langfun 0.1.2.dev202509120804__py3-none-any.whl → 0.1.2.dev202512150805__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (162) hide show
  1. langfun/__init__.py +1 -1
  2. langfun/core/__init__.py +7 -1
  3. langfun/core/agentic/__init__.py +8 -1
  4. langfun/core/agentic/action.py +740 -112
  5. langfun/core/agentic/action_eval.py +9 -2
  6. langfun/core/agentic/action_test.py +189 -24
  7. langfun/core/async_support.py +104 -5
  8. langfun/core/async_support_test.py +23 -0
  9. langfun/core/coding/python/correction.py +19 -9
  10. langfun/core/coding/python/execution.py +14 -12
  11. langfun/core/coding/python/generation.py +21 -16
  12. langfun/core/coding/python/sandboxing.py +23 -3
  13. langfun/core/component.py +42 -3
  14. langfun/core/concurrent.py +70 -6
  15. langfun/core/concurrent_test.py +9 -2
  16. langfun/core/console.py +1 -1
  17. langfun/core/data/conversion/anthropic.py +12 -3
  18. langfun/core/data/conversion/anthropic_test.py +8 -6
  19. langfun/core/data/conversion/gemini.py +11 -2
  20. langfun/core/data/conversion/gemini_test.py +48 -9
  21. langfun/core/data/conversion/openai.py +145 -31
  22. langfun/core/data/conversion/openai_test.py +161 -17
  23. langfun/core/eval/base.py +48 -44
  24. langfun/core/eval/base_test.py +5 -5
  25. langfun/core/eval/matching.py +5 -2
  26. langfun/core/eval/patching.py +3 -3
  27. langfun/core/eval/scoring.py +4 -3
  28. langfun/core/eval/v2/__init__.py +3 -0
  29. langfun/core/eval/v2/checkpointing.py +148 -46
  30. langfun/core/eval/v2/checkpointing_test.py +9 -2
  31. langfun/core/eval/v2/config_saver.py +37 -0
  32. langfun/core/eval/v2/config_saver_test.py +36 -0
  33. langfun/core/eval/v2/eval_test_helper.py +104 -3
  34. langfun/core/eval/v2/evaluation.py +102 -19
  35. langfun/core/eval/v2/evaluation_test.py +9 -3
  36. langfun/core/eval/v2/example.py +50 -40
  37. langfun/core/eval/v2/example_test.py +16 -8
  38. langfun/core/eval/v2/experiment.py +95 -20
  39. langfun/core/eval/v2/experiment_test.py +19 -0
  40. langfun/core/eval/v2/metric_values.py +31 -3
  41. langfun/core/eval/v2/metric_values_test.py +32 -0
  42. langfun/core/eval/v2/metrics.py +157 -44
  43. langfun/core/eval/v2/metrics_test.py +39 -18
  44. langfun/core/eval/v2/progress.py +31 -1
  45. langfun/core/eval/v2/progress_test.py +27 -0
  46. langfun/core/eval/v2/progress_tracking.py +13 -5
  47. langfun/core/eval/v2/progress_tracking_test.py +9 -1
  48. langfun/core/eval/v2/reporting.py +88 -71
  49. langfun/core/eval/v2/reporting_test.py +24 -6
  50. langfun/core/eval/v2/runners/__init__.py +30 -0
  51. langfun/core/eval/v2/{runners.py → runners/base.py} +73 -180
  52. langfun/core/eval/v2/runners/beam.py +354 -0
  53. langfun/core/eval/v2/runners/beam_test.py +153 -0
  54. langfun/core/eval/v2/runners/ckpt_monitor.py +350 -0
  55. langfun/core/eval/v2/runners/ckpt_monitor_test.py +213 -0
  56. langfun/core/eval/v2/runners/debug.py +40 -0
  57. langfun/core/eval/v2/runners/debug_test.py +76 -0
  58. langfun/core/eval/v2/runners/parallel.py +243 -0
  59. langfun/core/eval/v2/runners/parallel_test.py +182 -0
  60. langfun/core/eval/v2/runners/sequential.py +47 -0
  61. langfun/core/eval/v2/runners/sequential_test.py +169 -0
  62. langfun/core/langfunc.py +45 -130
  63. langfun/core/langfunc_test.py +7 -5
  64. langfun/core/language_model.py +189 -36
  65. langfun/core/language_model_test.py +54 -3
  66. langfun/core/llms/__init__.py +14 -1
  67. langfun/core/llms/anthropic.py +157 -2
  68. langfun/core/llms/azure_openai.py +29 -17
  69. langfun/core/llms/cache/base.py +25 -3
  70. langfun/core/llms/cache/in_memory.py +48 -7
  71. langfun/core/llms/cache/in_memory_test.py +14 -4
  72. langfun/core/llms/compositional.py +25 -1
  73. langfun/core/llms/deepseek.py +30 -2
  74. langfun/core/llms/fake.py +32 -1
  75. langfun/core/llms/gemini.py +90 -12
  76. langfun/core/llms/gemini_test.py +110 -0
  77. langfun/core/llms/google_genai.py +52 -1
  78. langfun/core/llms/groq.py +28 -3
  79. langfun/core/llms/llama_cpp.py +23 -4
  80. langfun/core/llms/openai.py +120 -3
  81. langfun/core/llms/openai_compatible.py +148 -27
  82. langfun/core/llms/openai_compatible_test.py +207 -20
