langflow-base-nightly 0.5.1.dev3__py3-none-any.whl → 0.5.1.dev4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (935) hide show
  1. langflow/__init__.py +215 -0
  2. langflow/__main__.py +16 -2
  3. langflow/alembic/versions/006b3990db50_add_unique_constraints.py +4 -7
  4. langflow/alembic/versions/012fb73ac359_add_folder_table.py +4 -5
  5. langflow/alembic/versions/0ae3a2674f32_update_the_columns_that_need_to_change_.py +11 -20
  6. langflow/alembic/versions/0b8757876a7c_.py +4 -7
  7. langflow/alembic/versions/0d60fcbd4e8e_create_vertex_builds_table.py +4 -6
  8. langflow/alembic/versions/1a110b568907_replace_credential_table_with_variable.py +4 -5
  9. langflow/alembic/versions/1b8b740a6fa3_remove_fk_constraint_in_message_.py +32 -27
  10. langflow/alembic/versions/1c79524817ed_add_unique_constraints_per_user_in_.py +4 -5
  11. langflow/alembic/versions/1d90f8a0efe1_update_description_columns_type.py +4 -5
  12. langflow/alembic/versions/1eab2c3eb45e_event_error.py +14 -15
  13. langflow/alembic/versions/1ef9c4f3765d_.py +5 -10
  14. langflow/alembic/versions/1f4d6df60295_add_default_fields_column.py +4 -5
  15. langflow/alembic/versions/260dbcc8b680_adds_tables.py +4 -5
  16. langflow/alembic/versions/29fe8f1f806b_add_missing_index.py +4 -5
  17. langflow/alembic/versions/2ac71eb9c3ae_adds_credential_table.py +4 -7
  18. langflow/alembic/versions/3bb0ddf32dfb_add_unique_constraints_per_user_in_flow_.py +4 -5
  19. langflow/alembic/versions/4e5980a44eaa_fix_date_times_again.py +1 -2
  20. langflow/alembic/versions/58b28437a398_modify_nullable.py +1 -2
  21. langflow/alembic/versions/5ace73a7f223_new_remove_table_upgrade_op.py +6 -12
  22. langflow/alembic/versions/631faacf5da2_add_webhook_columns.py +4 -5
  23. langflow/alembic/versions/63b9c451fd30_add_icon_and_icon_bg_color_to_flow.py +4 -5
  24. langflow/alembic/versions/66f72f04a1de_add_mcp_support_with_project_settings_.py +21 -23
  25. langflow/alembic/versions/67cc006d50bf_add_profile_image_column.py +4 -5
  26. langflow/alembic/versions/6e7b581b5648_fix_nullable.py +4 -5
  27. langflow/alembic/versions/7843803a87b5_store_updates.py +4 -6
  28. langflow/alembic/versions/79e675cb6752_change_datetime_type.py +1 -2
  29. langflow/alembic/versions/7d2162acc8b2_adds_updated_at_and_folder_cols.py +4 -10
  30. langflow/alembic/versions/90be8e2ed91e_create_transactions_table.py +4 -6
  31. langflow/alembic/versions/93e2705fa8d6_add_column_save_path_to_flow.py +7 -9
  32. langflow/alembic/versions/a72f5cf9c2f9_add_endpoint_name_col.py +4 -5
  33. langflow/alembic/versions/b2fa308044b5_add_unique_constraints.py +1 -2
  34. langflow/alembic/versions/bc2f01c40e4a_new_fixes.py +4 -5
  35. langflow/alembic/versions/c153816fd85f_set_name_and_value_to_not_nullable.py +4 -5
  36. langflow/alembic/versions/d066bfd22890_add_message_table.py +4 -4
  37. langflow/alembic/versions/d2d475a1f7c0_add_tags_column_to_flow.py +12 -13
  38. langflow/alembic/versions/d3dbf656a499_add_gradient_column_in_flow.py +12 -12
  39. langflow/alembic/versions/d9a6ea21edcd_rename_default_folder.py +7 -10
  40. langflow/alembic/versions/dd9e0804ebd1_add_v2_file_table.py +8 -7
  41. langflow/alembic/versions/e3162c1804e6_add_persistent_locked_state.py +10 -10
  42. langflow/alembic/versions/e3bc869fa272_fix_nullable.py +4 -5
  43. langflow/alembic/versions/e56d87f8994a_add_optins_column_to_user.py +13 -14
  44. langflow/alembic/versions/e5a65ecff2cd_nullable_in_vertex_build.py +4 -5
  45. langflow/alembic/versions/eb5866d51fd2_change_columns_to_be_nullable.py +4 -5
  46. langflow/alembic/versions/eb5e72293a8e_add_error_and_edit_flags_to_message.py +4 -5
  47. langflow/alembic/versions/f3b2d1f1002d_add_column_access_type_to_flow.py +19 -15
  48. langflow/alembic/versions/f5ee9749d1a6_user_id_can_be_null_in_flow.py +4 -6
  49. langflow/alembic/versions/fd531f8868b1_fix_credential_table.py +5 -8
  50. langflow/api/build.py +5 -4
  51. langflow/api/health_check_router.py +1 -1
  52. langflow/api/limited_background_tasks.py +1 -1
  53. langflow/api/log_router.py +1 -2
  54. langflow/api/utils.py +2 -2
  55. langflow/api/v1/base.py +1 -2
  56. langflow/api/v1/callback.py +4 -9
  57. langflow/api/v1/chat.py +6 -7
  58. langflow/api/v1/endpoints.py +15 -15
  59. langflow/api/v1/files.py +1 -1
  60. langflow/api/v1/flows.py +1 -1
  61. langflow/api/v1/knowledge_bases.py +1 -1
  62. langflow/api/v1/mcp.py +1 -1
  63. langflow/api/v1/mcp_projects.py +14 -5
  64. langflow/api/v1/mcp_utils.py +3 -3
  65. langflow/api/v1/openai_responses.py +4 -4
  66. langflow/api/v1/schemas.py +3 -38
  67. langflow/api/v1/starter_projects.py +61 -3
  68. langflow/api/v1/store.py +1 -1
  69. langflow/api/v1/validate.py +3 -3
  70. langflow/api/v1/voice_mode.py +2 -2
  71. langflow/api/v2/files.py +1 -1
  72. langflow/api/v2/mcp.py +2 -2
  73. langflow/base/__init__.py +11 -0
  74. langflow/base/agents/__init__.py +3 -0
  75. langflow/base/data/__init__.py +2 -4
  76. langflow/base/data/utils.py +2 -197
  77. langflow/base/embeddings/__init__.py +3 -0
  78. langflow/base/io/__init__.py +7 -0
  79. langflow/base/io/chat.py +5 -18
  80. langflow/base/io/text.py +2 -21
  81. langflow/base/knowledge_bases/__init__.py +3 -0
  82. langflow/base/memory/__init__.py +3 -0
  83. langflow/base/models/__init__.py +2 -2
  84. langflow/base/models/openai_constants.py +6 -120
  85. langflow/base/prompts/__init__.py +3 -0
  86. langflow/base/prompts/api_utils.py +2 -223
  87. langflow/base/textsplitters/__init__.py +3 -0
  88. langflow/base/tools/__init__.py +3 -0
  89. langflow/base/vectorstores/__init__.py +3 -0
  90. langflow/components/__init__.py +7 -259
  91. langflow/components/agents.py +6 -0
  92. langflow/components/anthropic.py +6 -0
  93. langflow/components/data.py +6 -0
  94. langflow/components/helpers.py +6 -0
  95. langflow/components/knowledge_bases/ingestion.py +13 -14
  96. langflow/components/knowledge_bases/retrieval.py +8 -7
  97. langflow/components/openai.py +6 -0
  98. langflow/components/processing/__init__.py +1 -117
  99. langflow/components/processing/converter.py +3 -149
  100. langflow/custom/__init__.py +26 -3
  101. langflow/custom/custom_component/__init__.py +4 -0
  102. langflow/custom/custom_component/component.py +20 -1738
  103. langflow/custom/custom_component/component_with_cache.py +1 -8
  104. langflow/custom/custom_component/custom_component.py +1 -552
  105. langflow/custom/utils.py +1 -872
  106. langflow/custom/validate.py +1 -0
  107. langflow/events/event_manager.py +18 -108
  108. langflow/field_typing/__init__.py +6 -6
  109. langflow/field_typing/constants.py +87 -122
  110. langflow/field_typing/range_spec.py +2 -32
  111. langflow/frontend/assets/{SlackIcon-Cc7Qnzki.js → SlackIcon-v88osOTA.js} +1 -1
  112. langflow/frontend/assets/{Wikipedia-7ulMZY46.js → Wikipedia-DD_S2k00.js} +1 -1
  113. langflow/frontend/assets/{Wolfram-By9PGsHS.js → Wolfram-EO2C5noN.js} +1 -1
  114. langflow/frontend/assets/{index-DVLIDc2_.js → index-1Gv1mfvk.js} +1 -1
  115. langflow/frontend/assets/{index-MVW4HTEk.js → index-7v-bzlzf.js} +1 -1
  116. langflow/frontend/assets/{index-CUzlcce2.js → index-9CbMazbV.js} +1 -1
  117. langflow/frontend/assets/{index-CU16NJD7.js → index-B8ZHP8g2.js} +1 -1
  118. langflow/frontend/assets/{index-v8eXbWlM.js → index-B8y2e6vN.js} +1 -1
