langroid 0.32.2__py3-none-any.whl → 0.33.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {langroid-0.32.2.dist-info → langroid-0.33.4.dist-info}/METADATA +149 -123
- langroid-0.33.4.dist-info/RECORD +7 -0
- {langroid-0.32.2.dist-info → langroid-0.33.4.dist-info}/WHEEL +1 -1
- langroid-0.33.4.dist-info/entry_points.txt +4 -0
- pyproject.toml +317 -212
- langroid/__init__.py +0 -106
- langroid/agent/__init__.py +0 -41
- langroid/agent/base.py +0 -1983
- langroid/agent/batch.py +0 -398
- langroid/agent/callbacks/__init__.py +0 -0
- langroid/agent/callbacks/chainlit.py +0 -598
- langroid/agent/chat_agent.py +0 -1899
- langroid/agent/chat_document.py +0 -454
- langroid/agent/openai_assistant.py +0 -882
- langroid/agent/special/__init__.py +0 -59
- langroid/agent/special/arangodb/__init__.py +0 -0
- langroid/agent/special/arangodb/arangodb_agent.py +0 -656
- langroid/agent/special/arangodb/system_messages.py +0 -186
- langroid/agent/special/arangodb/tools.py +0 -107
- langroid/agent/special/arangodb/utils.py +0 -36
- langroid/agent/special/doc_chat_agent.py +0 -1466
- langroid/agent/special/lance_doc_chat_agent.py +0 -262
- langroid/agent/special/lance_rag/__init__.py +0 -9
- langroid/agent/special/lance_rag/critic_agent.py +0 -198
- langroid/agent/special/lance_rag/lance_rag_task.py +0 -82
- langroid/agent/special/lance_rag/query_planner_agent.py +0 -260
- langroid/agent/special/lance_tools.py +0 -61
- langroid/agent/special/neo4j/__init__.py +0 -0
- langroid/agent/special/neo4j/csv_kg_chat.py +0 -174
- langroid/agent/special/neo4j/neo4j_chat_agent.py +0 -433
- langroid/agent/special/neo4j/system_messages.py +0 -120
- langroid/agent/special/neo4j/tools.py +0 -32
- langroid/agent/special/relevance_extractor_agent.py +0 -127
- langroid/agent/special/retriever_agent.py +0 -56
- langroid/agent/special/sql/__init__.py +0 -17
- langroid/agent/special/sql/sql_chat_agent.py +0 -654
- langroid/agent/special/sql/utils/__init__.py +0 -21
- langroid/agent/special/sql/utils/description_extractors.py +0 -190
- langroid/agent/special/sql/utils/populate_metadata.py +0 -85
- langroid/agent/special/sql/utils/system_message.py +0 -35
- langroid/agent/special/sql/utils/tools.py +0 -64
- langroid/agent/special/table_chat_agent.py +0 -263
- langroid/agent/task.py +0 -2095
- langroid/agent/tool_message.py +0 -393
- langroid/agent/tools/__init__.py +0 -38
- langroid/agent/tools/duckduckgo_search_tool.py +0 -50
- langroid/agent/tools/file_tools.py +0 -234
- langroid/agent/tools/google_search_tool.py +0 -39
- langroid/agent/tools/metaphor_search_tool.py +0 -67
- langroid/agent/tools/orchestration.py +0 -303
- langroid/agent/tools/recipient_tool.py +0 -235
- langroid/agent/tools/retrieval_tool.py +0 -32
- langroid/agent/tools/rewind_tool.py +0 -137
- langroid/agent/tools/segment_extract_tool.py +0 -41
- langroid/agent/xml_tool_message.py +0 -382
- langroid/cachedb/__init__.py +0 -17
- langroid/cachedb/base.py +0 -58
- langroid/cachedb/momento_cachedb.py +0 -108
- langroid/cachedb/redis_cachedb.py +0 -153
- langroid/embedding_models/__init__.py +0 -39
- langroid/embedding_models/base.py +0 -74
- langroid/embedding_models/models.py +0 -461
- langroid/embedding_models/protoc/__init__.py +0 -0
- langroid/embedding_models/protoc/embeddings.proto +0 -19
- langroid/embedding_models/protoc/embeddings_pb2.py +0 -33
- langroid/embedding_models/protoc/embeddings_pb2.pyi +0 -50
- langroid/embedding_models/protoc/embeddings_pb2_grpc.py +0 -79
- langroid/embedding_models/remote_embeds.py +0 -153
- langroid/exceptions.py +0 -65
- langroid/language_models/__init__.py +0 -53
- langroid/language_models/azure_openai.py +0 -153
- langroid/language_models/base.py +0 -678
- langroid/language_models/config.py +0 -18
- langroid/language_models/mock_lm.py +0 -124
- langroid/language_models/openai_gpt.py +0 -1964
- langroid/language_models/prompt_formatter/__init__.py +0 -16
- langroid/language_models/prompt_formatter/base.py +0 -40
- langroid/language_models/prompt_formatter/hf_formatter.py +0 -132
- langroid/language_models/prompt_formatter/llama2_formatter.py +0 -75
- langroid/language_models/utils.py +0 -151
- langroid/mytypes.py +0 -84
- langroid/parsing/__init__.py +0 -52
- langroid/parsing/agent_chats.py +0 -38
