|
118
|
+
help='create partial source point cloud in dataset.')
|
119
|
+
parser.add_argument('--noise', default=False, type=bool,
|
120
|
+
help='Add noise in source point clouds.')
|
121
|
+
parser.add_argument('--outliers', default=False, type=bool,
|
122
|
+
help='Add outliers to template point cloud.')
|
123
|
+
|
124
|
+
# settings for on testing
|
125
|
+
parser.add_argument('-j', '--workers', default=1, type=int,
|
126
|
+
metavar='N', help='number of data loading workers (default: 4)')
|
127
|
+
parser.add_argument('-b', '--test_batch_size', default=1, type=int,
|
128
|
+
metavar='N', help='test-mini-batch size (default: 1)')
|
129
|
+
parser.add_argument('--pretrained', default='learning3d/pretrained/exp_masknet2/models/best_model_0.7.t7', type=str,
|
130
|
+
metavar='PATH', help='path to pretrained model file (default: null (no-use))')
|
131
|
+
parser.add_argument('--device', default='cuda:0', type=str,
|
132
|
+
metavar='DEVICE', help='use CUDA if available')
|
133
|
+
parser.add_argument('--unseen', default=False, type=bool,
|
134
|
+
help='Use first 20 categories for training and last 20 for testing')
|
135
|
+
|
136
|
+
args = parser.parse_args()
|
137
|
+
return args
|
138
|
+
|
139
|
+
def main():
|
140
|
+
args = options()
|
141
|
+
torch.backends.cudnn.deterministic = True
|
142
|
+
|
143
|
+
testset = RegistrationData('PointNetLK', ModelNet40Data(train=False, num_points=args.num_points),
|
144
|
+
partial_template=args.partial_template, partial_source=args.partial_source,
|
145
|
+
noise=args.noise, additional_params={'use_masknet': True, 'partial_point_cloud_method': 'planar_crop'})
|
146
|
+
test_loader = DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
|
147
|
+
|
148
|
+
if not torch.cuda.is_available():
|
149
|
+
args.device = 'cpu'
|
150
|
+
args.device = torch.device(args.device)
|
151
|
+
|
152
|
+
# Load Pretrained MaskNet.
|
153
|
+
model = MaskNet2()
|
154
|
+
if args.pretrained:
|
155
|
+
assert os.path.isfile(args.pretrained)
|
156
|
+
model.load_state_dict(torch.load(args.pretrained, map_location='cpu'))
|
157
|
+
model = model.to(args.device)
|
158
|
+
|
159
|
+
test(args, model, test_loader)
|
160
|
+
|
161
|
+
if __name__ == '__main__':
|
162
|
+
main()
