langroid 0.32.2__py3-none-any.whl → 0.33.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {langroid-0.32.2.dist-info → langroid-0.33.4.dist-info}/METADATA +149 -123
- langroid-0.33.4.dist-info/RECORD +7 -0
- {langroid-0.32.2.dist-info → langroid-0.33.4.dist-info}/WHEEL +1 -1
- langroid-0.33.4.dist-info/entry_points.txt +4 -0
- pyproject.toml +317 -212
- langroid/__init__.py +0 -106
- langroid/agent/__init__.py +0 -41
- langroid/agent/base.py +0 -1983
- langroid/agent/batch.py +0 -398
- langroid/agent/callbacks/__init__.py +0 -0
- langroid/agent/callbacks/chainlit.py +0 -598
- langroid/agent/chat_agent.py +0 -1899
- langroid/agent/chat_document.py +0 -454
- langroid/agent/openai_assistant.py +0 -882
- langroid/agent/special/__init__.py +0 -59
- langroid/agent/special/arangodb/__init__.py +0 -0
- langroid/agent/special/arangodb/arangodb_agent.py +0 -656
- langroid/agent/special/arangodb/system_messages.py +0 -186
- langroid/agent/special/arangodb/tools.py +0 -107
- langroid/agent/special/arangodb/utils.py +0 -36
- langroid/agent/special/doc_chat_agent.py +0 -1466
- langroid/agent/special/lance_doc_chat_agent.py +0 -262
- langroid/agent/special/lance_rag/__init__.py +0 -9
- langroid/agent/special/lance_rag/critic_agent.py +0 -198
- langroid/agent/special/lance_rag/lance_rag_task.py +0 -82
- langroid/agent/special/lance_rag/query_planner_agent.py +0 -260
- langroid/agent/special/lance_tools.py +0 -61
- langroid/agent/special/neo4j/__init__.py +0 -0
- langroid/agent/special/neo4j/csv_kg_chat.py +0 -174
- langroid/agent/special/neo4j/neo4j_chat_agent.py +0 -433
- langroid/agent/special/neo4j/system_messages.py +0 -120
- langroid/agent/special/neo4j/tools.py +0 -32
- langroid/agent/special/relevance_extractor_agent.py +0 -127
- langroid/agent/special/retriever_agent.py +0 -56
- langroid/agent/special/sql/__init__.py +0 -17
- langroid/agent/special/sql/sql_chat_agent.py +0 -654
- langroid/agent/special/sql/utils/__init__.py +0 -21
- langroid/agent/special/sql/utils/description_extractors.py +0 -190
- langroid/agent/special/sql/utils/populate_metadata.py +0 -85
- langroid/agent/special/sql/utils/system_message.py +0 -35
- langroid/agent/special/sql/utils/tools.py +0 -64
- langroid/agent/special/table_chat_agent.py +0 -263
- langroid/agent/task.py +0 -2095
- langroid/agent/tool_message.py +0 -393
- langroid/agent/tools/__init__.py +0 -38
- langroid/agent/tools/duckduckgo_search_tool.py +0 -50
- langroid/agent/tools/file_tools.py +0 -234
- langroid/agent/tools/google_search_tool.py +0 -39
- langroid/agent/tools/metaphor_search_tool.py +0 -67
- langroid/agent/tools/orchestration.py +0 -303
- langroid/agent/tools/recipient_tool.py +0 -235
- langroid/agent/tools/retrieval_tool.py +0 -32
- langroid/agent/tools/rewind_tool.py +0 -137
- langroid/agent/tools/segment_extract_tool.py +0 -41
- langroid/agent/xml_tool_message.py +0 -382
- langroid/cachedb/__init__.py +0 -17
- langroid/cachedb/base.py +0 -58
- langroid/cachedb/momento_cachedb.py +0 -108
- langroid/cachedb/redis_cachedb.py +0 -153
- langroid/embedding_models/__init__.py +0 -39
- langroid/embedding_models/base.py +0 -74
- langroid/embedding_models/models.py +0 -461
- langroid/embedding_models/protoc/__init__.py +0 -0
- langroid/embedding_models/protoc/embeddings.proto +0 -19
- langroid/embedding_models/protoc/embeddings_pb2.py +0 -33
- langroid/embedding_models/protoc/embeddings_pb2.pyi +0 -50
- langroid/embedding_models/protoc/embeddings_pb2_grpc.py +0 -79
- langroid/embedding_models/remote_embeds.py +0 -153
- langroid/exceptions.py +0 -65
- langroid/language_models/__init__.py +0 -53
- langroid/language_models/azure_openai.py +0 -153
- langroid/language_models/base.py +0 -678
- langroid/language_models/config.py +0 -18
- langroid/language_models/mock_lm.py +0 -124
- langroid/language_models/openai_gpt.py +0 -1964
- langroid/language_models/prompt_formatter/__init__.py +0 -16
- langroid/language_models/prompt_formatter/base.py +0 -40