- langroid/parsing/code_parser.py +0 -121
- langroid/parsing/document_parser.py +0 -718
- langroid/parsing/para_sentence_split.py +0 -62
- langroid/parsing/parse_json.py +0 -155
- langroid/parsing/parser.py +0 -313
- langroid/parsing/repo_loader.py +0 -790
- langroid/parsing/routing.py +0 -36
- langroid/parsing/search.py +0 -275
- langroid/parsing/spider.py +0 -102
- langroid/parsing/table_loader.py +0 -94
- langroid/parsing/url_loader.py +0 -111
- langroid/parsing/urls.py +0 -273
- langroid/parsing/utils.py +0 -373
- langroid/parsing/web_search.py +0 -155
- langroid/prompts/__init__.py +0 -9
- langroid/prompts/dialog.py +0 -17
- langroid/prompts/prompts_config.py +0 -5
- langroid/prompts/templates.py +0 -141
- langroid/pydantic_v1/__init__.py +0 -10
- langroid/pydantic_v1/main.py +0 -4
- langroid/utils/__init__.py +0 -19
- langroid/utils/algorithms/__init__.py +0 -3
- langroid/utils/algorithms/graph.py +0 -103
- langroid/utils/configuration.py +0 -98
- langroid/utils/constants.py +0 -30
- langroid/utils/git_utils.py +0 -252
- langroid/utils/globals.py +0 -49
- langroid/utils/logging.py +0 -135
- langroid/utils/object_registry.py +0 -66
- langroid/utils/output/__init__.py +0 -20
- langroid/utils/output/citations.py +0 -41
- langroid/utils/output/printing.py +0 -99
- langroid/utils/output/status.py +0 -40
- langroid/utils/pandas_utils.py +0 -30
- langroid/utils/pydantic_utils.py +0 -602
- langroid/utils/system.py +0 -286
- langroid/utils/types.py +0 -93
- langroid/vector_store/__init__.py +0 -50
- langroid/vector_store/base.py +0 -357
- langroid/vector_store/chromadb.py +0 -214
- langroid/vector_store/lancedb.py +0 -401
- langroid/vector_store/meilisearch.py +0 -299
- langroid/vector_store/momento.py +0 -278
- langroid/vector_store/qdrantdb.py +0 -468
- langroid-0.32.2.dist-info/RECORD +0 -128
- {langroid-0.32.2.dist-info → langroid-0.33.4.dist-info/licenses}/LICENSE +0 -0
langroid/vector_store/lancedb.py
DELETED
@@ -1,401 +0,0 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
|
3
|
-
import logging
|
4
|
-
from typing import (
|
5
|
-
TYPE_CHECKING,
|
6
|
-
Any,
|
7
|
-
Dict,
|
8
|
-
Generator,
|
9
|
-
List,
|
10
|
-
Optional,
|
11
|
-
Sequence,
|
12
|
-
Tuple,
|
13
|
-
Type,
|
14
|
-
)
|
15
|
-
|
16
|
-
import pandas as pd
|
17
|
-
from dotenv import load_dotenv
|
18
|
-
|
19
|
-
from langroid.pydantic_v1 import BaseModel, ValidationError, create_model
|
20
|
-
|
21
|
-
if TYPE_CHECKING:
|
22
|
-
from lancedb.query import LanceVectorQueryBuilder
|
23
|
-
|
24
|
-
from langroid.embedding_models.base import (
|
25
|
-
EmbeddingModelsConfig,
|
26
|
-
)
|
27
|
-
from langroid.embedding_models.models import OpenAIEmbeddingsConfig
|
28
|
-
from langroid.exceptions import LangroidImportError
|
29
|
-
from langroid.mytypes import Document, EmbeddingFunction
|
30
|
-
from langroid.utils.configuration import settings
|
31
|
-
from langroid.utils.pydantic_utils import (
|
32
|
-
dataframe_to_document_model,
|
33
|
-
dataframe_to_documents,
|
34
|
-
)
|
35
|
-
from langroid.vector_store.base import VectorStore, VectorStoreConfig
|
36
|
-
|
37
|
-
try:
|
38
|
-
import lancedb
|
39
|
-
from lancedb.pydantic import LanceModel, Vector
|
40
|
-
|
41
|
-
has_lancedb = True
|
42
|
-
except ImportError:
|
43
|
-
has_lancedb = False
|
44
|
-
|
45
|
-
logger = logging.getLogger(__name__)
|
46
|
-
|
47
|
-
|
48
|
-
class LanceDBConfig(VectorStoreConfig):
|
49
|
-
cloud: bool = False
|
50
|
-
collection_name: str | None = "temp"
|
51
|
-
storage_path: str = ".lancedb/data"
|
52
|
-
embedding: EmbeddingModelsConfig = OpenAIEmbeddingsConfig()
|
53
|
-
distance: str = "cosine"
|
54
|
-
|
55
|
-
|
56
|
-
class LanceDB(VectorStore):
|
57
|
-
def __init__(self, config: LanceDBConfig = LanceDBConfig()):
|
58
|
-
super().__init__(config)
|
59
|
-
if not has_lancedb:
|
60
|
-
raise LangroidImportError("lancedb", "lancedb")
|
61
|
-
|
62
|
-
self.config: LanceDBConfig = config
|
63
|
-
self.embedding_fn: EmbeddingFunction = self.embedding_model.embedding_fn()
|
64
|
-
self.embedding_dim = self.embedding_model.embedding_dims
|
65
|
-
self.host = config.host
|
66
|
-
self.port = config.port
|
67
|
-
self.is_from_dataframe = False # were docs ingested from a dataframe?