  119. langflow/frontend/assets/{index-BX_asvRB.js → index-BBRUGsyr.js} +1 -1
  120. langflow/frontend/assets/{index-9FL5xjkL.js → index-BGwqQwlh.js} +1 -1
  121. langflow/frontend/assets/{index-BAn-AzCS.js → index-BIq-k-FG.js} +1 -1
  122. langflow/frontend/assets/{index-D5c2nNvp.js → index-BSN73YP8.js} +1 -1
  123. langflow/frontend/assets/{index-DMCerPJM.js → index-BU8R8jRn.js} +1 -1
  124. langflow/frontend/assets/{index-CvSoff-8.js → index-BV6yx8ey.js} +1 -1
  125. langflow/frontend/assets/{index-BISPW-f6.js → index-BYIsg-Eh.js} +1 -1
  126. langflow/frontend/assets/{index-GzOGB_fo.js → index-B_ksDBSQ.js} +1 -1
  127. langflow/frontend/assets/{index-BIqEYjNT.js → index-Ba1UOZ9A.js} +1 -1
  128. langflow/frontend/assets/{index-ByxGmq5p.js → index-Ba9tKRQg.js} +1 -1
  129. langflow/frontend/assets/{index-BLEWsL1U.js → index-Bbfaw8ca.js} +1 -1
  130. langflow/frontend/assets/{index-C_MhBX6R.js → index-BbuGqvAx.js} +1 -1
  131. langflow/frontend/assets/{index-RH_I78z_.js → index-BeoXu1YX.js} +1 -1
  132. langflow/frontend/assets/{index-cYFKmtmg.js → index-BfjZmOnH.js} +1 -1
  133. langflow/frontend/assets/{index-Bm9i8F4W.js → index-Bjzy_HZB.js} +1 -1
  134. langflow/frontend/assets/{index-_szO7sta.js → index-BofEkpYB.js} +1 -1
  135. langflow/frontend/assets/{index-DP1oE6QB.js → index-Bp7Mty2H.js} +1 -1
  136. langflow/frontend/assets/{index-CeswGUz3.js → index-BqX1H6yK.js} +1 -1
  137. langflow/frontend/assets/{index-C8pI0lzi.js → index-BqtBAJAN.js} +1 -1
  138. langflow/frontend/assets/{index-BusCv3bR.js → index-Bsfraj7A.js} +1 -1
  139. langflow/frontend/assets/{index-BWnKMRFJ.js → index-BtFl7fER.js} +1 -1
  140. langflow/frontend/assets/{index-DnlVWWU8.js → index-BvX993Sv.js} +1 -1
  141. langflow/frontend/assets/{index-C676MS3I.js → index-BvgQ2vzM.js} +1 -1
  142. langflow/frontend/assets/{index-DJ6HD14g.js → index-BwY98u8n.js} +1 -1
  143. langflow/frontend/assets/{index-C51yNvIL.js → index-C-RIJAOS.js} +1 -1
  144. langflow/frontend/assets/{index-DiblXWmk.js → index-C1K6A38P.js} +1 -1
  145. langflow/frontend/assets/{index-Co__gFM1.js → index-C3Vwhx0t.js} +1 -1
  146. langflow/frontend/assets/{index-Coi86oqP.js → index-C5XUG_gr.js} +1 -1
  147. langflow/frontend/assets/{index-jwzN3Jd_.js → index-C6ouLG9o.js} +1 -1
  148. langflow/frontend/assets/{index-CQQ-4XMS.js → index-C7ZJ_Z6f.js} +1 -1
  149. langflow/frontend/assets/{index-Bl7RpmrB.js → index-CCOGIwGY.js} +1 -1
  150. langflow/frontend/assets/{index-CVkIdc6y.js → index-CCcye2rt.js} +1 -1
  151. langflow/frontend/assets/{index-bMhyLtgS.js → index-CFR4yJQB.js} +1 -1
  152. langflow/frontend/assets/{index-aAgSKWb3.js → index-CIGmPP0H.js} +1 -1
  153. langflow/frontend/assets/{index-BGt6jQ4x.js → index-CJmMEa6d.js} +1 -1
  154. langflow/frontend/assets/{index-DX7JcSMz.js → index-CJxD7lyU.js} +1 -1
  155. langflow/frontend/assets/{index-BZ-A4K98.js → index-CL_vu6ut.js} +1 -1
  156. langflow/frontend/assets/{index-BMpKFGhI.js → index-COf3UnBn.js} +1 -1
  157. langflow/frontend/assets/{index-xN8ogFdo.js → index-CV9650h_.js} +1 -1
  158. langflow/frontend/assets/{index-OsUvqIUr.js → index-CVDzych0.js} +1 -1
  159. langflow/frontend/assets/{index-BH7AyHxp.js → index-CWIHsC4D.js} +1 -1
  160. langflow/frontend/assets/{index-mjwtJmkP.js → index-CXCnFZ0L.js} +1 -1
  161. langflow/frontend/assets/{index-3jlSQi5Y.js → index-Ca_Pw_Dn.js} +1 -1
  162. langflow/frontend/assets/{index-D-SnFlhU.js → index-Cbb3bX9e.js} +1 -1
  163. langflow/frontend/assets/{index--e0oQqZh.js → index-CcJtOz-Z.js} +1 -1
  164. langflow/frontend/assets/{index-S-sc0Cm9.js → index-CfTbTHEv.js} +1 -1
  165. langflow/frontend/assets/{index-Deu8rlaZ.js → index-ChoxDAgX.js} +1 -1
  166. langflow/frontend/assets/{index-lnF9Eqr2.js → index-Cn4gw8aE.js} +1 -1
  167. langflow/frontend/assets/{index-C_NwzK6j.js → index-CnpLg4zX.js} +1 -1
  168. langflow/frontend/assets/{index-DznH7Jbq.js → index-Cpao2omG.js} +1 -1
  169. langflow/frontend/assets/{index-DpWrk8mA.js → index-CqoxM01j.js} +1 -1
  170. langflow/frontend/assets/{index-Bw-TIIC6.js → index-CrHf2Ic1.js} +1 -1
  171. langflow/frontend/assets/{index-DmYLDQag.js → index-CrV0uIjp.js} +1 -1
  172. langflow/frontend/assets/{index-Dp7ZQyL3.js → index-CssADaak.js} +1 -1
  173. langflow/frontend/assets/{index-CNh0rwur.js → index-CtJdNLy9.js} +1 -1
  174. langflow/frontend/assets/{index-Ca1b7Iag.js → index-CyeWD2dh.js} +1 -1
  175. langflow/frontend/assets/{index-DcApTyZ7.js → index-D1xzD7uc.js} +1 -1
  176. langflow/frontend/assets/{index-B3GvPjhD.js → index-D6MuXC4L.js} +1 -1
  177. langflow/frontend/assets/{index-Cw0UComa.js → index-D8w9zvIF.js} +1 -1
  178. langflow/frontend/assets/{index-C-2MRYoJ.js → index-D98Gn0A6.js} +1 -1
  179. langflow/frontend/assets/{index-aWnZIwHd.js → index-DBhjpWkf.js} +1 -1
  180. langflow/frontend/assets/{index-nw3WF9lY.js → index-DCCRJzcY.js} +1 -1
  181. langflow/frontend/assets/{index-RjeC0kaX.js → index-DCTRSkEW.js} +1 -1
  182. langflow/frontend/assets/{index-B_kBTgxV.js → index-DCUfitVj.js} +1 -1
  183. langflow/frontend/assets/{index-ChsGhZn3.js → index-DDdz-Xcl.js} +1 -1
  184. langflow/frontend/assets/{index-7yAHPRxv.js → index-DGdMwZjG.js} +1 -1
  185. langflow/frontend/assets/{index-DjQElpEg.js → index-DGtl2vMw.js} +1 -1
  186. langflow/frontend/assets/{index-BCXhKCOK.js → index-DHVdkrni.js} +1 -1
  187. langflow/frontend/assets/{index-S8uJXTOq.js → index-DJBWwjgl.js} +1 -1
  188. langflow/frontend/assets/{index-qiVTWUuf.js → index-DMAkJ_qX.js} +1 -1
  189. langflow/frontend/assets/{index-D-WStJI6.js → index-DMEvEQI5.js} +1 -1
  190. langflow/frontend/assets/{index-BhqVw9WQ.js → index-DNGRoOsp.js} +1 -1
  191. langflow/frontend/assets/{index-Cu7vC48Y.js → index-DNT_TUTa.js} +1 -1
  192. langflow/frontend/assets/{index-Bhcv5M0n.js → index-DQKOH_9K.js} +1 -1
  193. langflow/frontend/assets/{index-CLcaktde.js → index-DQhqqtqQ.js} +1 -1
  194. langflow/frontend/assets/{index-DZVgPCio.js → index-DRM7KKnG.js} +1 -1
  195. langflow/frontend/assets/{index-uybez8MR.js → index-DSCtl3a5.js} +1 -1
  196. langflow/frontend/assets/{index-CJ5A6STv.js → index-DSLNlm0Z.js} +1 -1
  197. langflow/frontend/assets/{index-Drg8me2a.js → index-DT-PspE-.js} +1 -1
  198. langflow/frontend/assets/{index-DsEZjOcp.js → index-DTpbH-p8.js} +1 -1
  199. langflow/frontend/assets/{index-DrXXKzpD.js → index-DWV6MsIq.js} +1 -1
  200. langflow/frontend/assets/{index-4JIEdyIM.js → index-DWeL4US_.js} +1 -1
  201. langflow/frontend/assets/{index-BlDsBQ_1.js → index-DYKZHhpU.js} +1 -1
  202. langflow/frontend/assets/{index-DFY8YFbC.js → index-DZyQHiMR.js} +1 -1
  203. langflow/frontend/assets/{index-CKPZpkQk.js → index-Dc6qVuSa.js} +1 -1
  204. langflow/frontend/assets/{index-yyAaYjLR.js → index-DkYuicnC.js} +1 -1
  205. langflow/frontend/assets/{index-DmVt5Jlx.js → index-Dlj_2mMs.js} +1 -1
  206. langflow/frontend/assets/{index-BvRIG6P5.js → index-DmGJUrEp.js} +1 -1
  207. langflow/frontend/assets/{index-BWFIrwW1.js → index-Dn6hpCAZ.js} +1 -1
  208. langflow/frontend/assets/{index-Cb5G9Ifd.js → index-DrJU8Fgb.js} +1 -1
  209. langflow/frontend/assets/{index-COoTCxvs.js → index-DsWfdCzp.js} +1 -1
  210. langflow/frontend/assets/{index-ZjeocHyu.js → index-DvCPWs2_.js} +1 -1
  211. langflow/frontend/assets/{index-B5LHnuQR.js → index-DvPVq7OP.js} +1 -1
  212. langflow/frontend/assets/{index-BnCnYnao.js → index-Dw71ufW4.js} +1 -1
  213. langflow/frontend/assets/{index-AALDfCyt.js → index-DxkJactf.js} +1 -1