  83. langfun/core/llms/openai_test.py +0 -2
  84. langfun/core/llms/rest.py +16 -1
  85. langfun/core/llms/vertexai.py +78 -8
  86. langfun/core/logging.py +1 -1
  87. langfun/core/mcp/__init__.py +10 -0
  88. langfun/core/mcp/client.py +177 -0
  89. langfun/core/mcp/client_test.py +71 -0
  90. langfun/core/mcp/session.py +241 -0
  91. langfun/core/mcp/session_test.py +54 -0
  92. langfun/core/mcp/testing/simple_mcp_client.py +33 -0
  93. langfun/core/mcp/testing/simple_mcp_server.py +33 -0
  94. langfun/core/mcp/tool.py +254 -0
  95. langfun/core/mcp/tool_test.py +197 -0
  96. langfun/core/memory.py +1 -0
  97. langfun/core/message.py +160 -55
  98. langfun/core/message_test.py +65 -81
  99. langfun/core/modalities/__init__.py +8 -0
  100. langfun/core/modalities/audio.py +21 -1
  101. langfun/core/modalities/image.py +73 -3
  102. langfun/core/modalities/image_test.py +116 -0
  103. langfun/core/modalities/mime.py +78 -4
  104. langfun/core/modalities/mime_test.py +59 -0
  105. langfun/core/modalities/pdf.py +19 -1
  106. langfun/core/modalities/video.py +21 -1
  107. langfun/core/modality.py +167 -29
  108. langfun/core/modality_test.py +42 -12
  109. langfun/core/natural_language.py +1 -1
  110. langfun/core/sampling.py +4 -4
  111. langfun/core/sampling_test.py +20 -4
  112. langfun/core/structured/__init__.py +2 -24
  113. langfun/core/structured/completion.py +34 -44
  114. langfun/core/structured/completion_test.py +23 -43
  115. langfun/core/structured/description.py +54 -50
  116. langfun/core/structured/function_generation.py +29 -12
  117. langfun/core/structured/mapping.py +81 -37
  118. langfun/core/structured/parsing.py +95 -79
  119. langfun/core/structured/parsing_test.py +0 -3
  120. langfun/core/structured/querying.py +230 -154
  121. langfun/core/structured/querying_test.py +69 -33
  122. langfun/core/structured/schema/__init__.py +49 -0
  123. langfun/core/structured/schema/base.py +664 -0
  124. langfun/core/structured/schema/base_test.py +531 -0
  125. langfun/core/structured/schema/json.py +174 -0
  126. langfun/core/structured/schema/json_test.py +121 -0
  127. langfun/core/structured/schema/python.py +316 -0
  128. langfun/core/structured/schema/python_test.py +410 -0
  129. langfun/core/structured/schema_generation.py +33 -14
  130. langfun/core/structured/scoring.py +47 -36
  131. langfun/core/structured/tokenization.py +26 -11
  132. langfun/core/subscription.py +2 -2
  133. langfun/core/template.py +175 -50
  134. langfun/core/template_test.py +123 -17
  135. langfun/env/__init__.py +43 -0
  136. langfun/env/base_environment.py +827 -0
  137. langfun/env/base_environment_test.py +473 -0
  138. langfun/env/base_feature.py +304 -0
  139. langfun/env/base_feature_test.py +228 -0
  140. langfun/env/base_sandbox.py +842 -0
  141. langfun/env/base_sandbox_test.py +1235 -0
  142. langfun/env/event_handlers/__init__.py +14 -0
  143. langfun/env/event_handlers/chain.py +233 -0
  144. langfun/env/event_handlers/chain_test.py +253 -0
  145. langfun/env/event_handlers/event_logger.py +472 -0
  146. langfun/env/event_handlers/event_logger_test.py +304 -0
  147. langfun/env/event_handlers/metric_writer.py +726 -0
  148. langfun/env/event_handlers/metric_writer_test.py +214 -0
  149. langfun/env/interface.py +1640 -0
  150. langfun/env/interface_test.py +153 -0
  151. langfun/env/load_balancers.py +59 -0
  152. langfun/env/load_balancers_test.py +141 -0
  153. langfun/env/test_utils.py +507 -0
  154. {langfun-0.1.2.dev202509120804.dist-info → langfun-0.1.2.dev202512150805.dist-info}/METADATA +7 -3
  155. langfun-0.1.2.dev202512150805.dist-info/RECORD +217 -0
  156. langfun/core/eval/v2/runners_test.py +0 -343
  157. langfun/core/structured/schema.py +0 -987
  158. langfun/core/structured/schema_test.py +0 -982
  159. langfun-0.1.2.dev202509120804.dist-info/RECORD +0 -172
  160. {langfun-0.1.2.dev202509120804.dist-info → langfun-0.1.2.dev202512150805.dist-info}/WHEEL +0 -0
  161. {langfun-0.1.2.dev202509120804.dist-info → langfun-0.1.2.dev202512150805.dist-info}/licenses/LICENSE +0 -0
  162. {langfun-0.1.2.dev202509120804.dist-info → langfun-0.1.2.dev202512150805.dist-info}/top_level.txt +0 -0
@@ -26,10 +26,10 @@ import pyglove as pg
26
26
 