|
68
|
-
self.df_metadata_columns: List[str] = [] # metadata columns from dataframe
|
69
|
-
|
70
|
-
load_dotenv()
|
71
|
-
if self.config.cloud:
|
72
|
-
logger.warning(
|
73
|
-
"LanceDB Cloud is not available yet. Switching to local storage."
|
74
|
-
)
|
75
|
-
config.cloud = False
|
76
|
-
else:
|
77
|
-
try:
|
78
|
-
self.client = lancedb.connect(
|
79
|
-
uri=config.storage_path,
|
80
|
-
)
|
81
|
-
except Exception as e:
|
82
|
-
new_storage_path = config.storage_path + ".new"
|
83
|
-
logger.warning(
|
84
|
-
f"""
|
85
|
-
Error connecting to local LanceDB at {config.storage_path}:
|
86
|
-
{e}
|
87
|
-
Switching to {new_storage_path}
|
88
|
-
"""
|
89
|
-
)
|
90
|
-
self.client = lancedb.connect(
|
91
|
-
uri=new_storage_path,
|
92
|
-
)
|
93
|
-
|
94
|
-
def clear_empty_collections(self) -> int:
|
95
|
-
coll_names = self.list_collections()
|
96
|
-
n_deletes = 0
|
97
|
-
for name in coll_names:
|
98
|
-
nr = self.client.open_table(name).head(1).shape[0]
|
99
|
-
if nr == 0:
|
100
|
-
n_deletes += 1
|
101
|
-
self.client.drop_table(name)
|
102
|
-
return n_deletes
|
103
|
-
|
104
|
-
def clear_all_collections(self, really: bool = False, prefix: str = "") -> int:
|
105
|
-
"""Clear all collections with the given prefix."""
|
106
|
-
if not really:
|
107
|
-
logger.warning("Not deleting all collections, set really=True to confirm")
|
108
|
-
return 0
|
109
|
-
coll_names = [
|
110
|
-
c for c in self.list_collections(empty=True) if c.startswith(prefix)
|
111
|
-
]
|
112
|
-
if len(coll_names) == 0:
|
113
|
-
logger.warning(f"No collections found with prefix {prefix}")
|
114
|
-
return 0
|
115
|
-
n_empty_deletes = 0
|
116
|
-
n_non_empty_deletes = 0
|
117
|
-
for name in coll_names:
|
118
|
-
nr = self.client.open_table(name).head(1).shape[0]
|
119
|
-
n_empty_deletes += nr == 0
|
120
|
-
n_non_empty_deletes += nr > 0
|
121
|
-
self.client.drop_table(name)
|
122
|
-
logger.warning(
|
123
|
-
f"""
|
124
|
-
Deleted {n_empty_deletes} empty collections and
|
125
|
-
{n_non_empty_deletes} non-empty collections.
|
126
|
-
"""
|
127
|
-
)
|
128
|
-
return n_empty_deletes + n_non_empty_deletes
|
129
|
-
|
130
|
-
def list_collections(self, empty: bool = False) -> List[str]:
|
131
|
-
"""
|
132
|
-
Returns:
|
133
|
-
List of collection names that have at least one vector.
|
134
|
-
|
135
|
-
Args:
|
136
|
-
empty (bool, optional): Whether to include empty collections.
|
137
|
-
"""
|
138
|
-
colls = self.client.table_names(limit=None)
|
139
|
-
if len(colls) == 0:
|
140
|
-
return []
|
141
|
-
if empty: # include empty tbls
|
142
|
-
return colls # type: ignore
|
143
|
-
counts = [self.client.open_table(coll).head(1).shape[0] for coll in colls]
|
144
|
-
return [coll for coll, count in zip(colls, counts) if count > 0]
|
145
|
-
|
146
|
-
def _create_lance_schema(self, doc_cls: Type[Document]) -> Type[BaseModel]:
|
147
|
-
"""
|
148
|
-
NOTE: NOT USED, but leaving it here as it may be useful.
|
149
|
-
|
150
|
-
Create a subclass of LanceModel with fields:
|
151
|
-
- id (str)
|
152
|
-
- Vector field that has dims equal to
|
153
|
-
the embedding dimension of the embedding model, and a data field of type
|
154
|
-
DocClass.
|
155
|
-
- other fields from doc_cls
|
156
|
-
|
157
|
-
Args:
|
158
|
-
doc_cls (Type[Document]): A Pydantic model which should be a subclass of
|
159
|
-
Document, to be used as the type for the data field.
|
160
|
-
|
161
|
-
Returns:
|
162
|
-
Type[BaseModel]: A new Pydantic model subclassing from LanceModel.
|
163
|
-
|
164
|
-
Raises:
|
165
|
-
ValueError: If `n` is not a non-negative integer or if `DocClass` is not a
|
166
|
-
subclass of Document.