  214. langflow/frontend/assets/{index-k9jP5chN.js → index-Dz2GTphU.js} +1 -1
  215. langflow/frontend/assets/{index-BdjfHsrf.js → index-Fvd524_c.js} +1 -1
  216. langflow/frontend/assets/{index-AKVkmT4S.js → index-GAQ0Mk2M.js} +1 -1
  217. langflow/frontend/assets/{index-BZSa2qz7.js → index-Hm5-4ItD.js} +1 -1
  218. langflow/frontend/assets/{index-DbfS_UH-.js → index-IT67FzsK.js} +1 -1
  219. langflow/frontend/assets/{index-BLXN681C.js → index-ItYiij1i.js} +1 -1
  220. langflow/frontend/assets/{index-CiklyQU3.js → index-IuR_FEdB.js} +1 -1
  221. langflow/frontend/assets/{index-xV6ystWy.js → index-Jj60FQkv.js} +1 -1
  222. langflow/frontend/assets/{index-C_157Mb-.js → index-LlvshmVz.js} +1 -1
  223. langflow/frontend/assets/{index-CDphUsa3.js → index-LwKh3I_W.js} +1 -1
  224. langflow/frontend/assets/{index-BrDz-PxE.js → index-N-xxmKKH.js} +1 -1
  225. langflow/frontend/assets/{index-BsdLyYMY.js → index-RwpaHIAH.js} +1 -1
  226. langflow/frontend/assets/{index-Cu2Xr6_j.js → index-TVvsp-xh.js} +1 -1
  227. langflow/frontend/assets/{index-CPiM2oyj.js → index-TdE2u9zP.js} +1 -1
  228. langflow/frontend/assets/{index-DOj_QWqG.js → index-_x-NkYeW.js} +1 -1
  229. langflow/frontend/assets/{index-YJsAl7vm.js → index-a-YclEbW.js} +1 -1
  230. langflow/frontend/assets/{index-5-CSw2-z.js → index-e9MFKUCo.js} +1 -1
  231. langflow/frontend/assets/{index-BSwBVwyF.js → index-krPr8f2F.js} +1 -1
  232. langflow/frontend/assets/{index-Df6psZEj.js → index-kveiUWuL.js} +1 -1
  233. langflow/frontend/assets/{index-CF4_Og1m.js → index-lE3oSjJi.js} +1 -1
  234. langflow/frontend/assets/{index-C6nzdeYx.js → index-lM3UYg7F.js} +1 -1
  235. langflow/frontend/assets/{index-C-wnbBBY.js → index-nsRk3qgA.js} +1 -1
  236. langflow/frontend/assets/{index-D234yKNJ.js → index-pBO0SZLD.js} +4 -4
  237. langflow/frontend/assets/{index-BMvp94tO.js → index-pbZHsbuE.js} +1 -1
  238. langflow/frontend/assets/{index-hg2y9OAt.js → index-sfX3aWyp.js} +1 -1
  239. langflow/frontend/assets/{index-DTCrijba.js → index-xQz-VJ0-.js} +1 -1
  240. langflow/frontend/assets/{index-SB4rw8D5.js → index-yfcsaHS6.js} +1 -1
  241. langflow/frontend/assets/{index-C-bjC2sz.js → index-zcGjo9fx.js} +1 -1
  242. langflow/frontend/assets/lazyIconImports-BjqDmNYG.js +2 -0
  243. langflow/frontend/assets/{use-post-add-user-JUeLDErC.js → use-post-add-user-w3vpKSOB.js} +1 -1
  244. langflow/frontend/index.html +1 -1
  245. langflow/graph/__init__.py +4 -4
  246. langflow/helpers/data.py +2 -2
  247. langflow/helpers/flow.py +9 -7
  248. langflow/helpers/user.py +2 -2
  249. langflow/initial_setup/setup.py +9 -9
  250. langflow/initial_setup/starter_projects/Basic Prompt Chaining.json +119 -41
  251. langflow/initial_setup/starter_projects/Basic Prompting.json +45 -19
  252. langflow/initial_setup/starter_projects/Blog Writer.json +53 -21
  253. langflow/initial_setup/starter_projects/Custom Component Generator.json +121 -97
  254. langflow/initial_setup/starter_projects/Document Q&A.json +46 -18
  255. langflow/initial_setup/starter_projects/Financial Report Parser.json +49 -17
  256. langflow/initial_setup/starter_projects/Hybrid Search RAG.json +89 -50
  257. langflow/initial_setup/starter_projects/Image Sentiment Analysis.json +86 -22
  258. langflow/initial_setup/starter_projects/Instagram Copywriter.json +210 -57
  259. langflow/initial_setup/starter_projects/Invoice Summarizer.json +132 -35
  260. langflow/initial_setup/starter_projects/Knowledge Ingestion.json +8 -8
  261. langflow/initial_setup/starter_projects/Knowledge Retrieval.json +8 -8
  262. langflow/initial_setup/starter_projects/Market Research.json +174 -48
  263. langflow/initial_setup/starter_projects/Meeting Summary.json +102 -38
  264. langflow/initial_setup/starter_projects/Memory Chatbot.json +49 -21
  265. langflow/initial_setup/starter_projects/News Aggregator.json +140 -39
  266. langflow/initial_setup/starter_projects/Nvidia Remix.json +153 -181
  267. langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +132 -35
  268. langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json +106 -43
  269. langflow/initial_setup/starter_projects/Price Deal Finder.json +136 -39
  270. langflow/initial_setup/starter_projects/Research Agent.json +206 -53
  271. langflow/initial_setup/starter_projects/Research Translation Loop.json +66 -34
  272. langflow/initial_setup/starter_projects/SEO Keyword Generator.json +41 -15
  273. langflow/initial_setup/starter_projects/SaaS Pricing.json +128 -31
  274. langflow/initial_setup/starter_projects/Search agent.json +132 -35
  275. langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +422 -98
  276. langflow/initial_setup/starter_projects/Simple Agent.json +150 -42
  277. langflow/initial_setup/starter_projects/Social Media Agent.json +150 -42
  278. langflow/initial_setup/starter_projects/Text Sentiment Analysis.json +120 -24
  279. langflow/initial_setup/starter_projects/Travel Planning Agents.json +418 -94
  280. langflow/initial_setup/starter_projects/Twitter Thread Generator.json +69 -37
  281. langflow/initial_setup/starter_projects/Vector Store RAG.json +66 -38
  282. langflow/initial_setup/starter_projects/Youtube Analysis.json +191 -51
  283. langflow/initial_setup/starter_projects/basic_prompting.py +4 -4
  284. langflow/initial_setup/starter_projects/blog_writer.py +5 -5
  285. langflow/initial_setup/starter_projects/complex_agent.py +8 -8
  286. langflow/initial_setup/starter_projects/document_qa.py +5 -5
  287. langflow/initial_setup/starter_projects/hierarchical_tasks_agent.py +8 -8
  288. langflow/initial_setup/starter_projects/memory_chatbot.py +6 -6
  289. langflow/initial_setup/starter_projects/sequential_tasks_agent.py +7 -7
  290. langflow/initial_setup/starter_projects/vector_store_rag.py +8 -8
  291. langflow/inputs/__init__.py +3 -2
  292. langflow/inputs/constants.py +3 -2
  293. langflow/inputs/input_mixin.py +49 -310
  294. langflow/inputs/inputs.py +72 -703
  295. langflow/inputs/validators.py +2 -18
  296. langflow/interface/__init__.py +4 -0
  297. langflow/interface/components.py +3 -491
  298. langflow/interface/initialize/loading.py +7 -6
  299. langflow/interface/listing.py +3 -25
  300. langflow/interface/run.py +1 -1
  301. langflow/interface/utils.py +3 -111
  302. langflow/io/__init__.py +2 -2
  303. langflow/io/schema.py +11 -302
  304. langflow/load/__init__.py +4 -2
  305. langflow/load/utils.py +2 -96
  306. langflow/logging/__init__.py +2 -1
  307. langflow/logging/setup.py +1 -1
  308. langflow/main.py +8 -5
  309. langflow/memory.py +12 -6
  310. langflow/middleware.py +1 -1
  311. langflow/processing/process.py +7 -7
  312. langflow/schema/__init__.py +22 -5
  313. langflow/schema/artifact.py +1 -1
  314. langflow/schema/data.py +5 -303
  315. langflow/schema/dataframe.py +2 -205
  316. langflow/schema/graph.py +4 -45
  317. langflow/schema/image.py +2 -67
  318. langflow/schema/message.py +6 -470
  319. langflow/schema/playground_events.py +5 -6
  320. langflow/schema/schema.py +24 -117
  321. langflow/serialization/constants.py +3 -2
  322. langflow/serialization/serialization.py +1 -1
  323. langflow/server.py +1 -2
  324. langflow/services/__init__.py +1 -2
  325. langflow/services/auth/mcp_encryption.py +1 -1
  326. langflow/services/auth/service.py +1 -1
  327. langflow/services/auth/utils.py +5 -5