27
27
 
28
28
  def unittest_gen(signature, lm, num_retries=1):
29
- """Generates unit tests for a python function signature."""
29
+ """Generates unit tests for a Python function signature."""
30
30
 
31
31
  class UnitTest(pg.Object):
32
- """A valid unit test for a python function."""
32
+ """A valid unit test for a Python function."""
33
33
 
34
34
  input: dict[str, Any]
35
35
  expected_output: Any
@@ -55,7 +55,7 @@ def unittest_gen(signature, lm, num_retries=1):
55
55
 
56
56
 
57
57
  def unittest_with_test_cases(f, unittests):
58
- """Applies unit tests to a python function to be tested."""
58
+ """Applies unit tests to a Python function to be tested."""
59
59
  if not unittests:
60
60
  raise ValueError(f"No unit tests provided: {unittests}")
61
61
 
@@ -87,10 +87,10 @@ def _function_gen(
87
87
  ] = None,
88
88
  unittest_num_retries: int = 1,
89
89
  ):
90
- """Generates a python function with LLM and verify its quality with unit testing."""
90
+ """Generates a Python function with LLM and verifies it with unit testing."""
91
91
 
92
92
  class PythonFunctionPrompt(template.Template):
93
- r"""A template for a python function generation.
93
+ r"""A template for a Python function generation.
94
94
 
95
95
  Please reply to the last PYTHON_FUNCTION_SIGNATURE with a self-sufficient,
96
96
  error-free, and efficiently coded PYTHON_FUNCTION, crafted to the standards
@@ -195,11 +195,28 @@ def function_gen(
195
195
  ] = None,
196
196
  unittest_num_retries: int = 1,
197
197
  ):
198
- """A decorator for automating function generation using a language model.
198
+ r"""Decorator for generating function implementations using an LLM.
199
199
 
200
- This decorator should be applied to functions that are not yet implemented. It
201
- facilitates the implementation via the specified LLM, ensuring
202
- quality through unit tests.
200
+ `lf.function_gen` is a decorator that automatically generates the
201
+ implementation of a Python function based on its signature and docstring,
202
+ using the specified language model. This is useful for quickly prototyping
203
+ functions or generating boilerplate code.
204
+
205
+ The decorator can also automatically generate and run unit tests to verify
206
+ the correctness of the generated implementation.
207
+
208
+ **Example:**
209
+
210
+ ```python
211
+ import langfun as lf
212
+
213
+ @lf.function_gen(lm=lf.llms.Gemini25Flash())
214
+ def product(a: int, b: int) -> int:
215
+ \"\"\"Returns product of a and b.\"\"\"
216
+
217
+ print(product(2, 3))
218
+ # Output: 6
219
+ ```
203
220
 
204
221
  Args:
205
222
  lm (lf.LanguageModel): The language model used for generating function
@@ -212,10 +229,10 @@ def function_gen(
212
229
  tests. You can either provide a list of test cases as tuples of inputs
213
230
  and outputs, or a function that throws an error if a test fails, or let
214
231
  LLM automatically create the unit test cases. If a generated function is
215
- and returned, it should pass all the unittests.
232
+ returned, it should pass all the unit tests.
216
233
  unittest_num_retries: If unittest is set to "auto", this parameter
217
- specifies the number of times the LLM's attempts to generate unit test
218
- cases.
234
+ specifies the number of times the LLM should attempt to generate unit
235
+ test cases.
219
236
 
220
237
  Returns:
221
238
  The implemented function object.
@@ -22,7 +22,16 @@ import pyglove as pg
22
22
 
23
23
 
24
24
  class MappingError(Exception): # pylint: disable=g-bad-exception-name
25
- """Mapping error."""
25
+ """Error raised during a structured mapping task.
26
+
27
+ `MappingError` is raised when a language model's response cannot be
28
+ successfully parsed or transformed into the target structure defined by
29
+ the schema in structured mapping operations like `lf.query` and `lf.parse`.
30
+
31
+ This error encapsulates both the original exception that occurred during
32
+ parsing (`cause`) and the language model response (`lm_response`) that led
33
+ to the failure, allowing for easier debugging of mapping issues.
34
+ """
26
35
 