|
167
|
-
"""
|
168
|
-
if not issubclass(doc_cls, Document):
|
169
|
-
raise ValueError("DocClass must be a subclass of Document")
|
170
|
-
|
171
|
-
if not has_lancedb:
|
172
|
-
raise LangroidImportError("lancedb", "lancedb")
|
173
|
-
|
174
|
-
n = self.embedding_dim
|
175
|
-
|
176
|
-
# Prepare fields for the new model
|
177
|
-
fields = {"id": (str, ...), "vector": (Vector(n), ...)}
|
178
|
-
|
179
|
-
sorted_fields = dict(
|
180
|
-
sorted(doc_cls.__fields__.items(), key=lambda item: item[0])
|
181
|
-
)
|
182
|
-
# Add both statically and dynamically defined fields from doc_cls
|
183
|
-
for field_name, field in sorted_fields.items():
|
184
|
-
fields[field_name] = (field.outer_type_, field.default)
|
185
|
-
|
186
|
-
# Create the new model with dynamic fields
|
187
|
-
NewModel = create_model(
|
188
|
-
"NewModel", __base__=LanceModel, **fields
|
189
|
-
) # type: ignore
|
190
|
-
return NewModel # type: ignore
|
191
|
-
|
192
|
-
def create_collection(self, collection_name: str, replace: bool = False) -> None:
|
193
|
-
self.config.replace_collection = replace
|
194
|
-
|
195
|
-
def add_documents(self, documents: Sequence[Document]) -> None:
|
196
|
-
super().maybe_add_ids(documents)
|
197
|
-
colls = self.list_collections(empty=True)
|
198
|
-
if len(documents) == 0:
|
199
|
-
return
|
200
|
-
embedding_vecs = self.embedding_fn([doc.content for doc in documents])
|
201
|
-
coll_name = self.config.collection_name
|
202
|
-
if coll_name is None:
|
203
|
-
raise ValueError("No collection name set, cannot ingest docs")
|
204
|
-
# self._maybe_set_doc_class_schema(documents[0])
|
205
|
-
table_exists = False
|
206
|
-
if (
|
207
|
-
coll_name in colls
|
208
|
-
and self.client.open_table(coll_name).head(1).shape[0] > 0
|
209
|
-
):
|
210
|
-
# collection exists and is not empty:
|
211
|
-
# if replace_collection is True, we'll overwrite the existing collection,
|
212
|
-
# else we'll append to it.
|
213
|
-
if self.config.replace_collection:
|
214
|
-
self.client.drop_table(coll_name)
|
215
|
-
else:
|
216
|
-
table_exists = True
|
217
|
-
|
218
|
-
ids = [str(d.id()) for d in documents]
|
219
|
-
# don't insert all at once, batch in chunks of b,
|
220
|
-
# else we get an API error
|
221
|
-
b = self.config.batch_size
|
222
|
-
|
223
|
-
def make_batches() -> Generator[List[Dict[str, Any]], None, None]:
|
224
|
-
for i in range(0, len(ids), b):
|
225
|
-
batch = [
|
226
|
-
dict(
|
227
|
-
id=ids[i + j],
|
228
|
-
vector=embedding_vecs[i + j],
|
229
|
-
**doc.dict(),
|
230
|
-
)
|
231
|
-
for j, doc in enumerate(documents[i : i + b])
|
232
|
-
]
|
233
|
-
yield batch
|
234
|
-
|
235
|
-
try:
|
236
|
-
if table_exists:
|
237
|
-
tbl = self.client.open_table(coll_name)
|
238
|
-
tbl.add(make_batches())
|
239
|
-
else:
|
240
|
-
batch_gen = make_batches()
|
241
|
-
batch = next(batch_gen)
|
242
|
-
# use first batch to create table...
|
243
|
-
tbl = self.client.create_table(
|
244
|
-
coll_name,
|
245
|
-
data=batch,
|
246
|
-
mode="create",
|
247
|
-
)
|
248
|
-
# ... and add the rest
|
249
|
-
tbl.add(batch_gen)
|
250
|
-
except Exception as e:
|
251
|
-
logger.error(
|
252
|
-
f"""
|
253
|
-
Error adding documents to LanceDB: {e}
|
254
|
-
POSSIBLE REMEDY: Delete the LancdDB storage directory
|
255
|
-
{self.config.storage_path} and try again.
|
256
|
-
"""
|
257
|
-
)
|
258
|
-
|
259
|
-
def add_dataframe(
|
260
|
-
self,
|
261
|
-
df: pd.DataFrame,
|
262
|
-
content: str = "content",
|
263
|
-
metadata: List[str] = [],
|
264
|
-
) -> None:
|
265
|
-
"""
|
266
|
-
Add a dataframe to the collection.
|
267
|
-
Args:
|
268
|
-
df (pd.DataFrame): A dataframe
|
269
|
-
content (str): The name of the column in the dataframe that contains the
|
270
|
-
text content to be embedded using the embedding model.
|
271
|
-
metadata (List[str]): A list of column names in the dataframe that contain
|
272
|
-
metadata to be stored in the database. Defaults to [].