  328. langflow/services/cache/disk.py +2 -2
  329. langflow/services/cache/factory.py +2 -2
  330. langflow/services/cache/service.py +2 -2
  331. langflow/services/cache/utils.py +0 -11
  332. langflow/services/database/factory.py +1 -1
  333. langflow/services/database/models/flow/model.py +1 -1
  334. langflow/services/database/models/message/crud.py +2 -1
  335. langflow/services/database/models/transactions/crud.py +1 -1
  336. langflow/services/database/models/user/crud.py +1 -1
  337. langflow/services/database/service.py +2 -2
  338. langflow/services/database/utils.py +1 -2
  339. langflow/services/deps.py +12 -17
  340. langflow/services/enhanced_manager.py +71 -0
  341. langflow/services/factory.py +14 -7
  342. langflow/services/flow/flow_runner.py +4 -4
  343. langflow/services/job_queue/service.py +2 -1
  344. langflow/services/manager.py +14 -130
  345. langflow/services/schema.py +0 -1
  346. langflow/services/session/service.py +3 -2
  347. langflow/services/settings/__init__.py +0 -3
  348. langflow/services/settings/base.py +16 -549
  349. langflow/services/settings/factory.py +2 -21
  350. langflow/services/settings/feature_flags.py +2 -11
  351. langflow/services/settings/service.py +2 -31
  352. langflow/services/shared_component_cache/factory.py +1 -1
  353. langflow/services/socket/service.py +1 -1
  354. langflow/services/socket/utils.py +1 -8
  355. langflow/services/state/factory.py +1 -1
  356. langflow/services/state/service.py +3 -2
  357. langflow/services/storage/factory.py +2 -2
  358. langflow/services/storage/local.py +1 -2
  359. langflow/services/storage/s3.py +1 -2
  360. langflow/services/storage/service.py +2 -1
  361. langflow/services/store/factory.py +1 -1
  362. langflow/services/store/service.py +2 -2
  363. langflow/services/store/utils.py +1 -2
  364. langflow/services/task/service.py +2 -1
  365. langflow/services/task/temp_flow_cleanup.py +1 -1
  366. langflow/services/telemetry/factory.py +1 -1
  367. langflow/services/telemetry/service.py +2 -3
  368. langflow/services/tracing/arize_phoenix.py +3 -3
  369. langflow/services/tracing/base.py +1 -1
  370. langflow/services/tracing/factory.py +1 -1
  371. langflow/services/tracing/langfuse.py +2 -2
  372. langflow/services/tracing/langsmith.py +2 -2
  373. langflow/services/tracing/langwatch.py +4 -4
  374. langflow/services/tracing/opik.py +2 -2
  375. langflow/services/tracing/service.py +17 -11
  376. langflow/services/tracing/traceloop.py +2 -2
  377. langflow/services/tracing/utils.py +1 -1
  378. langflow/services/utils.py +54 -9
  379. langflow/services/variable/factory.py +1 -1
  380. langflow/services/variable/kubernetes.py +2 -3
  381. langflow/services/variable/kubernetes_secrets.py +1 -2
  382. langflow/services/variable/service.py +2 -3
  383. langflow/template/__init__.py +2 -9
  384. langflow/template/field/__init__.py +3 -0
  385. langflow/template/field/base.py +2 -256
  386. langflow/template/frontend_node.py +3 -0
  387. langflow/template/utils.py +2 -216
  388. langflow/utils/constants.py +28 -204
  389. langflow/utils/lazy_load.py +3 -14
  390. langflow/utils/schemas.py +2 -3
  391. langflow/utils/template_validation.py +2 -2
  392. langflow/utils/util.py +59 -479
  393. langflow/utils/validate.py +2 -488
  394. langflow/utils/voice_utils.py +1 -2
  395. langflow/worker.py +1 -1
  396. {langflow_base_nightly-0.5.1.dev3.dist-info → langflow_base_nightly-0.5.1.dev4.dist-info}/METADATA +2 -1
  397. langflow_base_nightly-0.5.1.dev4.dist-info/RECORD +633 -0
  398. langflow/base/agents/agent.py +0 -267
  399. langflow/base/agents/callback.py +0 -130
  400. langflow/base/agents/context.py +0 -109
  401. langflow/base/agents/crewai/__init__.py +0 -0
  402. langflow/base/agents/crewai/crew.py +0 -231
  403. langflow/base/agents/crewai/tasks.py +0 -12
  404. langflow/base/agents/default_prompts.py +0 -23
  405. langflow/base/agents/errors.py +0 -15
  406. langflow/base/agents/events.py +0 -346
  407. langflow/base/agents/utils.py +0 -205
  408. langflow/base/astra_assistants/__init__.py +0 -0
  409. langflow/base/astra_assistants/util.py +0 -171
  410. langflow/base/chains/__init__.py +0 -0
  411. langflow/base/chains/model.py +0 -19
  412. langflow/base/composio/__init__.py +0 -0
  413. langflow/base/composio/composio_base.py +0 -1297
  414. langflow/base/compressors/__init__.py +0 -0
  415. langflow/base/compressors/model.py +0 -60
  416. langflow/base/constants.py +0 -46
  417. langflow/base/curl/__init__.py +0 -0
  418. langflow/base/curl/parse.py +0 -188
  419. langflow/base/data/base_file.py +0 -685
  420. langflow/base/data/docling_utils.py +0 -245
  421. langflow/base/document_transformers/__init__.py +0 -0
  422. langflow/base/document_transformers/model.py +0 -43
  423. langflow/base/embeddings/aiml_embeddings.py +0 -62
  424. langflow/base/embeddings/model.py +0 -26
  425. langflow/base/flow_processing/__init__.py +0 -0
  426. langflow/base/flow_processing/utils.py +0 -86
  427. langflow/base/huggingface/__init__.py +0 -0
  428. langflow/base/huggingface/model_bridge.py +0 -133
  429. langflow/base/langchain_utilities/__init__.py +0 -0
  430. langflow/base/langchain_utilities/model.py +0 -35
  431. langflow/base/langchain_utilities/spider_constants.py +0 -1
  432. langflow/base/langwatch/__init__.py +0 -0
  433. langflow/base/langwatch/utils.py +0 -18
  434. langflow/base/mcp/__init__.py +0 -0
  435. langflow/base/mcp/constants.py +0 -2
  436. langflow/base/mcp/util.py +0 -1524
  437. langflow/base/memory/memory.py +0 -49
  438. langflow/base/memory/model.py +0 -38
  439. langflow/base/models/aiml_constants.py +0 -51
  440. langflow/base/models/anthropic_constants.py +0 -47
  441. langflow/base/models/aws_constants.py +0 -151
  442. langflow/base/models/chat_result.py +0 -76
  443. langflow/base/models/google_generative_ai_constants.py +0 -70
  444. langflow/base/models/groq_constants.py +0 -134
  445. langflow/base/models/model.py +0 -375
  446. langflow/base/models/model_input_constants.py +0 -299
  447. langflow/base/models/model_metadata.py +0 -41
  448. langflow/base/models/model_utils.py +0 -8
  449. langflow/base/models/novita_constants.py +0 -35
  450. langflow/base/models/ollama_constants.py +0 -49
  451. langflow/base/models/sambanova_constants.py +0 -18
  452. langflow/base/processing/__init__.py +0 -0
  453. langflow/base/prompts/utils.py +0 -61
  454. langflow/base/textsplitters/model.py +0 -28
  455. langflow/base/tools/base.py +0 -26
  456. langflow/base/tools/component_tool.py +0 -324
  457. langflow/base/tools/constants.py +0 -49
  458. langflow/base/tools/flow_tool.py +0 -131
  459. langflow/base/tools/run_flow.py +0 -227
  460. langflow/base/vectorstores/model.py +0 -193
  461. langflow/base/vectorstores/utils.py +0 -22
  462. langflow/base/vectorstores/vector_store_connection_decorator.py +0 -52
  463. langflow/components/FAISS/__init__.py +0 -34
  464. langflow/components/FAISS/faiss.py +0 -111
  465. langflow/components/Notion/__init__.py +0 -19
  466. langflow/components/Notion/add_content_to_page.py +0 -269
  467. langflow/components/Notion/create_page.py +0 -94
  468. langflow/components/Notion/list_database_properties.py +0 -68
  469. langflow/components/Notion/list_pages.py +0 -122
  470. langflow/components/Notion/list_users.py +0 -77