27
36
  def __init__(self, lm_response: lf.Message, cause: Exception):
28
37
  self._lm_response = lm_response
@@ -62,7 +71,53 @@ class MappingError(Exception): # pylint: disable=g-bad-exception-name
62
71
  class MappingExample(lf.NaturalLanguageFormattable,
63
72
  lf.Component,
64
73
  pg.views.HtmlTreeView.Extension):
65
- """Mapping example between text, schema and structured value."""
74
+ """Represents an example for a structured mapping task.
75
+
76
+ A `MappingExample` defines a single instance of a mapping between an input
77
+ value and an output value, optionally guided by a schema and/or a natural
78
+ language context. It is primarily used to provide few-shot examples to
79
+ structured mapping operations (e.g., `lf.query`, `lf.complete`,
80
+ and `lf.describe`), helping to guide the LLM in performing the desired mapping
81
+ task. If `output` is not provided, the example represents a request to perform
82
+ mapping on the `input`.
83
+
84
+ **Key Attributes:**
85
+
86
+ * `input`: The source value for the mapping (e.g., text, an object).
87
+ * `output`: The target value for the mapping (e.g., a structured object,
88
+ text). If not provided, this example represents a request to perform
89
+ the mapping.
90
+ * `schema`: An optional `lf.structured.Schema` that defines or constrains
91
+ the structure of the `output`. If provided, the LLM will be instructed
92
+ to produce an output conforming to this schema.
93
+ * `context`: Optional natural language context that provides additional
94
+ information relevant to the mapping task.
95
+ * `metadata`: Optional dictionary for additional metadata.
96
+
97
+ **Example:**
98
+
99
+ ```python
100
+ import langfun as lf
101
+ import pyglove as pg
102
+
103
+ # Example for translating English to French
104
+ lf.MappingExample(
105
+ input="Hello",
106
+ output="Bonjour"
107
+ )
108
+
109
+ # Example for extracting structured data
110
+ class Flight(pg.Object):
111
+ airline: str
112
+ flight_number: str
113
+
114
+ lf.MappingExample(
115
+ input="I want to book flight AA123.",
116
+ output=Flight(airline="AA", flight_number="123"),
117
+ schema=Flight
118
+ )
119
+ ```
120
+ """
66
121
 
67
122
  input: pg.typing.Annotated[
68
123
  pg.typing.Any(transform=schema_lib.mark_missing),
@@ -84,7 +139,7 @@ class MappingExample(lf.NaturalLanguageFormattable,
84
139
  # Automatic conversion from annotation to schema.
85
140
  schema_lib.schema_spec(noneable=True),
86
141
  (
87
- 'A `lf.structured.Schema` object that constrains target value '
142
+ 'A `lf.structured.Schema` object that constrains target value. '
88
143
  'If None, the target is expected to be a natural language-based '
89
144
  'response returned from LMs.'
90
145
  ),
@@ -99,18 +154,16 @@ class MappingExample(lf.NaturalLanguageFormattable,
99
154
  dict[str, Any],
100
155
  (
101
156
  'The metadata associated with the mapping example, '
102
- 'which chould carry structured data, such as tool function input. '
157
+ 'which could carry structured data, such as tool function input. '
103
158
  'It is a `pg.Dict` object whose keys can be accessed by attributes.'
104
159
  ),
105
160
  ] = pg.Dict()
106
161
 
107
- def schema_repr(
108
- self, protocol: schema_lib.SchemaProtocol = 'python', **kwargs
109
- ) -> str:
162
+ def schema_repr(self, protocol: str = 'python', **kwargs) -> str:
110
163
  """Returns the string representation of schema based on protocol."""
111
164
  if self.schema is None:
112
165
  return ''
113
- return self.schema.schema_str(protocol, **kwargs)
166
+ return schema_lib.schema_repr(self.schema, protocol=protocol, **kwargs)
114
167
 
115
168
  @property
116
169
  def has_output(self) -> bool:
@@ -121,12 +174,14 @@ class MappingExample(lf.NaturalLanguageFormattable,
121
174
  def value_repr(
122
175
  cls,
123
176
  value: Any,
124
- protocol: schema_lib.SchemaProtocol = 'python',
177
+ protocol: str = 'python',
125
178
  use_modality_ref: bool = False,
126
179
  **kwargs
127
180
  ) -> str:
128
181
  if isinstance(value, str):
129
182
  return value
183
+ if isinstance(value, lf.Message):
184
+ return str(value)
130
185
  if isinstance(value, lf.Modality):
131
186
  with lf.modality.format_modality_as_ref():
132
187
  return str(value)
@@ -134,11 +189,11 @@ class MappingExample(lf.NaturalLanguageFormattable,
134
189
  # Placehold modalities if they are present.
135
190
  if use_modality_ref and pg.contains(value, type=lf.Modality):
136
191
  value = lf.ModalityRef.placehold(value)
137
- return schema_lib.value_repr(protocol).repr(value, **kwargs)
192
+ return schema_lib.value_repr(value, protocol=protocol, **kwargs)
138
193
 