- langroid/language_models/prompt_formatter/hf_formatter.py +0 -132
- langroid/language_models/prompt_formatter/llama2_formatter.py +0 -75
- langroid/language_models/utils.py +0 -151
- langroid/mytypes.py +0 -84
- langroid/parsing/__init__.py +0 -52
- langroid/parsing/agent_chats.py +0 -38
- langroid/parsing/code_parser.py +0 -121
- langroid/parsing/document_parser.py +0 -718
- langroid/parsing/para_sentence_split.py +0 -62
- langroid/parsing/parse_json.py +0 -155
- langroid/parsing/parser.py +0 -313
- langroid/parsing/repo_loader.py +0 -790
- langroid/parsing/routing.py +0 -36
- langroid/parsing/search.py +0 -275
- langroid/parsing/spider.py +0 -102
- langroid/parsing/table_loader.py +0 -94
- langroid/parsing/url_loader.py +0 -111
- langroid/parsing/urls.py +0 -273
- langroid/parsing/utils.py +0 -373
- langroid/parsing/web_search.py +0 -155
- langroid/prompts/__init__.py +0 -9
- langroid/prompts/dialog.py +0 -17
- langroid/prompts/prompts_config.py +0 -5
- langroid/prompts/templates.py +0 -141
- langroid/pydantic_v1/__init__.py +0 -10
- langroid/pydantic_v1/main.py +0 -4
- langroid/utils/__init__.py +0 -19
- langroid/utils/algorithms/__init__.py +0 -3
- langroid/utils/algorithms/graph.py +0 -103
- langroid/utils/configuration.py +0 -98
- langroid/utils/constants.py +0 -30
- langroid/utils/git_utils.py +0 -252
- langroid/utils/globals.py +0 -49
- langroid/utils/logging.py +0 -135
- langroid/utils/object_registry.py +0 -66
- langroid/utils/output/__init__.py +0 -20
- langroid/utils/output/citations.py +0 -41
- langroid/utils/output/printing.py +0 -99
- langroid/utils/output/status.py +0 -40
- langroid/utils/pandas_utils.py +0 -30
- langroid/utils/pydantic_utils.py +0 -602
- langroid/utils/system.py +0 -286
- langroid/utils/types.py +0 -93
- langroid/vector_store/__init__.py +0 -50
- langroid/vector_store/base.py +0 -357
- langroid/vector_store/chromadb.py +0 -214
- langroid/vector_store/lancedb.py +0 -401
- langroid/vector_store/meilisearch.py +0 -299
- langroid/vector_store/momento.py +0 -278
- langroid/vector_store/qdrantdb.py +0 -468
- langroid-0.32.2.dist-info/RECORD +0 -128
- {langroid-0.32.2.dist-info → langroid-0.33.4.dist-info/licenses}/LICENSE +0 -0
@@ -1,262 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
LanceDocChatAgent is a subclass of DocChatAgent that uses LanceDB as a vector store:
|
3
|
-
- Uses the DocChatAgentConfig.filter variable
|
4
|
-
(a sql string) in the `where` clause to do filtered vector search.
|
5
|
-
- Overrides the get_similar_chunks_bm25() to use LanceDB FTS (Full Text Search).
|
6
|
-
|
7
|
-
For usage see:
|
8
|
-
- `tests/main/test_lance_doc_chat_agent.py`.
|
9
|
-
- example script `examples/docqa/lance_rag.py`.
|
10
|
-
|
11
|
-
"""
|
12
|
-
|
13
|
-
import json
|
14
|
-
import logging
|
15
|
-
from typing import Any, Dict, List, Tuple
|
16
|
-
|
17
|
-
import pandas as pd
|
18
|
-
|
19
|
-
from langroid.agent.special.doc_chat_agent import DocChatAgent, DocChatAgentConfig
|
20
|
-
from langroid.agent.special.lance_tools import AnswerTool, QueryPlanTool
|
21
|
-
from langroid.agent.tools.orchestration import AgentDoneTool
|
22
|
-
from langroid.mytypes import DocMetaData, Document
|
23
|
-
from langroid.parsing.table_loader import describe_dataframe
|
24
|
-
from langroid.utils.constants import NO_ANSWER
|
25
|
-
from langroid.utils.pydantic_utils import (
|
26
|
-
dataframe_to_documents,
|
27
|
-
)
|
28
|
-
from langroid.vector_store.lancedb import LanceDB
|
29
|
-
|
30
|
-
logger = logging.getLogger(__name__)
|
31
|
-
|
32
|
-
|
33
|
-
class LanceDocChatAgent(DocChatAgent):
|
34
|
-
vecdb: LanceDB
|
35
|
-
|
36
|
-
def __init__(self, cfg: DocChatAgentConfig):
|
37
|
-
super().__init__(cfg)
|
38
|
-
self.config: DocChatAgentConfig = cfg
|
39
|
-
self.enable_message(QueryPlanTool, use=False, handle=True)
|
40
|
-
|
41
|
-
def _get_clean_vecdb_schema(self) -> str:
|
42
|
-
"""Get a cleaned schema of the vector-db, to pass to the LLM
|
43
|
-
as part of instructions on how to generate a SQL filter."""