  471. langflow/components/Notion/page_content_viewer.py +0 -93
  472. langflow/components/Notion/search.py +0 -111
  473. langflow/components/Notion/update_page_property.py +0 -114
  474. langflow/components/_importing.py +0 -37
  475. langflow/components/agentql/__init__.py +0 -3
  476. langflow/components/agentql/agentql_api.py +0 -151
  477. langflow/components/agents/__init__.py +0 -4
  478. langflow/components/agents/agent.py +0 -554
  479. langflow/components/agents/mcp_component.py +0 -501
  480. langflow/components/aiml/__init__.py +0 -37
  481. langflow/components/aiml/aiml.py +0 -112
  482. langflow/components/aiml/aiml_embeddings.py +0 -37
  483. langflow/components/amazon/__init__.py +0 -36
  484. langflow/components/amazon/amazon_bedrock_embedding.py +0 -109
  485. langflow/components/amazon/amazon_bedrock_model.py +0 -124
  486. langflow/components/amazon/s3_bucket_uploader.py +0 -211
  487. langflow/components/anthropic/__init__.py +0 -34
  488. langflow/components/anthropic/anthropic.py +0 -187
  489. langflow/components/apify/__init__.py +0 -5
  490. langflow/components/apify/apify_actor.py +0 -325
  491. langflow/components/arxiv/__init__.py +0 -3
  492. langflow/components/arxiv/arxiv.py +0 -163
  493. langflow/components/assemblyai/__init__.py +0 -46
  494. langflow/components/assemblyai/assemblyai_get_subtitles.py +0 -83
  495. langflow/components/assemblyai/assemblyai_lemur.py +0 -183
  496. langflow/components/assemblyai/assemblyai_list_transcripts.py +0 -95
  497. langflow/components/assemblyai/assemblyai_poll_transcript.py +0 -72
  498. langflow/components/assemblyai/assemblyai_start_transcript.py +0 -188
  499. langflow/components/azure/__init__.py +0 -37
  500. langflow/components/azure/azure_openai.py +0 -95
  501. langflow/components/azure/azure_openai_embeddings.py +0 -83
  502. langflow/components/baidu/__init__.py +0 -32
  503. langflow/components/baidu/baidu_qianfan_chat.py +0 -113
  504. langflow/components/bing/__init__.py +0 -3
  505. langflow/components/bing/bing_search_api.py +0 -61
  506. langflow/components/cassandra/__init__.py +0 -40
  507. langflow/components/cassandra/cassandra.py +0 -264
  508. langflow/components/cassandra/cassandra_chat.py +0 -92
  509. langflow/components/cassandra/cassandra_graph.py +0 -238
  510. langflow/components/chains/__init__.py +0 -0
  511. langflow/components/chroma/__init__.py +0 -34
  512. langflow/components/chroma/chroma.py +0 -167
  513. langflow/components/cleanlab/__init__.py +0 -40
  514. langflow/components/cleanlab/cleanlab_evaluator.py +0 -157
  515. langflow/components/cleanlab/cleanlab_rag_evaluator.py +0 -254
  516. langflow/components/cleanlab/cleanlab_remediator.py +0 -131
  517. langflow/components/clickhouse/__init__.py +0 -34
  518. langflow/components/clickhouse/clickhouse.py +0 -135
  519. langflow/components/cloudflare/__init__.py +0 -32
  520. langflow/components/cloudflare/cloudflare.py +0 -81
  521. langflow/components/cohere/__init__.py +0 -40
  522. langflow/components/cohere/cohere_embeddings.py +0 -81
  523. langflow/components/cohere/cohere_models.py +0 -46
  524. langflow/components/cohere/cohere_rerank.py +0 -51
  525. langflow/components/composio/__init__.py +0 -73
  526. langflow/components/composio/composio_api.py +0 -268
  527. langflow/components/composio/dropbox_compnent.py +0 -11
  528. langflow/components/composio/github_composio.py +0 -11
  529. langflow/components/composio/gmail_composio.py +0 -38
  530. langflow/components/composio/googlecalendar_composio.py +0 -11
  531. langflow/components/composio/googlemeet_composio.py +0 -11
  532. langflow/components/composio/googletasks_composio.py +0 -8
  533. langflow/components/composio/linear_composio.py +0 -11
  534. langflow/components/composio/outlook_composio.py +0 -11
  535. langflow/components/composio/reddit_composio.py +0 -11
  536. langflow/components/composio/slack_composio.py +0 -11
  537. langflow/components/composio/slackbot_composio.py +0 -11
  538. langflow/components/composio/supabase_composio.py +0 -11
  539. langflow/components/composio/todoist_composio.py +0 -11
  540. langflow/components/composio/youtube_composio.py +0 -11
  541. langflow/components/confluence/__init__.py +0 -3
  542. langflow/components/confluence/confluence.py +0 -84
  543. langflow/components/couchbase/__init__.py +0 -34
  544. langflow/components/couchbase/couchbase.py +0 -102
  545. langflow/components/crewai/__init__.py +0 -49
  546. langflow/components/crewai/crewai.py +0 -107
  547. langflow/components/crewai/hierarchical_crew.py +0 -46
  548. langflow/components/crewai/hierarchical_task.py +0 -44
  549. langflow/components/crewai/sequential_crew.py +0 -52
  550. langflow/components/crewai/sequential_task.py +0 -73
  551. langflow/components/crewai/sequential_task_agent.py +0 -143
  552. langflow/components/custom_component/__init__.py +0 -34
  553. langflow/components/custom_component/custom_component.py +0 -31
  554. langflow/components/data/__init__.py +0 -25
  555. langflow/components/data/api_request.py +0 -545
  556. langflow/components/data/csv_to_data.py +0 -95
  557. langflow/components/data/directory.py +0 -113
  558. langflow/components/data/file.py +0 -586
  559. langflow/components/data/json_to_data.py +0 -98
  560. langflow/components/data/news_search.py +0 -164
  561. langflow/components/data/rss.py +0 -69
  562. langflow/components/data/sql_executor.py +0 -99
  563. langflow/components/data/url.py +0 -299
  564. langflow/components/data/web_search.py +0 -112
  565. langflow/components/data/webhook.py +0 -56
  566. langflow/components/datastax/__init__.py +0 -70
  567. langflow/components/datastax/astra_assistant_manager.py +0 -306
  568. langflow/components/datastax/astra_db.py +0 -69
  569. langflow/components/datastax/astra_vectorize.py +0 -124
  570. langflow/components/datastax/astradb_cql.py +0 -314
  571. langflow/components/datastax/astradb_graph.py +0 -319
  572. langflow/components/datastax/astradb_tool.py +0 -414
  573. langflow/components/datastax/astradb_vectorstore.py +0 -1285
  574. langflow/components/datastax/create_assistant.py +0 -58
  575. langflow/components/datastax/create_thread.py +0 -32
  576. langflow/components/datastax/dotenv.py +0 -35
  577. langflow/components/datastax/get_assistant.py +0 -37
  578. langflow/components/datastax/getenvvar.py +0 -30
  579. langflow/components/datastax/graph_rag.py +0 -141
  580. langflow/components/datastax/hcd.py +0 -314
  581. langflow/components/datastax/list_assistants.py +0 -25
  582. langflow/components/datastax/run.py +0 -89
  583. langflow/components/deactivated/__init__.py +0 -19
  584. langflow/components/deactivated/amazon_kendra.py +0 -66
  585. langflow/components/deactivated/chat_litellm_model.py +0 -158
  586. langflow/components/deactivated/code_block_extractor.py +0 -26
  587. langflow/components/deactivated/documents_to_data.py +0 -22
  588. langflow/components/deactivated/embed.py +0 -16
  589. langflow/components/deactivated/extract_key_from_data.py +0 -46
  590. langflow/components/deactivated/json_document_builder.py +0 -59
  591. langflow/components/deactivated/list_flows.py +0 -20
  592. langflow/components/deactivated/mcp_sse.py +0 -61
  593. langflow/components/deactivated/mcp_stdio.py +0 -62
  594. langflow/components/deactivated/merge_data.py +0 -93