|
@@ -0,0 +1,118 @@
|
|
1
|
+
# author: Vinit Sarode (vinitsarode5@gmail.com) 03/23/2020
|
2
|
+
|
3
|
+
import open3d as o3d
|
4
|
+
import argparse
|
5
|
+
import os
|
6
|
+
import sys
|
7
|
+
import logging
|
8
|
+
import numpy
|
9
|
+
import numpy as np
|
10
|
+
import torch
|
11
|
+
import torch.utils.data
|
12
|
+
import torchvision
|
13
|
+
from torch.utils.data import DataLoader
|
14
|
+
from tensorboardX import SummaryWriter
|
15
|
+
from tqdm import tqdm
|
16
|
+
|
17
|
+
# Only if the files are in example folder.
|
18
|
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
19
|
+
if BASE_DIR[-8:] == 'examples':
|
20
|
+
sys.path.append(os.path.join(BASE_DIR, os.pardir))
|
21
|
+
os.chdir(os.path.join(BASE_DIR, os.pardir))
|
22
|
+
|
23
|
+
from learning3d.models import PCN
|
24
|
+
from learning3d.data_utils import ModelNet40Data, ClassificationData
|
25
|
+
from learning3d.losses import ChamferDistanceLoss
|
26
|
+
|
27
|
+
def display_open3d(input_pc, output):
|
28
|
+
input_pc_ = o3d.geometry.PointCloud()
|
29
|
+
output_ = o3d.geometry.PointCloud()
|
30
|
+
input_pc_.points = o3d.utility.Vector3dVector(input_pc)
|
31
|
+
output_.points = o3d.utility.Vector3dVector(output + np.array([1,0,0]))
|
32
|
+
input_pc_.paint_uniform_color([1, 0, 0])
|
33
|
+
output_.paint_uniform_color([0, 1, 0])
|
34
|
+
o3d.visualization.draw_geometries([input_pc_, output_])
|
35
|
+
|
36
|
+
def test_one_epoch(device, model, test_loader):
|
37
|
+
model.eval()
|
38
|
+
test_loss = 0.0
|
39
|
+
pred = 0.0
|
40
|
+
count = 0
|
41
|
+
for i, data in enumerate(tqdm(test_loader)):
|
42
|
+
points, _ = data
|
43
|
+
|
44
|
+
points = points.to(device)
|
45
|
+
|
46
|
+
output = model(points)
|
47
|
+
loss_val = ChamferDistanceLoss()(points, output['coarse_output'])
|
48
|
+
print("Loss Val: ", loss_val)
|
49
|
+
display_open3d(points[0].detach().cpu().numpy(), output['coarse_output'][0].detach().cpu().numpy())
|
50
|
+
|
51
|
+
test_loss += loss_val.item()
|
52
|
+
count += 1
|
53
|
+
|
54
|
+
test_loss = float(test_loss)/count
|
55
|
+
return test_loss
|
56
|
+
|
57
|
+
def test(args, model, test_loader):
|
58
|
+
test_loss = test_one_epoch(args.device, model, test_loader)
|
59
|
+
|
60
|
+
def options():
|
61
|
+
parser = argparse.ArgumentParser(description='Point Completion Network')
|
62
|
+
parser.add_argument('--exp_name', type=str, default='exp_pcn', metavar='N',
|
63
|
+
help='Name of the experiment')
|
64
|
+
parser.add_argument('--dataset_path', type=str, default='ModelNet40',
|
65
|
+
metavar='PATH', help='path to the input dataset') # like '/path/to/ModelNet40'
|
66
|
+
parser.add_argument('--eval', type=bool, default=False, help='Train or Evaluate the network.')
|
67
|
+
|
68
|
+
# settings for input data
|
69
|
+
parser.add_argument('--dataset_type', default='modelnet', choices=['modelnet', 'shapenet2'],
|
70
|
+
metavar='DATASET', help='dataset type (default: modelnet)')
|
71
|
+
parser.add_argument('--num_points', default=1024, type=int,
|
72
|
+
metavar='N', help='points in point-cloud (default: 1024)')
|
73
|
+
|
74
|
+
# settings for PCN
|
75
|
+
parser.add_argument('--emb_dims', default=1024, type=int,
|
76
|
+
metavar='K', help='dim. of the feature vector (default: 1024)')
|
77
|
+
parser.add_argument('--detailed_output', default=False, type=bool,
|
78
|
+
help='Coarse + Fine Output')
|
79
|
+
|
80
|
+
# settings for on training
|
81
|
+
parser.add_argument('--seed', type=int, default=1234)
|
82
|
+
parser.add_argument('-j', '--workers', default=4, type=int,
|
83
|
+
metavar='N', help='number of data loading workers (default: 4)')
|
84
|
+
parser.add_argument('-b', '--batch_size', default=32, type=int,
|
85
|
+
metavar='N', help='mini-batch size (default: 32)')
|
86
|
+
parser.add_argument('--pretrained', default='learning3d/pretrained/exp_pcn/models/best_model.t7', type=str,
|
87
|
+
metavar='PATH', help='path to pretrained model file (default: null (no-use))')
|
88
|
+
parser.add_argument('--device', default='cuda:0', type=str,
|
89
|
+
metavar='DEVICE', help='use CUDA if available')
|
90
|
+
|
91
|
+
args = parser.parse_args()
|
92
|
+
return args
|
93
|
+
|
94
|
+
def main():
|
95
|
+
args = options()
|
96
|
+
args.dataset_path = os.path.join(os.getcwd(), os.pardir, os.pardir, 'ModelNet40', 'ModelNet40')
|
97
|
+
|
98
|
+
trainset = ClassificationData(ModelNet40Data(train=True))
|
99
|
+
testset = ClassificationData(ModelNet40Data(train=False))
|
100
|
+
train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
|
101
|
+
test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
|
102
|
+
|
103
|
+
if not torch.cuda.is_available():
|
104
|
+
args.device = 'cpu'
|
105
|
+
args.device = torch.device(args.device)