|
44
|
-
|
45
|
-
tbl_pandas = (
|
46
|
-
self.vecdb.client.open_table(self.vecdb.config.collection_name)
|
47
|
-
.search()
|
48
|
-
.limit(1)
|
49
|
-
.to_pandas(flatten=True)
|
50
|
-
)
|
51
|
-
if len(self.config.filter_fields) == 0:
|
52
|
-
filterable_fields = tbl_pandas.columns.tolist()
|
53
|
-
# drop id, vector, metadata.id, metadata.window_ids, metadata.is_chunk
|
54
|
-
filterable_fields = list(
|
55
|
-
set(filterable_fields)
|
56
|
-
- {
|
57
|
-
"id",
|
58
|
-
"vector",
|
59
|
-
"metadata.id",
|
60
|
-
"metadata.window_ids",
|
61
|
-
"metadata.is_chunk",
|
62
|
-
}
|
63
|
-
)
|
64
|
-
logger.warning(
|
65
|
-
f"""
|
66
|
-
No filter_fields set in config, so using these fields as filterable fields:
|
67
|
-
{filterable_fields}
|
68
|
-
"""
|
69
|
-
)
|
70
|
-
self.config.filter_fields = filterable_fields
|
71
|
-
|
72
|
-
if self.from_dataframe:
|
73
|
-
return self.df_description
|
74
|
-
filter_fields_set = set(self.config.filter_fields)
|
75
|
-
|
76
|
-
# remove 'content' from filter_fields_set, even if it's not in filter_fields_set
|
77
|
-
filter_fields_set.discard("content")
|
78
|
-
|
79
|
-
# possible values of filterable fields
|
80
|
-
filter_field_values = self.get_field_values(list(filter_fields_set))
|
81
|
-
|
82
|
-
schema_dict: Dict[str, Dict[str, Any]] = dict(
|
83
|
-
(field, {}) for field in filter_fields_set
|
84
|
-
)
|
85
|
-
# add field values to schema_dict as another field `values` for each field
|
86
|
-
for field, values in filter_field_values.items():
|
87
|
-
schema_dict[field]["values"] = values
|
88
|
-
dtype = tbl_pandas[field].dtype.name
|
89
|
-
schema_dict[field]["dtype"] = dtype
|
90
|
-
# if self.config.filter_fields is set, restrict to these:
|
91
|
-
if len(self.config.filter_fields) > 0:
|
92
|
-
schema_dict = {
|
93
|
-
k: v for k, v in schema_dict.items() if k in self.config.filter_fields
|
94
|
-
}
|
95
|
-
schema = json.dumps(schema_dict, indent=4)
|
96
|
-
|
97
|
-
schema += f"""
|
98
|
-
NOTE when creating a filter for a query,
|
99
|
-
ONLY the following fields are allowed:
|
100
|
-
{",".join(self.config.filter_fields)}
|
101
|
-
"""
|
102
|
-
if len(content_fields := self.config.add_fields_to_content) > 0:
|
103
|
-
schema += f"""
|
104
|
-
Additional fields added to `content` as key=value pairs:
|
105
|
-
NOTE that these CAN Help with matching queries!
|
106
|
-
{content_fields}
|
107
|
-
"""
|
108
|
-
return schema
|
109
|
-
|
110
|
-
def query_plan(self, msg: QueryPlanTool) -> AgentDoneTool | str:
|
111
|
-
"""
|
112
|
-
Handle the LLM's use of the FilterTool.
|
113
|
-
Temporarily set the config filter and either return the final answer
|
114
|
-
in case there's a dataframe_calc, or return the rephrased query
|
115
|
-
so the LLM can handle it.
|
116
|
-
"""
|
117
|
-
# create document-subset based on this filter
|
118
|
-
plan = msg.plan
|
119
|
-
try:
|
120
|
-
self.setup_documents(filter=plan.filter or None)
|
121
|
-
except Exception as e:
|
122
|
-
logger.error(f"Error setting up documents: {e}")
|
123
|
-
# say DONE with err msg so it goes back to LanceFilterAgent
|
124
|
-
return AgentDoneTool(
|
125
|
-
content=f"""
|
126
|
-
Possible Filter Error:\n {e}
|
127
|
-
|
128
|
-
Note that only the following fields are allowed in the filter
|
129
|
-
of a query plan:
|
130
|
-
{", ".join(self.config.filter_fields)}
|
131
|
-
"""
|
132
|
-
)
|
133
|
-
|
134
|
-
# update the filter so it is used in the DocChatAgent
|
135
|
-
self.config.filter = plan.filter or None
|
136
|
-
if plan.dataframe_calc:
|
137
|
-
# we just get relevant docs then do the calculation
|
138
|
-
# TODO if calc causes err, it is captured in result,
|
139
|
-
# and LLM can correct the calc based on the err,
|
140
|
-
# and this will cause retrieval all over again,
|
141
|
-
# which may be wasteful if only the calc part is wrong.
|
142
|
-
# The calc step can later be done with a separate Agent/Tool.
|
143
|
-
if plan.query is None or plan.query.strip() == "":
|
144
|
-
if plan.filter is None or plan.filter.strip() == "":
|
145
|
-
return AgentDoneTool(
|
146
|
-
content="""
|
147
|
-
Cannot execute Query Plan since filter as well as
|
148
|
-
rephrased query are empty.