|
273
|
-
"""
|
274
|
-
self.is_from_dataframe = True
|
275
|
-
actual_metadata = metadata.copy()
|
276
|
-
self.df_metadata_columns = actual_metadata # could be updated below
|
277
|
-
# get content column
|
278
|
-
content_values = df[content].values.tolist()
|
279
|
-
embedding_vecs = self.embedding_fn(content_values)
|
280
|
-
|
281
|
-
# add vector column
|
282
|
-
df["vector"] = embedding_vecs
|
283
|
-
if content != "content":
|
284
|
-
# rename content column to "content", leave existing column intact
|
285
|
-
df = df.rename(columns={content: "content"}, inplace=False)
|
286
|
-
|
287
|
-
if "id" not in df.columns:
|
288
|
-
docs = dataframe_to_documents(df, content="content", metadata=metadata)
|
289
|
-
ids = [str(d.id()) for d in docs]
|
290
|
-
df["id"] = ids
|
291
|
-
|
292
|
-
if "id" not in actual_metadata:
|
293
|
-
actual_metadata += ["id"]
|
294
|
-
|
295
|
-
colls = self.list_collections(empty=True)
|
296
|
-
coll_name = self.config.collection_name
|
297
|
-
if (
|
298
|
-
coll_name not in colls
|
299
|
-
or self.client.open_table(coll_name).head(1).shape[0] == 0
|
300
|
-
):
|
301
|
-
# collection either doesn't exist or is empty, so replace it
|
302
|
-
# and set new schema from df
|
303
|
-
self.client.create_table(
|
304
|
-
self.config.collection_name,
|
305
|
-
data=df,
|
306
|
-
mode="overwrite",
|
307
|
-
)
|
308
|
-
doc_cls = dataframe_to_document_model(
|
309
|
-
df,
|
310
|
-
content=content,
|
311
|
-
metadata=actual_metadata,
|
312
|
-
exclude=["vector"],
|
313
|
-
)
|
314
|
-
self.config.document_class = doc_cls # type: ignore
|
315
|
-
else:
|
316
|
-
# collection exists and is not empty, so append to it
|
317
|
-
tbl = self.client.open_table(self.config.collection_name)
|
318
|
-
tbl.add(df)
|
319
|
-
|
320
|
-
def delete_collection(self, collection_name: str) -> None:
|
321
|
-
self.client.drop_table(collection_name, ignore_missing=True)
|
322
|
-
|
323
|
-
def _lance_result_to_docs(
|
324
|
-
self, result: "LanceVectorQueryBuilder"
|
325
|
-
) -> List[Document]:
|
326
|
-
if self.is_from_dataframe:
|
327
|
-
df = result.to_pandas()
|
328
|
-
return dataframe_to_documents(
|
329
|
-
df,
|
330
|
-
content="content",
|
331
|
-
metadata=self.df_metadata_columns,
|
332
|
-
doc_cls=self.config.document_class,
|
333
|
-
)
|
334
|
-
else:
|
335
|
-
records = result.to_arrow().to_pylist()
|
336
|
-
return self._records_to_docs(records)
|
337
|
-
|
338
|
-
def _records_to_docs(self, records: List[Dict[str, Any]]) -> List[Document]:
|
339
|
-
try:
|
340
|
-
docs = [self.config.document_class(**rec) for rec in records]
|
341
|
-
except ValidationError as e:
|
342
|
-
raise ValueError(
|
343
|
-
f"""
|
344
|
-
Error validating LanceDB result: {e}
|
345
|
-
HINT: This could happen when you're re-using an
|
346
|
-
existing LanceDB store with a different schema.
|
347
|
-
Try deleting your local lancedb storage at `{self.config.storage_path}`
|
348
|
-
re-ingesting your documents and/or replacing the collections.
|
349
|
-
"""
|
350
|
-
)
|
351
|
-
return docs
|
352
|
-
|
353
|
-
def get_all_documents(self, where: str = "") -> List[Document]:
|
354
|
-
if self.config.collection_name is None:
|
355
|
-
raise ValueError("No collection name set, cannot retrieve docs")
|
356
|
-
tbl = self.client.open_table(self.config.collection_name)
|
357
|
-
pre_result = tbl.search(None).where(where or None).limit(None)
|
358
|
-
return self._lance_result_to_docs(pre_result)
|
359
|
-
|
360
|
-
def get_documents_by_ids(self, ids: List[str]) -> List[Document]:
|
361
|
-
if self.config.collection_name is None:
|
362
|
-
raise ValueError("No collection name set, cannot retrieve docs")
|
363
|
-
_ids = [str(id) for id in ids]
|
364
|
-
tbl = self.client.open_table(self.config.collection_name)
|
365
|
-
docs = []
|
366
|
-
for _id in _ids:
|
367
|
-
results = self._lance_result_to_docs(tbl.search().where(f"id == '{_id}'"))
|
368
|
-
if len(results) > 0:
|
369
|
-
docs.append(results[0])
|
370
|
-
return docs
|
371
|
-
|
372
|
-
def similar_texts_with_scores(
|
373
|
-
self,
|
374
|
-
text: str,
|
375
|
-
k: int = 1,
|
376
|
-
where: Optional[str] = None,
|
377
|
-
) -> List[Tuple[Document, float]]:
|
378
|
-
embedding = self.embedding_fn([text])[0]
|
379
|
-
tbl = self.client.open_table(self.config.collection_name)
|
380
|
-
result = (
|
381
|
-
tbl.search(embedding)
|
382
|
-
.metric(self.config.distance)
|
383
|
-
.where(where, prefilter=True)
|
384
|
-
.limit(k)
|
385
|
-
)
|
386
|
-
docs = self._lance_result_to_docs(result)
|
387
|
-
# note _distance is 1 - cosine
|
388
|
-
if self.is_from_dataframe:
|
389
|
-
scores = [
|
390
|
-
1 - rec["_distance"] for rec in result.to_pandas().to_dict("records")
|
391
|
-
]
|
392
|
-
else:
|
393
|
-
scores = [1 - rec["_distance"] for rec in result.to_arrow().to_pylist()]
|
394
|
-
if len(docs) == 0:
|
395
|
-
logger.warning(f"No matches found for {text}")
|
396
|
-
return []
|
397
|
-
if settings.debug:
|
398
|
-
logger.info(f"Found {len(docs)} matches, max score: {max(scores)}")
|
399
|
-
doc_score_pairs = list(zip(docs, scores))
|
400
|
-
self.show_if_debug(doc_score_pairs)
|
401
|
-
return doc_score_pairs
|
@@ -1,299 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
MeiliSearch as a pure document store, without its
|
3
|
-
(experimental) vector-store functionality.