|
106
|
+
|
107
|
+
# Create PointNet Model.
|
108
|
+
model = PCN(emb_dims=args.emb_dims, detailed_output=args.detailed_output)
|
109
|
+
|
110
|
+
if args.pretrained:
|
111
|
+
assert os.path.isfile(args.pretrained)
|
112
|
+
model.load_state_dict(torch.load(args.pretrained, map_location='cpu'))
|
113
|
+
model.to(args.device)
|
114
|
+
|
115
|
+
test(args, model, test_loader)
|
116
|
+
|
117
|
+
if __name__ == '__main__':
|
118
|
+
main()
|
@@ -0,0 +1,120 @@
|
|
1
|
+
import open3d as o3d
|
2
|
+
import argparse
|
3
|
+
import os
|
4
|
+
import sys
|
5
|
+
import logging
|
6
|
+
import numpy
|
7
|
+
import numpy as np
|
8
|
+
import torch
|
9
|
+
import torch.utils.data
|
10
|
+
import torchvision
|
11
|
+
from torch.utils.data import DataLoader
|
12
|
+
from tensorboardX import SummaryWriter
|
13
|
+
from tqdm import tqdm
|
14
|
+
|
15
|
+
# Only if the files are in example folder.
|
16
|
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
17
|
+
if BASE_DIR[-8:] == 'examples':
|
18
|
+
sys.path.append(os.path.join(BASE_DIR, os.pardir))
|
19
|
+
os.chdir(os.path.join(BASE_DIR, os.pardir))
|
20
|
+
|
21
|
+
from learning3d.models import PointNet, iPCRNet
|
22
|
+
from learning3d.losses import ChamferDistanceLoss
|
23
|
+
from learning3d.data_utils import RegistrationData, ModelNet40Data
|
24
|
+
|
25
|
+
|
26
|
+
def display_open3d(template, source, transformed_source):
|
27
|
+
template_ = o3d.geometry.PointCloud()
|
28
|
+
source_ = o3d.geometry.PointCloud()
|
29
|
+
transformed_source_ = o3d.geometry.PointCloud()
|
30
|
+
template_.points = o3d.utility.Vector3dVector(template)
|
31
|
+
source_.points = o3d.utility.Vector3dVector(source + np.array([0,0,0]))
|
32
|
+
transformed_source_.points = o3d.utility.Vector3dVector(transformed_source)
|
33
|
+
template_.paint_uniform_color([1, 0, 0])
|
34
|
+
source_.paint_uniform_color([0, 1, 0])
|
35
|
+
transformed_source_.paint_uniform_color([0, 0, 1])
|
36
|
+
o3d.visualization.draw_geometries([template_, source_, transformed_source_])
|
37
|
+
|
38
|
+
def test_one_epoch(device, model, test_loader):
|
39
|
+
model.eval()
|
40
|
+
test_loss = 0.0
|
41
|
+
pred = 0.0
|
42
|
+
count = 0
|
43
|
+
for i, data in enumerate(tqdm(test_loader)):
|
44
|
+
template, source, igt = data
|
45
|
+
|
46
|
+
template = template.to(device)
|
47
|
+
source = source.to(device)
|
48
|
+
igt = igt.to(device)
|
49
|
+
|
50
|
+
output = model(template, source)
|
51
|
+
display_open3d(template.detach().cpu().numpy()[0], source.detach().cpu().numpy()[0], output['transformed_source'].detach().cpu().numpy()[0])
|
52
|
+
loss_val = ChamferDistanceLoss()(template, output['transformed_source'])
|
53
|
+
|
54
|
+
test_loss += loss_val.item()
|
55
|
+
count += 1
|
56
|
+
|
57
|
+
test_loss = float(test_loss)/count
|
58
|
+
return test_loss
|
59
|
+
|
60
|
+
def test(args, model, test_loader):
|
61
|
+
test_loss, test_accuracy = test_one_epoch(args.device, model, test_loader)
|
62
|
+
|
63
|
+
|
64
|
+
def options():
|
65
|
+
parser = argparse.ArgumentParser(description='Point Cloud Registration')
|
66
|
+
parser.add_argument('--exp_name', type=str, default='exp_ipcrnet', metavar='N',
|
67
|
+
help='Name of the experiment')
|
68
|
+
parser.add_argument('--dataset_path', type=str, default='ModelNet40',
|
69
|
+
metavar='PATH', help='path to the input dataset') # like '/path/to/ModelNet40'
|
70
|
+
parser.add_argument('--eval', type=bool, default=False, help='Train or Evaluate the network.')