|
149
|
-
"""
|
150
|
-
)
|
151
|
-
else:
|
152
|
-
# no query to match, so just get all docs matching filter
|
153
|
-
docs = self.vecdb.get_all_documents(plan.filter)
|
154
|
-
else:
|
155
|
-
_, docs = self.get_relevant_extracts(plan.query)
|
156
|
-
if len(docs) == 0:
|
157
|
-
return AgentDoneTool(content=NO_ANSWER)
|
158
|
-
answer = self.vecdb.compute_from_docs(docs, plan.dataframe_calc)
|
159
|
-
else:
|
160
|
-
# pass on the query so LLM can handle it
|
161
|
-
response = self.llm_response(plan.query)
|
162
|
-
answer = NO_ANSWER if response is None else response.content
|
163
|
-
return AgentDoneTool(tools=[AnswerTool(answer=answer)])
|
164
|
-
|
165
|
-
def ingest_docs(
|
166
|
-
self,
|
167
|
-
docs: List[Document],
|
168
|
-
split: bool = True,
|
169
|
-
metadata: (
|
170
|
-
List[Dict[str, Any]] | Dict[str, Any] | DocMetaData | List[DocMetaData]
|
171
|
-
) = [],
|
172
|
-
) -> int:
|
173
|
-
n = super().ingest_docs(docs, split, metadata)
|
174
|
-
tbl = self.vecdb.client.open_table(self.vecdb.config.collection_name)
|
175
|
-
# We assume "content" is available as top-level field
|
176
|
-
if "content" in tbl.schema.names:
|
177
|
-
tbl.create_fts_index("content", replace=True)
|
178
|
-
return n
|
179
|
-
|
180
|
-
def ingest_dataframe(
|
181
|
-
self,
|
182
|
-
df: pd.DataFrame,
|
183
|
-
content: str = "content",
|
184
|
-
metadata: List[str] = [],
|
185
|
-
) -> int:
|
186
|
-
"""Ingest from a dataframe. Assume we are doing this once, not incrementally"""
|
187
|
-
|
188
|
-
self.from_dataframe = True
|
189
|
-
if df.shape[0] == 0:
|
190
|
-
raise ValueError(
|
191
|
-
"""
|
192
|
-
LanceDocChatAgent.ingest_dataframe() received an empty dataframe.
|
193
|
-
"""
|
194
|
-
)
|
195
|
-
n = df.shape[0]
|
196
|
-
|
197
|
-
# If any additional fields need to be added to content,
|
198
|
-
# add them as key=value pairs, into the `content` field for all rows.
|
199
|
-
# This helps retrieval for table-like data.
|
200
|
-
# Note we need to do this at stage so that the embeddings
|
201
|
-
# are computed on the full content with these additional fields.
|
202
|
-
fields = [f for f in self.config.add_fields_to_content if f in df.columns]
|
203
|
-
if len(fields) > 0:
|
204
|
-
df[content] = df.apply(
|
205
|
-
lambda row: (",".join(f"{f}={row[f]}" for f in fields))
|
206
|
-
+ ", content="
|
207
|
-
+ row[content],
|
208
|
-
axis=1,
|
209
|
-
)
|
210
|
-
|
211
|
-
df, metadata = DocChatAgent.document_compatible_dataframe(df, content, metadata)
|
212
|
-
self.df_description = describe_dataframe(
|
213
|
-
df,
|
214
|
-
filter_fields=self.config.filter_fields,
|
215
|
-
n_vals=10,
|
216
|
-
)
|
217
|
-
self.vecdb.add_dataframe(df, content="content", metadata=metadata)
|
218
|
-
|
219
|
-
tbl = self.vecdb.client.open_table(self.vecdb.config.collection_name)
|
220
|
-
# We assume "content" is available as top-level field
|
221
|
-
if "content" in tbl.schema.names:
|
222
|
-
tbl.create_fts_index("content", replace=True)
|
223
|
-
# We still need to do the below so that
|
224
|
-
# other types of searches in DocChatAgent
|
225
|
-
# can work, as they require Document objects
|
226
|
-
docs = dataframe_to_documents(df, content="content", metadata=metadata)
|
227
|
-
self.setup_documents(docs)
|
228
|
-
# mark each doc as already-chunked so we don't try to split them further
|
229
|
-
# TODO later we may want to split large text-columns
|
230
|
-
for d in docs:
|
231
|
-
d.metadata.is_chunk = True
|
232
|
-
return n # type: ignore
|
233
|
-
|
234
|
-
def get_similar_chunks_bm25(
|
235
|
-
self, query: str, multiple: int
|
236
|
-
) -> List[Tuple[Document, float]]:
|
237
|
-
"""
|
238
|
-
Override the DocChatAgent.get_similar_chunks_bm25()
|
239
|
-
to use LanceDB FTS (Full Text Search).