139
194
  def input_repr(
140
195
  self,
141
- protocol: schema_lib.SchemaProtocol = 'python',
196
+ protocol: str = 'python',
142
197
  compact: bool = False,
143
198
  verbose: bool = True,
144
199
  **kwargs
@@ -150,7 +205,7 @@ class MappingExample(lf.NaturalLanguageFormattable,
150
205
 
151
206
  def output_repr(
152
207
  self,
153
- protocol: schema_lib.SchemaProtocol = 'python',
208
+ protocol: str = 'python',
154
209
  compact: bool = False,
155
210
  verbose: bool = True,
156
211
  **kwargs
@@ -192,9 +247,7 @@ class MappingExample(lf.NaturalLanguageFormattable,
192
247
 
193
248
  def render_value(view, *, value, **kwargs):
194
249
  if isinstance(value, lf.Template):
195
- # Make a shallow copy to make sure modalities are rooted by
196
- # the input.
197
- value = value.clone().render()
250
+ value = value.render()
198
251
  if value is None:
199
252
  return None
200
253
  return view.render(value, **kwargs)
@@ -242,7 +295,7 @@ class MappingExample(lf.NaturalLanguageFormattable,
242
295
 
243
296
 
244
297
  class Mapping(lf.LangFunc):
245
- """Base class for mapping.
298
+ """Base class for LLM-based mapping operations.
246
299
 
247
300
  {{ preamble }}
248
301
 
@@ -263,19 +316,19 @@ class Mapping(lf.LangFunc):
263
316
  pg.Symbolic,
264
317
  (
265
318
  'The mapping input. It could be `lf.Message` (a pg.Symbolic '
266
- 'subclass) as natural language input, or other symbolic object '
319
+ 'subclass) as natural language input, or other symbolic objects '
267
320
  'as structured input.'
268
321
  ),
269
322
  ]
270
323
 
271
324
  context: Annotated[
272
- str | None, 'The mapping context. A string as natural language '
325
+ str | None, 'The mapping context as a natural language string.'
273
326
  ] = None
274
327
 
275
328
  schema: pg.typing.Annotated[
276
329
  # Automatic conversion from annotation to schema.
277
330
  schema_lib.schema_spec(noneable=True),
278
- 'A `lf.structured.Schema` object that constrains mapping output ',
331
+ 'A `lf.structured.Schema` object that constrains mapping output.',
279
332
  ] = None
280
333
 
281
334
  permission: Annotated[
@@ -286,12 +339,8 @@ class Mapping(lf.LangFunc):
286
339
  @property
287
340
  def mapping_request(self) -> MappingExample:
288
341
  """Returns a MappingExample as the mapping request."""
289
- if isinstance(self.input, lf.Message):
290
- input_value = self.input.text
291
- else:
292
- input_value = pg.Ref(self.input)
293
342
  return MappingExample(
294
- input=input_value,
343
+ input=pg.Ref(self.input),
295
344
  schema=pg.Ref(self.schema),
296
345
  context=self.context,
297
346
  )
@@ -382,16 +431,16 @@ class Mapping(lf.LangFunc):
382
431
  default: Annotated[
383
432
  Any,
384
433
  (
385
- 'The default value to use if the LM response is not a valid code '
386
- 'based on the schema (after autofix). '
387
- 'If unspecified, error will be raisen.'
434
+ 'The default value to use if parsing fails (after autofix). '
435
+ 'If `lf.RAISE_IF_HAS_ERROR` is used (default), an error will be '
436
+ 'raised instead.'
388
437
  ),
389
438
  ] = lf.RAISE_IF_HAS_ERROR
390
439
 
391
440
  response_postprocess: Annotated[
392
441
  Callable[[str], str] | None,
393
442
  (
394
- 'A callable object that post process the raw LLM response before '
443
+ 'A callable object that post-processes the raw LLM response before '
395
444
  'parsing it into the output Python object.'
396
445
  )
397
446
  ] = None
@@ -402,11 +451,6 @@ class Mapping(lf.LangFunc):
402
451
 
403
452
  def transform_input(self, lm_input: lf.Message) -> lf.Message:
404
453
  # Find modalities to fill the input message.
405
- lm_input.metadata.update(
406
- examples=pg.Ref(self.examples),
407
- input=pg.Ref(self.input),
408
- schema=pg.Ref(self.schema) if self.schema is not None else None,
409
- )
410
454
  if isinstance(self.input, lf.Message):
411
455
  lm_input.source = self.input
412
456
  return lm_input
@@ -429,7 +473,7 @@ class Mapping(lf.LangFunc):
429
473
  return lm_output
430
474
 