|
71
|
+
|
72
|
+
# settings for input data
|
73
|
+
parser.add_argument('--dataset_type', default='modelnet', choices=['modelnet', 'shapenet2'],
|
74
|
+
metavar='DATASET', help='dataset type (default: modelnet)')
|
75
|
+
parser.add_argument('--num_points', default=1024, type=int,
|
76
|
+
metavar='N', help='points in point-cloud (default: 1024)')
|
77
|
+
|
78
|
+
# settings for PointNet
|
79
|
+
parser.add_argument('--emb_dims', default=1024, type=int,
|
80
|
+
metavar='K', help='dim. of the feature vector (default: 1024)')
|
81
|
+
parser.add_argument('--symfn', default='max', choices=['max', 'avg'],
|
82
|
+
help='symmetric function (default: max)')
|
83
|
+
|
84
|
+
# settings for on training
|
85
|
+
parser.add_argument('-j', '--workers', default=4, type=int,
|
86
|
+
metavar='N', help='number of data loading workers (default: 4)')
|
87
|
+
parser.add_argument('-b', '--batch_size', default=20, type=int,
|
88
|
+
metavar='N', help='mini-batch size (default: 32)')
|
89
|
+
parser.add_argument('--pretrained', default='learning3d/pretrained/exp_ipcrnet/models/best_model.t7', type=str,
|
90
|
+
metavar='PATH', help='path to pretrained model file (default: null (no-use))')
|
91
|
+
parser.add_argument('--device', default='cuda:0', type=str,
|
92
|
+
metavar='DEVICE', help='use CUDA if available')
|
93
|
+
|
94
|
+
args = parser.parse_args()
|
95
|
+
return args
|
96
|
+
|
97
|
+
def main():
|
98
|
+
args = options()
|
99
|
+
|
100
|
+
testset = RegistrationData('PCRNet', ModelNet40Data(train=False))
|
101
|
+
test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
|
102
|
+
|
103
|
+
if not torch.cuda.is_available():
|
104
|
+
args.device = 'cpu'
|
105
|
+
args.device = torch.device(args.device)
|
106
|
+
|
107
|
+
# Create PointNet Model.
|
108
|
+
ptnet = PointNet(emb_dims=args.emb_dims)
|
109
|
+
model = iPCRNet(feature_model=ptnet)
|
110
|
+
model = model.to(args.device)
|
111
|
+
|
112
|
+
if args.pretrained:
|
113
|
+
assert os.path.isfile(args.pretrained)
|
114
|
+
model.load_state_dict(torch.load(args.pretrained, map_location='cpu'))
|
115
|
+
model.to(args.device)
|
116
|
+
|
117
|
+
test(args, model, test_loader)
|
118
|
+
|
119
|
+
if __name__ == '__main__':
|
120
|
+
main()