|
240
|
-
"""
|
241
|
-
# Clean up query: replace all newlines with spaces in query,
|
242
|
-
# force special search keywords to lower case, remove quotes,
|
243
|
-
# so it's not interpreted as search syntax
|
244
|
-
query_clean = (
|
245
|
-
query.replace("\n", " ")
|
246
|
-
.replace("AND", "and")
|
247
|
-
.replace("OR", "or")
|
248
|
-
.replace("NOT", "not")
|
249
|
-
.replace("'", "")
|
250
|
-
.replace('"', "")
|
251
|
-
.replace(":", "--")
|
252
|
-
)
|
253
|
-
|
254
|
-
tbl = self.vecdb.client.open_table(self.vecdb.config.collection_name)
|
255
|
-
result = (
|
256
|
-
tbl.search(query_clean)
|
257
|
-
.where(self.config.filter or None)
|
258
|
-
.limit(self.config.parsing.n_similar_docs * multiple)
|
259
|
-
)
|
260
|
-
docs = self.vecdb._lance_result_to_docs(result)
|
261
|
-
scores = [r["score"] for r in result.to_list()]
|
262
|
-
return list(zip(docs, scores))
|
@@ -1,198 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
QueryPlanCritic is a ChatAgent that is created with a specific document schema.
|
3
|
-
|
4
|
-
Its role is to provide feedback on a Query Plan, which consists of:
|
5
|
-
- filter condition if needed (or empty string if no filter is needed)
|
6
|
-
- query - a possibly rephrased query that can be used to match the `content` field
|
7
|
-
- dataframe_calc - a Pandas-dataframe calculation/aggregation string, possibly empty
|
8
|
-
- original_query - the original query for reference
|
9
|
-
- result - the answer received from an assistant that used this QUERY PLAN.
|
10
|
-
|
11
|
-
This agent has access to two tools:
|
12
|
-
- QueryPlanTool: The handler method for this tool re-writes the query plan
|
13
|
-
in plain text (non-JSON) so the LLM can provide its feedback using the
|
14
|
-
QueryPlanFeedbackTool.
|
15
|
-
- QueryPlanFeedbackTool: LLM uses this tool to provide feedback on the Query Plan
|
16
|
-
"""
|
17
|
-
|
18
|
-
import logging
|
19
|
-
|
20
|
-
from langroid.agent.chat_agent import ChatAgent
|
21
|
-
from langroid.agent.chat_document import ChatDocument
|
22
|
-
from langroid.agent.special.lance_rag.query_planner_agent import (
|
23
|
-
LanceQueryPlanAgentConfig,
|
24
|
-
)
|
25
|
-
from langroid.agent.special.lance_tools import (
|
26
|
-
QueryPlanAnswerTool,
|
27
|
-
QueryPlanFeedbackTool,
|
28
|
-
)
|
29
|
-
from langroid.agent.tools.orchestration import AgentDoneTool
|
30
|
-
from langroid.utils.constants import NO_ANSWER
|
31
|
-
|
32
|
-
logger = logging.getLogger(__name__)
|
33
|
-
|
34
|
-
|
35
|
-
class QueryPlanCriticConfig(LanceQueryPlanAgentConfig):
|
36
|
-
name = "QueryPlanCritic"
|
37
|
-
system_message = f"""
|
38
|
-
You are an expert at carefully planning a query that needs to be answered
|
39
|
-
based on a large collection of documents. These docs have a special `content` field
|
40
|
-
and additional FILTERABLE fields in the SCHEMA below, along with the
|
41
|
-
SAMPLE VALUES for each field, and the DTYPE in PANDAS TERMINOLOGY.
|
42
|
-
|
43
|
-
{{doc_schema}}
|
44
|
-
|
45
|
-
The ORIGINAL QUERY is handled by a QUERY PLANNER who sends the PLAN to an ASSISTANT,
|
46
|
-
who returns an ANSWER.
|
47
|
-
|
48
|
-
You will receive a QUERY PLAN consisting of:
|
49
|
-
- ORIGINAL QUERY from the user, which a QUERY PLANNER processes,
|
50
|
-
to create a QUERY PLAN, to be handled by an ASSISTANT.
|
51
|
-
- PANDAS-LIKE FILTER, WHICH CAN BE EMPTY (and it's fine if results sound reasonable)
|
52
|
-
FILTER SHOULD ONLY BE USED IF EXPLICITLY REQUIRED BY THE QUERY.