431
475
  def parse_result(self, lm_output: lf.Message) -> Any:
432
- """Parse result from LLM response."""
476
+ """Parses result from LLM response."""
433
477
  schema = self.mapping_request.schema
434
478
  if schema is None:
435
479
  return None
@@ -443,7 +487,7 @@ class Mapping(lf.LangFunc):
443
487
  response_text = '\n'.join(
444
488
  tc.text for tc in lm_output.metadata['tool_calls']
445
489
  )
446
- return schema.parse(
490
+ return schema.parse_value(
447
491
  response_text,
448
492
  protocol=self.protocol,
449
493
  additional_context=self.globals(),
@@ -453,7 +497,7 @@ class Mapping(lf.LangFunc):
453
497
  )
454
498
 
455
499
  def postprocess_response(self, response: lf.Message) -> lf.Message:
456
- """Post process LLM response."""
500
+ """Post-processes LLM response."""
457
501
  if self.response_postprocess is not None:
458
502
  postprocessed_text = self.response_postprocess(response.text)
459
503
  if postprocessed_text != response.text:
@@ -461,7 +505,7 @@ class Mapping(lf.LangFunc):
461
505
  return response
462
506
 
463
507
  def postprocess_result(self, result: Any) -> Any:
464
- """Post process structured output."""
508
+ """Post-processes structured output."""
465
509
  return result
466
510
 
467
511
  def globals(self) -> dict[str, Any]:
@@ -24,7 +24,7 @@ import pyglove as pg
24
24
 
25
25
  @lf.use_init_args(['schema', 'default', 'examples'])
26
26
  class _ParseStructure(mapping.Mapping):
27
- """Parse an object out from a natural language text."""
27
+ """Parses an object out from a natural language text."""
28
28
 
29
29
  context_title = 'USER_REQUEST'
30
30
  input_title = 'LM_RESPONSE'
@@ -39,7 +39,7 @@ class _ParseStructure(mapping.Mapping):
39
39
 
40
40
 
41
41
  class _ParseStructureJson(_ParseStructure):
42
- """Parse an object out from a NL text using JSON as the protocol."""
42
+ """Parses an object out from a NL text using JSON as the protocol."""
43
43
 
44
44
  preamble = """
45
45
  Please help translate the last LM response into JSON based on the request and the schema:
@@ -55,7 +55,7 @@ class _ParseStructureJson(_ParseStructure):
55
55
 
56
56
 
57
57
  class _ParseStructurePython(_ParseStructure):
58
- """Parse an object out from a NL text using Python as the protocol."""
58
+ """Parses an object out from a NL text using Python as the protocol."""
59
59
 
60
60
  preamble = """
61
61
  Please help translate the last {{ input_title }} into {{ output_title}} based on {{ schema_title }}.
@@ -84,59 +84,59 @@ def parse(
84
84
  cache_seed: int | None = 0,
85
85
  autofix: int = 0,
86
86
  autofix_lm: lf.LanguageModel | None = None,
87
- protocol: schema_lib.SchemaProtocol = 'python',
87
+ protocol: str = 'python',
88
88
  returns_message: bool = False,
89
89
  **kwargs,
90
90
  ) -> Any:
91
- """Parse a natural language message based on schema.
92
-
93
- Examples:
94
-
95
- ```
96
- class FlightDuration(pg.Object):
97
- hours: int
98
- minutes: int
99
-
100
- class Flight(pg.Object):
101
- airline: str
102
- flight_number: str
103
- departure_airport_code: str
104
- arrival_airport_code: str
105
- departure_time: str
106
- arrival_time: str
107
- duration: FlightDuration
108
- stops: int
109
- price: float
110
-
111
- input = '''
112
- The flight is operated by United Airlines, has the flight number UA2631,
113
- departs from San Francisco International Airport (SFO), arrives at John
114
- F. Kennedy International Airport (JFK), It departs at 2023-09-07T05:15:00,
115
- arrives at 2023-09-07T12:12:00, has a duration of 7 hours and 57 minutes,
116
- makes 1 stop, and costs $227.
117
- '''
118
-
119
- r = lf.parse(input, Flight)
120
- assert isinstance(r, Flight)
121
- assert r.airline == 'United Airlines'
122
- assert r.departure_airport_code == 'SFO'
123
- assert r.duration.hour = 7
124
- ```
91
+ """Parses a natural language message into a structured object using an LLM.
92
+
93
+ `lf.parse` extracts structured information from a natural language string
94
+ or message according to a provided schema. It is the inverse of
95
+ `lf.describe`.
96
+
97
+ **Example:**
98
+
99
+ ```python
100
+ import langfun as lf
101
+ import pyglove as pg
102
+
103
+ class FlightDuration(pg.Object):
104
+ hours: int
105
+ minutes: int
106
+
107
+ class Flight(pg.Object):
108
+ airline: str
109
+ flight_number: str
110
+ departure_airport_code: str
111
+ arrival_airport_code: str
112
+ duration: FlightDuration
113
+ price: float
114
+
115
+ text = '''
116
+ The flight is UA2631 of United Airlines, from SFO to JFK,
117
+ duration is 7 hours and 57 minutes, costing $227.
118
+ '''
119
+
120
+ flight = lf.parse(text, Flight, lm=lf.llms.Gemini25Flash())
121
+ assert flight.airline == 'United Airlines'
122
+ assert flight.duration.hours == 7
123
+ ```
125
124
 