|
4
|
-
We aim to use MeiliSearch for fast lexical search.
|
5
|
-
Note that what we call "Collection" in Langroid is referred to as
|
6
|
-
"Index" in MeiliSearch. Each data-store has its own terminology,
|
7
|
-
but for uniformity we use the Langroid terminology here.
|
8
|
-
"""
|
9
|
-
|
10
|
-
from __future__ import annotations
|
11
|
-
|
12
|
-
import asyncio
|
13
|
-
import logging
|
14
|
-
import os
|
15
|
-
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Sequence, Tuple
|
16
|
-
|
17
|
-
from dotenv import load_dotenv
|
18
|
-
|
19
|
-
if TYPE_CHECKING:
|
20
|
-
from meilisearch_python_sdk.index import AsyncIndex
|
21
|
-
from meilisearch_python_sdk.models.documents import DocumentsInfo
|
22
|
-
|
23
|
-
|
24
|
-
from langroid.exceptions import LangroidImportError
|
25
|
-
from langroid.mytypes import DocMetaData, Document
|
26
|
-
from langroid.utils.configuration import settings
|
27
|
-
from langroid.vector_store.base import VectorStore, VectorStoreConfig
|
28
|
-
|
29
|
-
logger = logging.getLogger(__name__)
|
30
|
-
|
31
|
-
|
32
|
-
class MeiliSearchConfig(VectorStoreConfig):
|
33
|
-
cloud: bool = False
|
34
|
-
collection_name: str | None = None
|
35
|
-
primary_key: str = "id"
|
36
|
-
port = 7700
|
37
|
-
|
38
|
-
|
39
|
-
class MeiliSearch(VectorStore):
|
40
|
-
def __init__(self, config: MeiliSearchConfig = MeiliSearchConfig()):
|
41
|
-
super().__init__(config)
|
42
|
-
try:
|
43
|
-
import meilisearch_python_sdk as meilisearch
|
44
|
-
except ImportError:
|
45
|
-
raise LangroidImportError("meilisearch", "meilisearch")
|
46
|
-
|
47
|
-
self.config: MeiliSearchConfig = config
|
48
|
-
self.host = config.host
|
49
|
-
self.port = config.port
|
50
|
-
load_dotenv()
|
51
|
-
self.key = os.getenv("MEILISEARCH_API_KEY") or "masterKey"
|
52
|
-
self.url = os.getenv("MEILISEARCH_API_URL") or f"http://{self.host}:{self.port}"
|
53
|
-
if config.cloud and None in [self.key, self.url]:
|
54
|
-
logger.warning(
|
55
|
-
f"""MEILISEARCH_API_KEY, MEILISEARCH_API_URL env variable must be set
|
56
|
-
to use MeiliSearch in cloud mode. Please set these values
|
57
|
-
in your .env file. Switching to local MeiliSearch at
|
58
|
-
{self.url}
|
59
|
-
"""
|
60
|
-
)
|
61
|
-
config.cloud = False
|
62
|
-
|
63
|
-
self.client: Callable[[], meilisearch.AsyncClient] = lambda: (
|
64
|
-
meilisearch.AsyncClient(url=self.url, api_key=self.key)
|
65
|
-
)
|
66
|
-
|
67
|
-
# Note: Only create collection if a non-null collection name is provided.
|
68
|
-
# This is useful to delay creation of db until we have a suitable
|
69
|
-
# collection name (e.g. we could get it from the url or folder path).
|
70
|
-
if config.collection_name is not None:
|
71
|
-
self.create_collection(
|
72
|
-
config.collection_name, replace=config.replace_collection
|
73
|
-
)
|
74
|
-
|
75
|
-
def clear_empty_collections(self) -> int:
|
76
|
-
"""All collections are treated as non-empty in MeiliSearch, so this is a
|
77
|
-
no-op"""
|
78
|
-
return 0
|
79
|
-
|
80
|
-
async def _async_delete_indices(self, uids: List[str]) -> List[bool]:
|
81
|
-
"""Delete any indicecs in `uids` that exist.