|
@@ -0,0 +1,121 @@
|
|
1
|
+
import open3d as o3d
|
2
|
+
import argparse
|
3
|
+
import os
|
4
|
+
import sys
|
5
|
+
import logging
|
6
|
+
import numpy
|
7
|
+
import numpy as np
|
8
|
+
import torch
|
9
|
+
import torch.utils.data
|
10
|
+
import torchvision
|
11
|
+
from torch.utils.data import DataLoader
|
12
|
+
from tensorboardX import SummaryWriter
|
13
|
+
from tqdm import tqdm
|
14
|
+
|
15
|
+
# Only if the files are in example folder.
|
16
|
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
17
|
+
if BASE_DIR[-8:] == 'examples':
|
18
|
+
sys.path.append(os.path.join(BASE_DIR, os.pardir))
|
19
|
+
os.chdir(os.path.join(BASE_DIR, os.pardir))
|
20
|
+
|
21
|
+
from learning3d.models import PointNet, PointNetLK
|
22
|
+
from learning3d.losses import FrobeniusNormLoss, RMSEFeaturesLoss
|
23
|
+
from learning3d.data_utils import RegistrationData, ModelNet40Data
|
24
|
+
|
25
|
+
def display_open3d(template, source, transformed_source):
|
26
|
+
template_ = o3d.geometry.PointCloud()
|
27
|
+
source_ = o3d.geometry.PointCloud()
|
28
|
+
transformed_source_ = o3d.geometry.PointCloud()
|
29
|
+
template_.points = o3d.utility.Vector3dVector(template)
|
30
|
+
source_.points = o3d.utility.Vector3dVector(source + np.array([0,0,0]))
|
31
|
+
transformed_source_.points = o3d.utility.Vector3dVector(transformed_source)
|
32
|
+
template_.paint_uniform_color([1, 0, 0])
|
33
|
+
source_.paint_uniform_color([0, 1, 0])
|
34
|
+
transformed_source_.paint_uniform_color([0, 0, 1])
|
35
|
+
o3d.visualization.draw_geometries([template_, source_, transformed_source_])
|
36
|
+
|
37
|
+
def test_one_epoch(device, model, test_loader):
|
38
|
+
model.eval()
|
39
|
+
test_loss = 0.0
|
40
|
+
pred = 0.0
|
41
|
+
count = 0
|
42
|
+
for i, data in enumerate(tqdm(test_loader)):
|
43
|
+
template, source, igt = data
|
44
|
+
|
45
|
+
template = template.to(device)
|
46
|
+
source = source.to(device)
|
47
|
+
igt = igt.to(device)
|
48
|
+
|
49
|
+
output = model(template, source)
|
50
|
+
|
51
|
+
display_open3d(template.detach().cpu().numpy()[0], source.detach().cpu().numpy()[0], output['transformed_source'].detach().cpu().numpy()[0])
|
52
|
+
loss_val = FrobeniusNormLoss()(output['est_T'], igt) + RMSEFeaturesLoss()(output['r'])
|
53
|
+
|
54
|
+
test_loss += loss_val.item()
|
55
|
+
count += 1
|
56
|
+
|
57
|
+
test_loss = float(test_loss)/count
|
58
|
+
return test_loss
|
59
|
+
|
60
|
+
def test(args, model, test_loader):
|
61
|
+
test_loss, test_accuracy = test_one_epoch(args.device, model, test_loader)
|
62
|
+
|
63
|
+
|
64
|
+
def options():
|
65
|
+
parser = argparse.ArgumentParser(description='Point Cloud Registration')
|
66
|
+
parser.add_argument('--exp_name', type=str, default='exp_pnlk_v1', metavar='N',
|
67
|
+
help='Name of the experiment')
|
68
|
+
parser.add_argument('--dataset_path', type=str, default='ModelNet40',
|
69
|
+
metavar='PATH', help='path to the input dataset') # like '/path/to/ModelNet40'
|
70
|
+
parser.add_argument('--eval', type=bool, default=False, help='Train or Evaluate the network.')
|
71
|
+
|
72
|
+
# settings for input data
|
73
|
+
parser.add_argument('--dataset_type', default='modelnet', choices=['modelnet', 'shapenet2'],
|
74
|
+
metavar='DATASET', help='dataset type (default: modelnet)')
|
75
|
+
parser.add_argument('--num_points', default=1024, type=int,
|
76
|
+
metavar='N', help='points in point-cloud (default: 1024)')
|
77
|
+
|
78
|
+
# settings for PointNet
|
79
|
+
parser.add_argument('--emb_dims', default=1024, type=int,
|
80
|
+
metavar='K', help='dim. of the feature vector (default: 1024)')
|
81
|
+
parser.add_argument('--symfn', default='max', choices=['max', 'avg'],
|
82
|
+
help='symmetric function (default: max)')
|
83
|
+
|
84
|
+
# settings for on training
|
85
|
+
parser.add_argument('--seed', type=int, default=1234)
|
86
|
+
parser.add_argument('-j', '--workers', default=4, type=int,
|
87
|
+
metavar='N', help='number of data loading workers (default: 4)')
|
88
|
+
parser.add_argument('-b', '--batch_size', default=10, type=int,
|
89
|
+
metavar='N', help='mini-batch size (default: 32)')
|
90
|
+
parser.add_argument('--pretrained', default='learning3d/pretrained/exp_pnlk/models/best_model.t7', type=str,
|
91
|
+
metavar='PATH', help='path to pretrained model file (default: null (no-use))')
|
92
|
+
parser.add_argument('--device', default='cuda:0', type=str,
|
93
|
+
metavar='DEVICE', help='use CUDA if available')
|
94
|
+
|
95
|
+
args = parser.parse_args()
|
96
|
+
return args
|
97
|
+
|
98
|
+
def main():
|
99
|
+
args = options()
|
100
|
+
|
101
|
+
testset = RegistrationData('PointNetLK', ModelNet40Data(train=False))
|
102
|
+
test_loader = DataLoader(testset, batch_size=8, shuffle=False, drop_last=False, num_workers=args.workers)
|
103
|
+
|
104
|
+
if not torch.cuda.is_available():
|
105
|
+
args.device = 'cpu'
|
106
|
+
args.device = torch.device(args.device)