  595. langflow/components/deactivated/message.py +0 -37
  596. langflow/components/deactivated/metal.py +0 -54
  597. langflow/components/deactivated/multi_query.py +0 -59
  598. langflow/components/deactivated/retriever.py +0 -43
  599. langflow/components/deactivated/selective_passthrough.py +0 -77
  600. langflow/components/deactivated/should_run_next.py +0 -40
  601. langflow/components/deactivated/split_text.py +0 -63
  602. langflow/components/deactivated/store_message.py +0 -24
  603. langflow/components/deactivated/sub_flow.py +0 -124
  604. langflow/components/deactivated/vectara_self_query.py +0 -76
  605. langflow/components/deactivated/vector_store.py +0 -24
  606. langflow/components/deepseek/__init__.py +0 -34
  607. langflow/components/deepseek/deepseek.py +0 -136
  608. langflow/components/docling/__init__.py +0 -43
  609. langflow/components/docling/chunk_docling_document.py +0 -186
  610. langflow/components/docling/docling_inline.py +0 -235
  611. langflow/components/docling/docling_remote.py +0 -193
  612. langflow/components/docling/export_docling_document.py +0 -117
  613. langflow/components/documentloaders/__init__.py +0 -0
  614. langflow/components/duckduckgo/__init__.py +0 -3
  615. langflow/components/duckduckgo/duck_duck_go_search_run.py +0 -92
  616. langflow/components/elastic/__init__.py +0 -37
  617. langflow/components/elastic/elasticsearch.py +0 -267
  618. langflow/components/elastic/opensearch.py +0 -243
  619. langflow/components/embeddings/__init__.py +0 -37
  620. langflow/components/embeddings/similarity.py +0 -76
  621. langflow/components/embeddings/text_embedder.py +0 -64
  622. langflow/components/exa/__init__.py +0 -3
  623. langflow/components/exa/exa_search.py +0 -68
  624. langflow/components/firecrawl/__init__.py +0 -43
  625. langflow/components/firecrawl/firecrawl_crawl_api.py +0 -88
  626. langflow/components/firecrawl/firecrawl_extract_api.py +0 -136
  627. langflow/components/firecrawl/firecrawl_map_api.py +0 -89
  628. langflow/components/firecrawl/firecrawl_scrape_api.py +0 -73
  629. langflow/components/git/__init__.py +0 -4
  630. langflow/components/git/git.py +0 -262
  631. langflow/components/git/gitextractor.py +0 -196
  632. langflow/components/glean/__init__.py +0 -3
  633. langflow/components/glean/glean_search_api.py +0 -173
  634. langflow/components/google/__init__.py +0 -17
  635. langflow/components/google/gmail.py +0 -192
  636. langflow/components/google/google_bq_sql_executor.py +0 -157
  637. langflow/components/google/google_drive.py +0 -92
  638. langflow/components/google/google_drive_search.py +0 -152
  639. langflow/components/google/google_generative_ai.py +0 -147
  640. langflow/components/google/google_generative_ai_embeddings.py +0 -141
  641. langflow/components/google/google_oauth_token.py +0 -89
  642. langflow/components/google/google_search_api_core.py +0 -68
  643. langflow/components/google/google_serper_api_core.py +0 -74
  644. langflow/components/groq/__init__.py +0 -34
  645. langflow/components/groq/groq.py +0 -140
  646. langflow/components/helpers/__init__.py +0 -52
  647. langflow/components/helpers/calculator_core.py +0 -89
  648. langflow/components/helpers/create_list.py +0 -40
  649. langflow/components/helpers/current_date.py +0 -42
  650. langflow/components/helpers/id_generator.py +0 -42
  651. langflow/components/helpers/memory.py +0 -251
  652. langflow/components/helpers/output_parser.py +0 -45
  653. langflow/components/helpers/store_message.py +0 -90
  654. langflow/components/homeassistant/__init__.py +0 -7
  655. langflow/components/homeassistant/home_assistant_control.py +0 -152
  656. langflow/components/homeassistant/list_home_assistant_states.py +0 -137
  657. langflow/components/huggingface/__init__.py +0 -37
  658. langflow/components/huggingface/huggingface.py +0 -197
  659. langflow/components/huggingface/huggingface_inference_api.py +0 -106
  660. langflow/components/ibm/__init__.py +0 -34
  661. langflow/components/ibm/watsonx.py +0 -203
  662. langflow/components/ibm/watsonx_embeddings.py +0 -135
  663. langflow/components/icosacomputing/__init__.py +0 -5
  664. langflow/components/icosacomputing/combinatorial_reasoner.py +0 -84
  665. langflow/components/input_output/__init__.py +0 -38
  666. langflow/components/input_output/chat.py +0 -120
  667. langflow/components/input_output/chat_output.py +0 -200
  668. langflow/components/input_output/text.py +0 -27
  669. langflow/components/input_output/text_output.py +0 -29
  670. langflow/components/jigsawstack/__init__.py +0 -23
  671. langflow/components/jigsawstack/ai_scrape.py +0 -126
  672. langflow/components/jigsawstack/ai_web_search.py +0 -136
  673. langflow/components/jigsawstack/file_read.py +0 -115
  674. langflow/components/jigsawstack/file_upload.py +0 -94
  675. langflow/components/jigsawstack/image_generation.py +0 -205
  676. langflow/components/jigsawstack/nsfw.py +0 -60
  677. langflow/components/jigsawstack/object_detection.py +0 -124
  678. langflow/components/jigsawstack/sentiment.py +0 -112
  679. langflow/components/jigsawstack/text_to_sql.py +0 -90
  680. langflow/components/jigsawstack/text_translate.py +0 -77
  681. langflow/components/jigsawstack/vocr.py +0 -107
  682. langflow/components/langchain_utilities/__init__.py +0 -109
  683. langflow/components/langchain_utilities/character.py +0 -53
  684. langflow/components/langchain_utilities/conversation.py +0 -52
  685. langflow/components/langchain_utilities/csv_agent.py +0 -107
  686. langflow/components/langchain_utilities/fake_embeddings.py +0 -26
  687. langflow/components/langchain_utilities/html_link_extractor.py +0 -35
  688. langflow/components/langchain_utilities/json_agent.py +0 -45
  689. langflow/components/langchain_utilities/langchain_hub.py +0 -126
  690. langflow/components/langchain_utilities/language_recursive.py +0 -49
  691. langflow/components/langchain_utilities/language_semantic.py +0 -138
  692. langflow/components/langchain_utilities/llm_checker.py +0 -39
  693. langflow/components/langchain_utilities/llm_math.py +0 -42
  694. langflow/components/langchain_utilities/natural_language.py +0 -61
  695. langflow/components/langchain_utilities/openai_tools.py +0 -53
  696. langflow/components/langchain_utilities/openapi.py +0 -48
  697. langflow/components/langchain_utilities/recursive_character.py +0 -60
  698. langflow/components/langchain_utilities/retrieval_qa.py +0 -83
  699. langflow/components/langchain_utilities/runnable_executor.py +0 -137
  700. langflow/components/langchain_utilities/self_query.py +0 -80
  701. langflow/components/langchain_utilities/spider.py +0 -142
  702. langflow/components/langchain_utilities/sql.py +0 -40
  703. langflow/components/langchain_utilities/sql_database.py +0 -35
  704. langflow/components/langchain_utilities/sql_generator.py +0 -78
  705. langflow/components/langchain_utilities/tool_calling.py +0 -59
  706. langflow/components/langchain_utilities/vector_store_info.py +0 -49
  707. langflow/components/langchain_utilities/vector_store_router.py +0 -33
  708. langflow/components/langchain_utilities/xml_agent.py +0 -71
  709. langflow/components/langwatch/__init__.py +0 -3
  710. langflow/components/langwatch/langwatch.py +0 -278
  711. langflow/components/link_extractors/__init__.py +0 -0