|
82
|
-
Returns list of bools indicating whether the index has been deleted"""
|
83
|
-
async with self.client() as client:
|
84
|
-
result = await asyncio.gather(
|
85
|
-
*[client.delete_index_if_exists(uid=uid) for uid in uids]
|
86
|
-
)
|
87
|
-
return result
|
88
|
-
|
89
|
-
def clear_all_collections(self, really: bool = False, prefix: str = "") -> int:
|
90
|
-
"""Delete all indices whose names start with `prefix`"""
|
91
|
-
if not really:
|
92
|
-
logger.warning("Not deleting all collections, set really=True to confirm")
|
93
|
-
return 0
|
94
|
-
coll_names = [c for c in self.list_collections() if c.startswith(prefix)]
|
95
|
-
deletes = asyncio.run(self._async_delete_indices(coll_names))
|
96
|
-
n_deletes = sum(deletes)
|
97
|
-
logger.warning(f"Deleted {n_deletes} indices in MeiliSearch")
|
98
|
-
return n_deletes
|
99
|
-
|
100
|
-
def _list_all_collections(self) -> List[str]:
|
101
|
-
"""
|
102
|
-
List all collections, including empty ones.
|
103
|
-
Returns:
|
104
|
-
List of collection names.
|
105
|
-
"""
|
106
|
-
return self.list_collections()
|
107
|
-
|
108
|
-
async def _async_get_indexes(self) -> List[AsyncIndex]:
|
109
|
-
async with self.client() as client:
|
110
|
-
indexes = await client.get_indexes(limit=10_000)
|
111
|
-
return [] if indexes is None else indexes # type: ignore
|
112
|
-
|
113
|
-
async def _async_get_index(self, index_uid: str) -> "AsyncIndex":
|
114
|
-
async with self.client() as client:
|
115
|
-
index = await client.get_index(index_uid)
|
116
|
-
return index # type: ignore
|
117
|
-
|
118
|
-
def list_collections(self, empty: bool = False) -> List[str]:
|
119
|
-
"""
|
120
|
-
Returns:
|
121
|
-
List of index names stored. We treat any existing index as non-empty.
|
122
|
-
"""
|
123
|
-
indexes = asyncio.run(self._async_get_indexes())
|
124
|
-
if len(indexes) == 0:
|
125
|
-
return []
|
126
|
-
else:
|
127
|
-
return [ind.uid for ind in indexes]
|
128
|
-
|
129
|
-
async def _async_create_index(self, collection_name: str) -> "AsyncIndex":
|
130
|
-
async with self.client() as client:
|
131
|
-
index = await client.create_index(
|
132
|
-
uid=collection_name,
|
133
|
-
primary_key=self.config.primary_key,
|
134
|
-
)
|
135
|
-
return index
|
136
|
-
|
137
|
-
async def _async_delete_index(self, collection_name: str) -> bool:
|
138
|
-
"""Delete index if it exists. Returns True iff index was deleted"""
|
139
|
-
async with self.client() as client:
|
140
|
-
result = await client.delete_index_if_exists(uid=collection_name)
|
141
|
-
return result # type: ignore
|
142
|
-
|
143
|
-
def create_collection(self, collection_name: str, replace: bool = False) -> None:
|
144
|
-
"""
|
145
|
-
Create a collection with the given name, optionally replacing an existing
|
146
|
-
collection if `replace` is True.
|
147
|
-
Args:
|
148
|
-
collection_name (str): Name of the collection to create.
|
149
|
-
replace (bool): Whether to replace an existing collection
|
150
|
-
with the same name. Defaults to False.
|
151
|
-
"""
|
152
|
-
self.config.collection_name = collection_name
|
153
|
-
collections = self.list_collections()
|
154
|
-
if collection_name in collections:
|
155
|
-
logger.warning(
|
156
|
-
f"MeiliSearch Non-empty Index {collection_name} already exists"
|
157
|
-
)
|
158
|
-
if not replace:
|
159
|
-
logger.warning("Not replacing collection")
|
160
|
-
return
|
161
|
-
else:
|
162
|
-
logger.warning("Recreating fresh collection")
|
163
|
-
asyncio.run(self._async_delete_index(collection_name))
|
164
|
-
asyncio.run(self._async_create_index(collection_name))
|
165
|
-
collection_info = asyncio.run(self._async_get_index(collection_name))
|
166
|
-
if settings.debug:
|
167
|
-
level = logger.getEffectiveLevel()
|
168
|
-
logger.setLevel(logging.INFO)
|
169
|
-
logger.info(collection_info)
|
170
|
-
logger.setLevel(level)
|
171
|
-
|
172
|
-
async def _async_add_documents(
|
173
|
-
self, collection_name: str, documents: Sequence[Dict[str, Any]]
|
174
|
-
) -> None:
|
175
|
-
async with self.client() as client:
|
176
|
-
index = client.index(collection_name)
|
177
|
-
await index.add_documents_in_batches(
|
178
|
-
documents=documents,
|
179
|
-
batch_size=self.config.batch_size,
|
180
|
-
primary_key=self.config.primary_key,
|
181
|
-
)
|
182
|
-
|
183
|
-
def add_documents(self, documents: Sequence[Document]) -> None:
|
184
|
-
super().maybe_add_ids(documents)
|
185
|
-
if len(documents) == 0:
|
186
|
-
return