|
53
|
-
This filter selects the documents over which the REPHRASED QUERY will be applied,
|
54
|
-
thus naturally, the Re-phrased Query should NOT mention any FILTER fields,
|
55
|
-
since it applies to the documents AFTER FILTERING.
|
56
|
-
- REPHRASED QUERY (CANNOT BE EMPTY) that will be used to match against the
|
57
|
-
CONTENT (not filterable) of the documents.
|
58
|
-
In general the REPHRASED QUERY should be relied upon to match the CONTENT
|
59
|
-
of the docs. Thus the REPHRASED QUERY itself acts like a
|
60
|
-
SEMANTIC/LEXICAL/FUZZY FILTER since the Assistant is able to use it to match
|
61
|
-
the CONTENT of the docs in various ways (semantic, lexical, fuzzy, etc.).
|
62
|
-
Keep in mind that the ASSISTANT does NOT know anything about the FILTER fields,
|
63
|
-
so the REPHRASED QUERY should NOT mention ANY FILTER fields.
|
64
|
-
The assistant will answer based on documents whose CONTENTS match the QUERY,
|
65
|
-
possibly REPHRASED.
|
66
|
-
!!!!****THE REPHRASED QUERY SHOULD NEVER BE EMPTY****!!!
|
67
|
-
|
68
|
-
|
69
|
-
- DATAFRAME CALCULATION, which must be a SINGLE LINE calculation (or empty),
|
70
|
-
[NOTE ==> This calculation is applied AFTER the FILTER and REPHRASED QUERY.],
|
71
|
-
- ANSWER received from an assistant that used this QUERY PLAN.
|
72
|
-
IT IS TOTALLY FINE FOR THE ANSWER TO NOT MENTION ANY FILTERING CONDITIONS,
|
73
|
-
or if the ANSWER STATEMENT is MISSING SOME CRITERIA in the ORIGINAL QUERY.
|
74
|
-
|
75
|
-
Here is an example of a VALID Plan + Answer:
|
76
|
-
|
77
|
-
ORIGINAL QUERY: "Which crime novels were written by Russian authors after 1900?"
|
78
|
-
FILTER: "author_nationality == 'Russian' and year_written > 1900"
|
79
|
-
REPHRASED QUERY: "crime novel" [NOTICE NO FILTER FIELDS MENTIONED!!!]
|
80
|
-
DATAFRAME CALC: ""
|
81
|
-
ANSWER: "The Master and Margarita by Mikhail Bulgakov"
|
82
|
-
[NOTICE the answer does NOT need to say "crime novel" or "russian author"]
|
83
|
-
|
84
|
-
|
85
|
-
Other examples of VALID ANSWER for a given ORIGINAL QUERY:
|
86
|
-
|
87
|
-
ORIGINAL QUERY: "Which mountain is taller than 8000 meters?"
|
88
|
-
ANSWER: "Mount Everest" [NOTICE no mention of "taller than 8000 meters"]
|
89
|
-
|
90
|
-
ORIGINAL QUERY: "Which country has hosted the most olympics?"
|
91
|
-
ANSWER: "United States" [NOTICE no mention of "most olympics"]
|
92
|
-
|
93
|
-
In addition to the above SCHEMA fields there is a `content` field which:
|
94
|
-
- CANNOT appear in a FILTER,
|
95
|
-
- CAN appear in the DATAFRAME CALCULATION.
|
96
|
-
THERE ARE NO OTHER FIELDS IN THE DOCUMENTS or in the RESULTING DATAFRAME.
|
97
|
-
|
98
|
-
Your job is to act as a CRITIC and provide feedback,
|
99
|
-
ONLY using the `query_plan_feedback` tool, and DO NOT SAY ANYTHING ELSE.
|
100
|
-
|
101
|
-
Here is how you must examine the QUERY PLAN + ANSWER:
|
102
|
-
- ALL filtering conditions in the original query must be EXPLICITLY
|
103
|
-
mentioned in the FILTER, and the QUERY field should not be used for filtering.
|
104
|
-
- If the ANSWER contains an ERROR message, then this means that the query
|
105
|
-
plan execution FAILED, and your feedback should say INVALID along
|
106
|
-
with the ERROR message, `suggested_fix` that aims to help the assistant
|
107
|
-
fix the problem (or simply equals "address the the error shown in feedback")
|
108
|
-
- Ask yourself, is the ANSWER in the expected form, e.g.
|
109
|
-
if the question is asking for the name of an ENTITY with max SIZE,
|
110
|
-
then the answer should be the ENTITY name, NOT the SIZE!!
|
111
|
-
- If the ANSWER is in the expected form, then the QUERY PLAN is likely VALID,
|
112
|
-
and your feedback should say VALID, with empty `suggested_fix`.
|
113
|
-
===> HOWEVER!!! Watch out for a spurious correct-looking answer, for EXAMPLE:
|
114
|
-
the query was to find the ENTITY with a maximum SIZE,
|
115
|
-
but the dataframe calculation is find the SIZE, NOT the ENTITY!!