  712. langflow/components/lmstudio/__init__.py +0 -34
  713. langflow/components/lmstudio/lmstudioembeddings.py +0 -89
  714. langflow/components/lmstudio/lmstudiomodel.py +0 -129
  715. langflow/components/logic/__init__.py +0 -52
  716. langflow/components/logic/conditional_router.py +0 -171
  717. langflow/components/logic/data_conditional_router.py +0 -125
  718. langflow/components/logic/flow_tool.py +0 -110
  719. langflow/components/logic/listen.py +0 -29
  720. langflow/components/logic/loop.py +0 -125
  721. langflow/components/logic/notify.py +0 -88
  722. langflow/components/logic/pass_message.py +0 -35
  723. langflow/components/logic/run_flow.py +0 -71
  724. langflow/components/logic/sub_flow.py +0 -114
  725. langflow/components/maritalk/__init__.py +0 -32
  726. langflow/components/maritalk/maritalk.py +0 -52
  727. langflow/components/mem0/__init__.py +0 -3
  728. langflow/components/mem0/mem0_chat_memory.py +0 -136
  729. langflow/components/milvus/__init__.py +0 -34
  730. langflow/components/milvus/milvus.py +0 -115
  731. langflow/components/mistral/__init__.py +0 -37
  732. langflow/components/mistral/mistral.py +0 -114
  733. langflow/components/mistral/mistral_embeddings.py +0 -58
  734. langflow/components/models/__init__.py +0 -34
  735. langflow/components/models/embedding_model.py +0 -114
  736. langflow/components/models/language_model.py +0 -144
  737. langflow/components/mongodb/__init__.py +0 -34
  738. langflow/components/mongodb/mongodb_atlas.py +0 -213
  739. langflow/components/needle/__init__.py +0 -3
  740. langflow/components/needle/needle.py +0 -104
  741. langflow/components/notdiamond/__init__.py +0 -36
  742. langflow/components/notdiamond/notdiamond.py +0 -228
  743. langflow/components/novita/__init__.py +0 -32
  744. langflow/components/novita/novita.py +0 -130
  745. langflow/components/nvidia/__init__.py +0 -57
  746. langflow/components/nvidia/nvidia.py +0 -157
  747. langflow/components/nvidia/nvidia_embedding.py +0 -77
  748. langflow/components/nvidia/nvidia_ingest.py +0 -317
  749. langflow/components/nvidia/nvidia_rerank.py +0 -63
  750. langflow/components/nvidia/system_assist.py +0 -65
  751. langflow/components/olivya/__init__.py +0 -3
  752. langflow/components/olivya/olivya.py +0 -116
  753. langflow/components/ollama/__init__.py +0 -37
  754. langflow/components/ollama/ollama.py +0 -330
  755. langflow/components/ollama/ollama_embeddings.py +0 -106
  756. langflow/components/openai/__init__.py +0 -37
  757. langflow/components/openai/openai.py +0 -100
  758. langflow/components/openai/openai_chat_model.py +0 -158
  759. langflow/components/openrouter/__init__.py +0 -32
  760. langflow/components/openrouter/openrouter.py +0 -202
  761. langflow/components/output_parsers/__init__.py +0 -0
  762. langflow/components/perplexity/__init__.py +0 -34
  763. langflow/components/perplexity/perplexity.py +0 -75
  764. langflow/components/pgvector/__init__.py +0 -34
  765. langflow/components/pgvector/pgvector.py +0 -72
  766. langflow/components/pinecone/__init__.py +0 -34
  767. langflow/components/pinecone/pinecone.py +0 -134
  768. langflow/components/processing/alter_metadata.py +0 -108
  769. langflow/components/processing/batch_run.py +0 -205
  770. langflow/components/processing/combine_text.py +0 -39
  771. langflow/components/processing/create_data.py +0 -110
  772. langflow/components/processing/data_operations.py +0 -438
  773. langflow/components/processing/data_to_dataframe.py +0 -70
  774. langflow/components/processing/dataframe_operations.py +0 -321
  775. langflow/components/processing/extract_key.py +0 -53
  776. langflow/components/processing/filter_data.py +0 -42
  777. langflow/components/processing/filter_data_values.py +0 -88
  778. langflow/components/processing/json_cleaner.py +0 -103
  779. langflow/components/processing/lambda_filter.py +0 -154
  780. langflow/components/processing/llm_router.py +0 -499
  781. langflow/components/processing/merge_data.py +0 -90
  782. langflow/components/processing/message_to_data.py +0 -36
  783. langflow/components/processing/parse_data.py +0 -70
  784. langflow/components/processing/parse_dataframe.py +0 -68
  785. langflow/components/processing/parse_json_data.py +0 -90
  786. langflow/components/processing/parser.py +0 -143
  787. langflow/components/processing/prompt.py +0 -67
  788. langflow/components/processing/python_repl_core.py +0 -98
  789. langflow/components/processing/regex.py +0 -82
  790. langflow/components/processing/save_file.py +0 -208
  791. langflow/components/processing/select_data.py +0 -48
  792. langflow/components/processing/split_text.py +0 -141
  793. langflow/components/processing/structured_output.py +0 -202
  794. langflow/components/processing/update_data.py +0 -160
  795. langflow/components/prototypes/__init__.py +0 -34
  796. langflow/components/prototypes/python_function.py +0 -73
  797. langflow/components/qdrant/__init__.py +0 -34
  798. langflow/components/qdrant/qdrant.py +0 -109
  799. langflow/components/redis/__init__.py +0 -37
  800. langflow/components/redis/redis.py +0 -89
  801. langflow/components/redis/redis_chat.py +0 -43
  802. langflow/components/sambanova/__init__.py +0 -32
  803. langflow/components/sambanova/sambanova.py +0 -84
  804. langflow/components/scrapegraph/__init__.py +0 -40
  805. langflow/components/scrapegraph/scrapegraph_markdownify_api.py +0 -64
  806. langflow/components/scrapegraph/scrapegraph_search_api.py +0 -64
  807. langflow/components/scrapegraph/scrapegraph_smart_scraper_api.py +0 -71
  808. langflow/components/searchapi/__init__.py +0 -36
  809. langflow/components/searchapi/search.py +0 -79
  810. langflow/components/serpapi/__init__.py +0 -3
  811. langflow/components/serpapi/serp.py +0 -115
  812. langflow/components/serper/__init__.py +0 -3
  813. langflow/components/serper/google_serper_api_core.py +0 -74
  814. langflow/components/supabase/__init__.py +0 -37
  815. langflow/components/supabase/supabase.py +0 -76
  816. langflow/components/tavily/__init__.py +0 -4
  817. langflow/components/tavily/tavily_extract.py +0 -117
  818. langflow/components/tavily/tavily_search.py +0 -212
  819. langflow/components/textsplitters/__init__.py +0 -0
  820. langflow/components/toolkits/__init__.py +0 -0
  821. langflow/components/tools/__init__.py +0 -72
  822. langflow/components/tools/calculator.py +0 -103
  823. langflow/components/tools/google_search_api.py +0 -45
  824. langflow/components/tools/google_serper_api.py +0 -115
  825. langflow/components/tools/python_code_structured_tool.py +0 -327
  826. langflow/components/tools/python_repl.py +0 -97
  827. langflow/components/tools/search_api.py +0 -87
  828. langflow/components/tools/searxng.py +0 -145
  829. langflow/components/tools/serp_api.py +0 -119
  830. langflow/components/tools/tavily_search_tool.py +0 -344
  831. langflow/components/tools/wikidata_api.py +0 -102
  832. langflow/components/tools/wikipedia_api.py +0 -49
  833. langflow/components/tools/yahoo_finance.py +0 -124
  834. langflow/components/twelvelabs/__init__.py +0 -52
  835. langflow/components/twelvelabs/convert_astra_results.py +0 -84
  836. langflow/components/twelvelabs/pegasus_index.py +0 -311
  837. langflow/components/twelvelabs/split_video.py +0 -291
  838. langflow/components/twelvelabs/text_embeddings.py +0 -57