126
125
  Args:
127
126
  message: A `lf.Message` object or a string as the natural language input.
128
127
  It provides the complete context for the parsing.
129
- schema: A `lf.transforms.ParsingSchema` object or equivalent annotations.
130
- default: The default value if parsing failed. If not specified, error will
131
- be raised.
128
+ schema: A `lf.Schema` object or equivalent annotations.
129
+ default: The default value to return if parsing fails. If
130
+ `lf.RAISE_IF_HAS_ERROR` is used (default), an error will be raised
131
+ instead.
132
132
  user_prompt: An optional user prompt as the description or ask for the
133
- message, which provide more context for parsing.
133
+ message, which provides more context for parsing.
134
134
  lm: The language model to use. If not specified, the language model from
135
135
  `lf.context` context manager will be used.
136
- examples: An optional list of fewshot examples for helping parsing. If None,
137
- the default one-shot example will be added.
136
+ examples: An optional list of fewshot examples for guiding parsing. If None,
137
+ default examples will be used.
138
138
  include_context: If True, include the request sent to LLM for obtaining the
139
- response to pares. Otherwise include only the response.
139
+ response to parse. Otherwise include only the response.
140
140
  cache_seed: Seed for computing cache key. The cache key is determined by a
141
141
  tuple of (lm, prompt, cache seed). If None, cache will be disabled for
142
142
  the query even cache is configured by the LM.
@@ -146,10 +146,10 @@ def parse(
146
146
  `autofix_lm` from `lf.context` context manager will be used. Otherwise it
147
147
  will use `lm`.
148
148
  protocol: The protocol for schema/value representation. Applicable values
149
- are 'json' and 'python'. By default 'python' will be used.`
149
+ are 'json' and 'python'. By default 'python' will be used.
150
150
  returns_message: If True, returns `lf.Message` as the output, instead of
151
151
  returning the structured `message.result`.
152
- **kwargs: Keyword arguments passed to the `lf.structured.ParseStructure`
152
+ **kwargs: Keyword arguments passed to the `_ParseStructure`
153
153
  transform.
154
154
 
155
155
  Returns:
@@ -198,7 +198,7 @@ async def aparse(
198
198
  cache_seed: int | None = 0,
199
199
  autofix: int = 0,
200
200
  autofix_lm: lf.LanguageModel | None = None,
201
- protocol: schema_lib.SchemaProtocol = 'python',
201
+ protocol: str = 'python',
202
202
  returns_message: bool = False,
203
203
  **kwargs,
204
204
  ) -> Any:
@@ -223,7 +223,7 @@ async def aparse(
223
223
 
224
224
 
225
225
  def call(
226
- prompt: str | lf.Template,
226
+ prompt: Union[str, lf.Template, lf.Message],
227
227
  schema: Union[
228
228
  None, schema_lib.Schema, Type[Any], list[Type[Any]], dict[str, Any]
229
229
  ] = None,
@@ -236,31 +236,47 @@ def call(
236
236
  autofix: int = 0,
237
237
  autofix_lm: lf.LanguageModel | None = None,
238
238
  response_postprocess: Callable[[str], str] | None = None,
239
- protocol: schema_lib.SchemaProtocol = 'python',
239
+ protocol: str = 'python',
240
240
  returns_message: bool = False,
241
241
  **kwargs,
242
242
  ) -> Any:
243
- """Call a language model with prompt and formulate response in return type.
244
-
245
- Examples::
246
-
247
- # Call with constant string-type prompt.
248
- lf.call('Compute one plus one', lm=lf.llms.Gpt35())
249
- >> "two"
250
-
251
- # Call with returning a structured (int) type.
252
- lf.call('Compute one plus one', int, lm=lf.llms.Gpt35())
253
- >> 2
254
-
255
- # Call with a template string with variables.
256
- lf.call('Compute {{x}} plus {{y}}', int,
257
- x='one', y='one', lm=lf.llms.Gpt35())
258
- >> 2
259
-
260
- # Call with an `lf.Template` object with variables.
261
- lf.call(lf.Template('Compute {{x}} plus {{y}}', x=1), int,
262
- y=1, lm=lf.llms.Gpt35())
263
- >> 2
243
+ """Calls a language model and parses the response according to a schema.
244
+
245
+ `lf.call` first calls a language model with a prompt to obtain a natural
246
+ language response, then calls the language model again to parse this
247
+ response into a structured format defined by `schema`. If `schema` is not
248
+ provided, it returns the raw natural language response.
249
+
250
+ **Example:**
251
+
252
+ 1. **Call with a Natural Language Prompt**:
253
+ By default, `lf.call` with a string prompt returns a natural language
254
+ response:
255
+ ```python
256
+ r = lf.call('Compute one plus one', lm=lf.llms.Gpt4())
257
+ print(r)
258
+ # Output: 2
259
+ ```
260
+
261
+ 2. **Call with Structured Output**:
262
+ If `schema` is provided, `lf.call` parses the LLM response into the
263
+ specified schema using a second LM call:
264
+ ```python
265
+ r = lf.call('Compute one plus one', int, lm=lf.llms.Gpt4())
266
+ print(r)
267
+ # Output: 2
268
+ ```
269
+
270
+ 3. **Call with Templated Prompt**:
271
+ The prompt can be a template string with placeholders (e.g., `{{x}}`,
272
+ `{{y}}`), whose values are provided as keyword arguments:
273
+ ```python
274
+ r = lf.call(
275
+ 'Compute {{x}} plus {{y}}',
276
+ int, x='one', y='one', lm=lf.llms.Gpt4())
277
+ print(r)
278
+ # Output: 2
279
+ ```
264
280
 