|
107
|
+
|
108
|
+
# Create PointNet Model.
|
109
|
+
ptnet = PointNet(emb_dims=args.emb_dims, use_bn=True)
|
110
|
+
model = PointNetLK(feature_model=ptnet)
|
111
|
+
model = model.to(args.device)
|
112
|
+
|
113
|
+
if args.pretrained:
|
114
|
+
assert os.path.isfile(args.pretrained)
|
115
|
+
model.load_state_dict(torch.load(args.pretrained, map_location='cpu'))
|
116
|
+
model.to(args.device)
|
117
|
+
|
118
|
+
test(args, model, test_loader)
|
119
|
+
|
120
|
+
if __name__ == '__main__':
|
121
|
+
main()
|
@@ -0,0 +1,126 @@
|
|
1
|
+
import open3d as o3d
|
2
|
+
import argparse
|
3
|
+
import os
|
4
|
+
import sys
|
5
|
+
import logging
|
6
|
+
import numpy
|
7
|
+
import numpy as np
|
8
|
+
import torch
|
9
|
+
import torch.utils.data
|
10
|
+
import torchvision
|
11
|
+
from torch.utils.data import DataLoader
|
12
|
+
from tensorboardX import SummaryWriter
|
13
|
+
from tqdm import tqdm
|
14
|
+
|
15
|
+
# Only if the files are in example folder.
|
16
|
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
17
|
+
if BASE_DIR[-8:] == 'examples':
|
18
|
+
sys.path.append(os.path.join(BASE_DIR, os.pardir))
|
19
|
+
os.chdir(os.path.join(BASE_DIR, os.pardir))
|
20
|
+
|
21
|
+
from learning3d.models import create_pointconv
|
22
|
+
from learning3d.models import Classifier
|
23
|
+
from learning3d.data_utils import ClassificationData, ModelNet40Data
|
24
|
+
|
25
|
+
def display_open3d(template):
|
26
|
+
template_ = o3d.geometry.PointCloud()
|
27
|
+
template_.points = o3d.utility.Vector3dVector(template)
|
28
|
+
# template_.paint_uniform_color([1, 0, 0])
|
29
|
+
o3d.visualization.draw_geometries([template_])
|
30
|
+
|
31
|
+
def test_one_epoch(device, model, test_loader, testset):
|
32
|
+
model.eval()
|
33
|
+
test_loss = 0.0
|
34
|
+
pred = 0.0
|
35
|
+
count = 0
|
36
|
+
for i, data in enumerate(tqdm(test_loader)):
|
37
|
+
points, target = data
|
38
|
+
target = target[:,0]
|
39
|
+
|
40
|
+
points = points.to(device)
|
41
|
+
target = target.to(device)
|
42
|
+
|
43
|
+
output = model(points)
|
44
|
+
loss_val = torch.nn.functional.nll_loss(
|
45
|
+
torch.nn.functional.log_softmax(output, dim=1), target, size_average=False)
|
46
|
+
print("Ground Truth Label: ", testset.get_shape(target[0].item()))
|
47
|
+
print("Predicted Label: ", testset.get_shape(torch.argmax(output[0]).item()))
|
48
|
+
display_open3d(points.detach().cpu().numpy()[0])
|
49
|
+
|
50
|
+
test_loss += loss_val.item()
|
51
|
+
count += output.size(0)
|
52
|
+
|
53
|
+
_, pred1 = output.max(dim=1)
|
54
|
+
ag = (pred1 == target)
|
55
|
+
am = ag.sum()
|
56
|
+
pred += am.item()
|
57
|
+
|
58
|
+
test_loss = float(test_loss)/count
|
59
|
+
accuracy = float(pred)/count
|
60
|
+
return test_loss, accuracy
|
61
|
+
|
62
|
+
def test(args, model, test_loader, testset):
|
63
|
+
test_loss, test_accuracy = test_one_epoch(args.device, model, test_loader, testset)
|
64
|
+
|
65
|
+
def options():
|
66
|
+
parser = argparse.ArgumentParser(description='Point Cloud Registration')
|
67
|
+
parser.add_argument('--dataset_path', type=str, default='ModelNet40',
|
68
|
+
metavar='PATH', help='path to the input dataset') # like '/path/to/ModelNet40'
|
69
|
+
parser.add_argument('--eval', type=bool, default=False, help='Train or Evaluate the network.')