|
116
|
-
- If the ANSWER is {NO_ANSWER} or of the wrong form,
|
117
|
-
then try to DIAGNOSE the problem IN THE FOLLOWING ORDER:
|
118
|
-
- DATAFRAME CALCULATION -- is it doing the right thing?
|
119
|
-
Is it finding the Index of a row instead of the value in a column?
|
120
|
-
Or another example: maybe it is finding the maximum population
|
121
|
-
rather than the CITY with the maximum population?
|
122
|
-
If you notice a problem with the DATAFRAME CALCULATION, then
|
123
|
-
ONLY SUBMIT FEEDBACK ON THE DATAFRAME CALCULATION, and DO NOT
|
124
|
-
SUGGEST ANYTHING ELSE.
|
125
|
-
- If the DATAFRAME CALCULATION looks correct, then check if
|
126
|
-
the REPHRASED QUERY makes sense given the ORIGINAL QUERY and FILTER.
|
127
|
-
If this is the problem, then ONLY SUBMIT FEEDBACK ON THE REPHRASED QUERY,
|
128
|
-
and DO NOT SUGGEST ANYTHING ELSE.
|
129
|
-
- If the REPHRASED QUERY looks correct, then check if the FILTER makes sense.
|
130
|
-
REMEMBER: A filter should ONLY be used if EXPLICITLY REQUIRED BY THE QUERY.
|
131
|
-
|
132
|
-
|
133
|
-
IMPORTANT!! The DATAFRAME CALCULATION is done AFTER applying the
|
134
|
-
FILTER and REPHRASED QUERY! Keep this in mind when evaluating
|
135
|
-
the correctness of the DATAFRAME CALCULATION.
|
136
|
-
|
137
|
-
ALWAYS use `query_plan_feedback` tool/fn to present your feedback
|
138
|
-
in the `feedback` field, and if any fix is suggested,
|
139
|
-
present it in the `suggested_fix` field.
|
140
|
-
DO NOT SAY ANYTHING ELSE OUTSIDE THE TOOL/FN.
|
141
|
-
IF NO REVISION NEEDED, simply leave the `suggested_fix` field EMPTY,
|
142
|
-
and SAY NOTHING ELSE
|
143
|
-
and DO NOT EXPLAIN YOURSELF.
|
144
|
-
"""
|
145
|
-
|
146
|
-
|
147
|
-
def plain_text_query_plan(msg: QueryPlanAnswerTool) -> str:
|
148
|
-
plan = f"""
|
149
|
-
OriginalQuery: {msg.plan.original_query}
|
150
|
-
Filter: {msg.plan.filter}
|
151
|
-
Rephrased Query: {msg.plan.query}
|
152
|
-
DataframeCalc: {msg.plan.dataframe_calc}
|
153
|
-
Answer: {msg.answer}
|
154
|
-
"""
|
155
|
-
return plan
|
156
|
-
|
157
|
-
|
158
|
-
class QueryPlanCritic(ChatAgent):
|
159
|
-
"""
|
160
|
-
Critic for LanceQueryPlanAgent, provides feedback on
|
161
|
-
query plan + answer.
|
162
|
-
"""
|
163
|
-
|
164
|
-
def __init__(self, cfg: LanceQueryPlanAgentConfig):
|
165
|
-
super().__init__(cfg)
|
166
|
-
self.config = cfg
|
167
|
-
self.enable_message(QueryPlanAnswerTool, use=False, handle=True)
|
168
|
-
self.enable_message(QueryPlanFeedbackTool, use=True, handle=True)
|
169
|
-
self.enable_message(AgentDoneTool, use=False, handle=True)
|
170
|
-
|
171
|
-
def init_state(self) -> None:
|
172
|
-
super().init_state()
|
173
|
-
self.expecting_feedback_tool = False
|
174
|
-
|
175
|
-
def query_plan_answer(self, msg: QueryPlanAnswerTool) -> str:
|
176
|
-
"""Present query plan + answer in plain text (not JSON)
|
177
|
-
so LLM can give feedback"""
|
178
|
-
self.expecting_feedback_tool = True
|
179
|
-
return plain_text_query_plan(msg)
|
180
|
-
|
181
|
-
def query_plan_feedback(self, msg: QueryPlanFeedbackTool) -> AgentDoneTool:
|
182
|
-
"""Format Valid so return to Query Planner"""
|
183
|
-
self.expecting_feedback_tool = False
|
184
|
-
# indicate this task is Done, and return the tool as result
|
185
|
-
return AgentDoneTool(tools=[msg])
|
186
|
-
|
187
|
-
def handle_message_fallback(
|
188
|
-
self, msg: str | ChatDocument
|
189
|
-
) -> str | ChatDocument | None:
|
190
|
-
"""Remind the LLM to use QueryPlanFeedbackTool since it forgot"""
|
191
|
-
if self.expecting_feedback_tool:
|
192
|
-
return """
|
193
|
-
You forgot to use the `query_plan_feedback` tool/function.