265
281
  Args:
266
282
  prompt: User prompt that will be sent to LM, which could be a string or a
@@ -272,10 +288,10 @@ def call(
272
288
  If not specified, `lm` from `lf.context` context manager will be used.
273
289
  parsing_lm: Language model that will be used for parsing. If None, the `lm`
274
290
  for prompting the LM will be used.
275
- parsing_examples: Examples for parsing the output. If None,
276
- `lf.structured.DEFAULT_PARSE_EXAMPLES` will be used.
291
+ parsing_examples: Examples for parsing the output. If None, no examples
292
+ will be used for parsing.
277
293
  parsing_include_context: If True, include the request sent to LLM for
278
- obtaining the response to pares. Otherwise include only the response.
294
+ obtaining the response to parse. Otherwise include only the response.
279
295
  cache_seed: Seed for computing cache key. The cache key is determined by a
280
296
  tuple of (lm, prompt, cache seed). If None, cache will be disabled for
281
297
  the query even cache is configured by the LM.
@@ -284,10 +300,10 @@ def call(
284
300
  autofix_lm: The language model to use for autofix. If not specified, the
285
301
  `autofix_lm` from `lf.context` context manager will be used. Otherwise it
286
302
  will use `parsing_lm`.
287
- response_postprocess: A callback function to post process the text response
303
+ response_postprocess: A callback function to post-process the text response
288
304
  before sending for parsing.
289
305
  protocol: The protocol for schema/value representation. Applicable values
290
- are 'json' and 'python'. By default 'python' will be used.`
306
+ are 'json' and 'python'. By default 'python' will be used.
291
307
  returns_message: If True, return a `lf.Message` object instead of its text
292
308
  or result.
293
309
  **kwargs: Keyword arguments. Including options that control the calling
@@ -351,7 +367,7 @@ async def acall(
351
367
  autofix: int = 0,
352
368
  autofix_lm: lf.LanguageModel | None = None,
353
369
  response_postprocess: Callable[[str], str] | None = None,
354
- protocol: schema_lib.SchemaProtocol = 'python',
370
+ protocol: str = 'python',
355
371
  returns_message: bool = False,
356
372
  **kwargs,
357
373
  ) -> Any:
@@ -376,7 +392,7 @@ async def acall(
376
392
 
377
393
 
378
394
  def _parse_structure_cls(
379
- protocol: schema_lib.SchemaProtocol,
395
+ protocol: str,
380
396
  ) -> Type[_ParseStructure]:
381
397
  if protocol == 'json':
382
398
  return _ParseStructureJson
@@ -387,7 +403,7 @@ def _parse_structure_cls(
387
403
 
388
404
 
389
405
  def default_parse_examples() -> list[mapping.MappingExample]:
390
- """Default parsing examples."""
406
+ """Returns default parsing examples."""
391
407
 
392
408
  class AdditionResults(pg.Object):
393
409
  one_plus_one_equals: int | None
@@ -745,9 +745,6 @@ class CallTest(unittest.TestCase):
745
745
  parsing.call('what is one plus two?', int, lm=lm, autofix=3), 3
746
746
  )
747
747
 
748
- def test_call_with_structured_input(self):
749
- self.assertEqual(parsing.call(1, lm=fake.StaticResponse('2')), '2')
750
-
751
748
  def test_call_with_response_postprocess(self):
752
749
  target_str = '@TARGET_STR@'
753
750
  random_str = '!RANDOM_STR!'