|
70
|
+
|
71
|
+
# settings for input data
|
72
|
+
parser.add_argument('--dataset_type', default='modelnet', choices=['modelnet', 'shapenet2'],
|
73
|
+
metavar='DATASET', help='dataset type (default: modelnet)')
|
74
|
+
parser.add_argument('--num_points', default=1024, type=int,
|
75
|
+
metavar='N', help='points in point-cloud (default: 1024)')
|
76
|
+
|
77
|
+
# settings for PointNet
|
78
|
+
parser.add_argument('--pointnet', default='tune', type=str, choices=['fixed', 'tune'],
|
79
|
+
help='train pointnet (default: tune)')
|
80
|
+
parser.add_argument('-j', '--workers', default=4, type=int,
|
81
|
+
metavar='N', help='number of data loading workers (default: 4)')
|
82
|
+
parser.add_argument('-b', '--batch_size', default=32, type=int,
|
83
|
+
metavar='N', help='mini-batch size (default: 32)')
|
84
|
+
parser.add_argument('--emb_dims', default=1024, type=int,
|
85
|
+
metavar='K', help='dim. of the feature vector (default: 1024)')
|
86
|
+
parser.add_argument('--symfn', default='max', choices=['max', 'avg'],
|
87
|
+
help='symmetric function (default: max)')
|
88
|
+
|
89
|
+
# settings for on training
|
90
|
+
parser.add_argument('--pretrained', default='learning3d/pretrained/exp_classifier/models/best_model.t7', type=str,
|
91
|
+
metavar='PATH', help='path to pretrained model file (default: null (no-use))')
|
92
|
+
parser.add_argument('--device', default='cuda:0', type=str,
|
93
|
+
metavar='DEVICE', help='use CUDA if available')
|
94
|
+
|
95
|
+
args = parser.parse_args()
|
96
|
+
return args
|
97
|
+
|
98
|
+
def main():
|
99
|
+
args = options()
|
100
|
+
args.dataset_path = os.path.join(os.getcwd(), os.pardir, os.pardir, 'ModelNet40', 'ModelNet40')
|
101
|
+
|
102
|
+
testset = ClassificationData(ModelNet40Data(train=False))
|
103
|
+
test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
|
104
|
+
|
105
|
+
if not torch.cuda.is_available():
|
106
|
+
args.device = 'cpu'
|
107
|
+
args.device = torch.device(args.device)
|
108
|
+
|
109
|
+
# To use pretrained model provided by authors.
|
110
|
+
# PointConv = create_pointconv(classifier=True, pretrained='path of pretrained model.')
|
111
|
+
# model = PointConv(emb_dims=args.emb_dims, classifier=True, pretrained='path of pretrained model.')
|
112
|
+
|
113
|
+
# To use your own pretrained model.
|
114
|
+
PointConv = create_pointconv(classifier=False, pretrained=None)
|
115
|
+
ptconv = PointConv(emb_dims=args.emb_dims, classifier=True, pretrained=None)
|
116
|
+
model = Classifier(feature_model=ptconv)
|
117
|
+
|
118
|
+
if args.pretrained:
|
119
|
+
assert os.path.isfile(args.pretrained)
|
120
|
+
model.load_state_dict(torch.load(args.pretrained, map_location='cpu'))
|
121
|
+
model.to(args.device)
|
122
|
+
|
123
|
+
test(args, model, test_loader, testset)
|
124
|
+
|
125
|
+
if __name__ == '__main__':
|
126
|
+
main()
|