|
194
|
-
Re-try your response using the `query_plan_feedback` tool/function,
|
195
|
-
remember to provide feedback in the `feedback` field,
|
196
|
-
and if any fix is suggested, provide it in the `suggested_fix` field.
|
197
|
-
"""
|
198
|
-
return None
|
@@ -1,82 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
The LanceRAGTaskCreator.new() method creates a 3-Agent system that uses this agent.
|
3
|
-
It takes a LanceDocChatAgent instance as argument, and adds two more agents:
|
4
|
-
- LanceQueryPlanAgent, which is given the LanceDB schema in LanceDocChatAgent,
|
5
|
-
and based on this schema, for a given user query, creates a Query Plan
|
6
|
-
using the QueryPlanTool, which contains a filter, a rephrased query,
|
7
|
-
and a dataframe_calc.
|
8
|
-
- QueryPlanCritic, which is given the LanceDB schema in LanceDocChatAgent,
|
9
|
-
and gives feedback on the Query Plan and Result using the QueryPlanFeedbackTool.
|
10
|
-
|
11
|
-
The LanceRAGTaskCreator.new() method sets up the given LanceDocChatAgent and
|
12
|
-
QueryPlanCritic as sub-tasks of the LanceQueryPlanAgent's task.
|
13
|
-
|
14
|
-
Langroid's built-in task orchestration ensures that:
|
15
|
-
- the LanceQueryPlanAgent reformulates the plan based
|
16
|
-
on the QueryPlanCritics's feedback,
|
17
|
-
- LLM deviations are corrected via tools and overrides of ChatAgent methods.
|
18
|
-
"""
|
19
|
-
|
20
|
-
import logging
|
21
|
-
|
22
|
-
from langroid.agent.special.lance_doc_chat_agent import LanceDocChatAgent
|
23
|
-
from langroid.agent.special.lance_rag.critic_agent import (
|
24
|
-
QueryPlanCritic,
|
25
|
-
QueryPlanCriticConfig,
|
26
|
-
)
|
27
|
-
from langroid.agent.special.lance_rag.query_planner_agent import (
|
28
|
-
LanceQueryPlanAgent,
|
29
|
-
LanceQueryPlanAgentConfig,
|
30
|
-
)
|
31
|
-
from langroid.agent.task import Task
|
32
|
-
from langroid.mytypes import Entity
|
33
|
-
|
34
|
-
logger = logging.getLogger(__name__)
|
35
|
-
|
36
|
-
|
37
|
-
class LanceRAGTaskCreator:
|
38
|
-
@staticmethod
|
39
|
-
def new(
|
40
|
-
agent: LanceDocChatAgent,
|
41
|
-
interactive: bool = True,
|
42
|
-
) -> Task:
|
43
|
-
"""
|
44
|
-
Add a LanceFilterAgent to the LanceDocChatAgent,
|
45
|
-
set up the corresponding Tasks, connect them,
|
46
|
-
and return the top-level query_plan_task.
|
47
|
-
"""
|
48
|
-
doc_agent_name = "LanceRAG"
|
49
|
-
critic_name = "QueryPlanCritic"
|
50
|
-
query_plan_agent_config = LanceQueryPlanAgentConfig(
|
51
|
-
critic_name=critic_name,
|
52
|
-
doc_agent_name=doc_agent_name,
|
53
|
-
doc_schema=agent._get_clean_vecdb_schema(),
|
54
|
-
llm=agent.config.llm,
|
55
|
-
)
|
56
|
-
query_plan_agent_config.set_system_message()
|
57
|
-
|
58
|
-
critic_config = QueryPlanCriticConfig(
|
59
|
-
doc_schema=agent._get_clean_vecdb_schema(),
|
60
|
-
llm=agent.config.llm,
|
61
|
-
)
|
62
|
-
critic_config.set_system_message()
|
63
|
-
|
64
|
-
query_planner = LanceQueryPlanAgent(query_plan_agent_config)
|
65
|
-
query_plan_task = Task(
|
66
|
-
query_planner,
|
67
|
-
interactive=interactive,
|
68
|
-
)
|
69
|
-
critic_agent = QueryPlanCritic(critic_config)
|
70
|
-
critic_task = Task(
|
71
|
-
critic_agent,
|
72
|
-
interactive=False,
|
73
|
-
)
|
74
|
-
rag_task = Task(
|
75
|
-
agent,
|
76
|
-
name="LanceRAG",
|
77
|
-
interactive=False,
|
78
|
-
done_if_response=[Entity.LLM], # done when non-null response from LLM
|
79
|
-
done_if_no_response=[Entity.LLM], # done when null response from LLM
|
80
|
-
)
|
81
|
-
query_plan_task.add_sub_task([critic_task, rag_task])
|
82
|
-
return query_plan_task
|