|
187
|
-
colls = self._list_all_collections()
|
188
|
-
if self.config.collection_name is None:
|
189
|
-
raise ValueError("No collection name set, cannot ingest docs")
|
190
|
-
if self.config.collection_name not in colls:
|
191
|
-
self.create_collection(self.config.collection_name, replace=True)
|
192
|
-
docs = [
|
193
|
-
dict(
|
194
|
-
id=d.id(),
|
195
|
-
content=d.content,
|
196
|
-
metadata=d.metadata.dict(),
|
197
|
-
)
|
198
|
-
for d in documents
|
199
|
-
]
|
200
|
-
asyncio.run(self._async_add_documents(self.config.collection_name, docs))
|
201
|
-
|
202
|
-
def delete_collection(self, collection_name: str) -> None:
|
203
|
-
asyncio.run(self._async_delete_index(collection_name))
|
204
|
-
|
205
|
-
def _to_int_or_uuid(self, id: str) -> int | str:
|
206
|
-
try:
|
207
|
-
return int(id)
|
208
|
-
except ValueError:
|
209
|
-
return id
|
210
|
-
|
211
|
-
async def _async_get_documents(self, where: str = "") -> "DocumentsInfo":
|
212
|
-
if self.config.collection_name is None:
|
213
|
-
raise ValueError("No collection name set, cannot retrieve docs")
|
214
|
-
filter = [] if where is None else where
|
215
|
-
async with self.client() as client:
|
216
|
-
index = client.index(self.config.collection_name)
|
217
|
-
documents = await index.get_documents(limit=10_000, filter=filter)
|
218
|
-
return documents
|
219
|
-
|
220
|
-
def get_all_documents(self, where: str = "") -> List[Document]:
|
221
|
-
if self.config.collection_name is None:
|
222
|
-
raise ValueError("No collection name set, cannot retrieve docs")
|
223
|
-
docs = asyncio.run(self._async_get_documents(where))
|
224
|
-
if docs is None:
|
225
|
-
return []
|
226
|
-
doc_results = docs.results
|
227
|
-
return [
|
228
|
-
Document(
|
229
|
-
content=d["content"],
|
230
|
-
metadata=DocMetaData(**d["metadata"]),
|
231
|
-
)
|
232
|
-
for d in doc_results
|
233
|
-
]
|
234
|
-
|
235
|
-
async def _async_get_documents_by_ids(self, ids: List[str]) -> List[Dict[str, Any]]:
|
236
|
-
if self.config.collection_name is None:
|
237
|
-
raise ValueError("No collection name set, cannot retrieve docs")
|
238
|
-
async with self.client() as client:
|
239
|
-
index = client.index(self.config.collection_name)
|
240
|
-
documents = await asyncio.gather(*[index.get_document(id) for id in ids])
|
241
|
-
return documents
|
242
|
-
|
243
|
-
def get_documents_by_ids(self, ids: List[str]) -> List[Document]:
|
244
|
-
if self.config.collection_name is None:
|
245
|
-
raise ValueError("No collection name set, cannot retrieve docs")
|
246
|
-
docs = asyncio.run(self._async_get_documents_by_ids(ids))
|
247
|
-
return [
|
248
|
-
Document(
|
249
|
-
content=d["content"],
|
250
|
-
metadata=DocMetaData(**d["metadata"]),
|
251
|
-
)
|
252
|
-
for d in docs
|
253
|
-
]
|
254
|
-
|
255
|
-
async def _async_search(
|
256
|
-
self,
|
257
|
-
query: str,
|
258
|
-
k: int = 20,
|
259
|
-
filter: str | list[str | list[str]] | None = None,
|
260
|
-
) -> List[Dict[str, Any]]:
|
261
|
-
if self.config.collection_name is None:
|
262
|
-
raise ValueError("No collection name set, cannot search")
|
263
|
-
async with self.client() as client:
|
264
|
-
index = client.index(self.config.collection_name)
|
265
|
-
results = await index.search(
|
266
|
-
query,
|
267
|
-
limit=k,
|
268
|
-
show_ranking_score=True,
|
269
|
-
filter=filter,
|
270
|
-
)
|
271
|
-
return results.hits # type: ignore
|
272
|
-
|
273
|
-
def similar_texts_with_scores(
|
274
|
-
self,
|
275
|
-
text: str,
|
276
|
-
k: int = 20,
|
277
|
-
where: Optional[str] = None,
|
278
|
-
neighbors: int = 0, # ignored
|
279
|
-
) -> List[Tuple[Document, float]]:
|
280
|
-
filter = [] if where is None else where
|
281
|
-
if self.config.collection_name is None:
|
282
|
-
raise ValueError("No collection name set, cannot search")
|
283
|
-
_docs = asyncio.run(self._async_search(text, k, filter)) # type: ignore
|
284
|
-
if len(_docs) == 0:
|
285
|
-
logger.warning(f"No matches found for {text}")
|
286
|
-
return []
|
287
|
-
scores = [h["_rankingScore"] for h in _docs]
|
288
|
-
if settings.debug:
|
289
|
-
logger.info(f"Found {len(_docs)} matches, max score: {max(scores)}")
|
290
|
-
docs = [
|
291
|
-
Document(
|
292
|
-
content=d["content"],
|
293
|
-
metadata=DocMetaData(**d["metadata"]),
|
294
|
-
)
|
295
|
-
for d in _docs
|
296
|
-
]
|
297
|
-
doc_score_pairs = list(zip(docs, scores))
|
298
|
-
self.show_if_debug(doc_score_pairs)
|
299
|
-
return doc_score_pairs
|