  839. langflow/components/twelvelabs/twelvelabs_pegasus.py +0 -408
  840. langflow/components/twelvelabs/video_embeddings.py +0 -100
  841. langflow/components/twelvelabs/video_file.py +0 -179
  842. langflow/components/unstructured/__init__.py +0 -3
  843. langflow/components/unstructured/unstructured.py +0 -121
  844. langflow/components/upstash/__init__.py +0 -34
  845. langflow/components/upstash/upstash.py +0 -124
  846. langflow/components/vectara/__init__.py +0 -37
  847. langflow/components/vectara/vectara.py +0 -97
  848. langflow/components/vectara/vectara_rag.py +0 -164
  849. langflow/components/vectorstores/__init__.py +0 -34
  850. langflow/components/vectorstores/local_db.py +0 -261
  851. langflow/components/vertexai/__init__.py +0 -37
  852. langflow/components/vertexai/vertexai.py +0 -71
  853. langflow/components/vertexai/vertexai_embeddings.py +0 -67
  854. langflow/components/weaviate/__init__.py +0 -34
  855. langflow/components/weaviate/weaviate.py +0 -89
  856. langflow/components/wikipedia/__init__.py +0 -4
  857. langflow/components/wikipedia/wikidata.py +0 -86
  858. langflow/components/wikipedia/wikipedia.py +0 -53
  859. langflow/components/wolframalpha/__init__.py +0 -3
  860. langflow/components/wolframalpha/wolfram_alpha_api.py +0 -54
  861. langflow/components/xai/__init__.py +0 -32
  862. langflow/components/xai/xai.py +0 -167
  863. langflow/components/yahoosearch/__init__.py +0 -3
  864. langflow/components/yahoosearch/yahoo.py +0 -137
  865. langflow/components/youtube/__init__.py +0 -52
  866. langflow/components/youtube/channel.py +0 -227
  867. langflow/components/youtube/comments.py +0 -231
  868. langflow/components/youtube/playlist.py +0 -33
  869. langflow/components/youtube/search.py +0 -120
  870. langflow/components/youtube/trending.py +0 -285
  871. langflow/components/youtube/video_details.py +0 -263
  872. langflow/components/youtube/youtube_transcripts.py +0 -118
  873. langflow/components/zep/__init__.py +0 -3
  874. langflow/components/zep/zep.py +0 -44
  875. langflow/custom/attributes.py +0 -86
  876. langflow/custom/code_parser/__init__.py +0 -3
  877. langflow/custom/code_parser/code_parser.py +0 -361
  878. langflow/custom/custom_component/base_component.py +0 -118
  879. langflow/custom/dependency_analyzer.py +0 -165
  880. langflow/custom/directory_reader/__init__.py +0 -3
  881. langflow/custom/directory_reader/directory_reader.py +0 -359
  882. langflow/custom/directory_reader/utils.py +0 -171
  883. langflow/custom/eval.py +0 -12
  884. langflow/custom/schema.py +0 -32
  885. langflow/custom/tree_visitor.py +0 -21
  886. langflow/frontend/assets/lazyIconImports-Ci-S9xBA.js +0 -2
  887. langflow/graph/edge/__init__.py +0 -0
  888. langflow/graph/edge/base.py +0 -277
  889. langflow/graph/edge/schema.py +0 -119
  890. langflow/graph/edge/utils.py +0 -0
  891. langflow/graph/graph/__init__.py +0 -0
  892. langflow/graph/graph/ascii.py +0 -202
  893. langflow/graph/graph/base.py +0 -2185
  894. langflow/graph/graph/constants.py +0 -58
  895. langflow/graph/graph/runnable_vertices_manager.py +0 -133
  896. langflow/graph/graph/schema.py +0 -53
  897. langflow/graph/graph/state_model.py +0 -66
  898. langflow/graph/graph/utils.py +0 -1024
  899. langflow/graph/schema.py +0 -75
  900. langflow/graph/state/__init__.py +0 -0
  901. langflow/graph/state/model.py +0 -237
  902. langflow/graph/utils.py +0 -229
  903. langflow/graph/vertex/__init__.py +0 -0
  904. langflow/graph/vertex/base.py +0 -811
  905. langflow/graph/vertex/constants.py +0 -0
  906. langflow/graph/vertex/exceptions.py +0 -4
  907. langflow/graph/vertex/param_handler.py +0 -255
  908. langflow/graph/vertex/schema.py +0 -26
  909. langflow/graph/vertex/utils.py +0 -19
  910. langflow/graph/vertex/vertex_types.py +0 -489
  911. langflow/legacy_custom/__init__.py +0 -0
  912. langflow/legacy_custom/customs.py +0 -16
  913. langflow/load/load.py +0 -250
  914. langflow/logging/logger.py +0 -369
  915. langflow/processing/utils.py +0 -25
  916. langflow/schema/openai_responses_schemas.py +0 -74
  917. langflow/schema/serialize.py +0 -13
  918. langflow/services/chat/config.py +0 -2
  919. langflow/services/settings/auth.py +0 -130
  920. langflow/services/settings/constants.py +0 -31
  921. langflow/services/settings/manager.py +0 -49
  922. langflow/services/settings/utils.py +0 -40
  923. langflow/template/field/prompt.py +0 -2
  924. langflow/template/frontend_node/__init__.py +0 -6
  925. langflow/template/frontend_node/base.py +0 -212
  926. langflow/template/frontend_node/constants.py +0 -65
  927. langflow/template/frontend_node/custom_components.py +0 -97
  928. langflow/template/template/__init__.py +0 -0
  929. langflow/template/template/base.py +0 -99
  930. langflow/utils/async_helpers.py +0 -42
  931. langflow/utils/concurrency.py +0 -60
  932. langflow/utils/util_strings.py +0 -56
  933. langflow_base_nightly-0.5.1.dev3.dist-info/RECORD +0 -1159
  934. {langflow_base_nightly-0.5.1.dev3.dist-info → langflow_base_nightly-0.5.1.dev4.dist-info}/WHEEL +0 -0
  935. {langflow_base_nightly-0.5.1.dev3.dist-info → langflow_base_nightly-0.5.1.dev4.dist-info}/entry_points.txt +0 -0
@@ -285,7 +285,7 @@
285
285
  "legacy": false,
286
286
  "lf_version": "1.4.3",
287
287
  "metadata": {
288
- "code_hash": "ee50d5005321",
288
+ "code_hash": "299b4469032e",
289
289
  "dependencies": {
290
290
  "dependencies": [
291
291
  {
@@ -293,7 +293,7 @@
293
293
  "version": "0.10.2"
294
294
  },
295
295
  {
296
- "name": "langflow",
296
+ "name": "lfx",
297
297
  "version": null
298
298
  },
299
299
  {
@@ -303,7 +303,7 @@
303
303
  ],
304
304
  "total_dependencies": 3
305
305
  },
306
- "module": "langflow.components.processing.batch_run.BatchRunComponent"
306
+ "module": "lfx.components.processing.batch_run.BatchRunComponent"
307
307
  },
308
308
  "minimized": false,
309
309
  "output_types": [],
@@ -343,7 +343,7 @@
343
343
  "show": true,
344
344
  "title_case": false,
345
345
  "type": "code",
346
- "value": "from __future__ import annotations\n\nfrom typing import TYPE_CHECKING, Any, cast\n\nimport toml # type: ignore[import-untyped]\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.io import BoolInput, DataFrameInput, HandleInput, MessageTextInput, MultilineInput, Output\nfrom langflow.logging.logger import logger\nfrom langflow.schema.dataframe import DataFrame\n\nif TYPE_CHECKING:\n from langchain_core.runnables import Runnable\n\n\nclass BatchRunComponent(Component):\n display_name = \"Batch Run\"\n description = \"Runs an LLM on each row of a DataFrame column. If no column is specified, all columns are used.\"\n documentation: str = \"https://docs.langflow.org/components-processing#batch-run\"\n icon = \"List\"\n\n inputs = [\n HandleInput(\n name=\"model\",\n display_name=\"Language Model\",\n info=\"Connect the 'Language Model' output from your LLM component here.\",\n input_types=[\"LanguageModel\"],\n required=True,\n ),\n MultilineInput(\n name=\"system_message\",\n display_name=\"Instructions\",\n info=\"Multi-line system instruction for all rows in the DataFrame.\",\n required=False,\n ),\n DataFrameInput(\n name=\"df\",\n display_name=\"DataFrame\",\n info=\"The DataFrame whose column (specified by 'column_name') we'll treat as text messages.\",\n required=True,\n ),\n MessageTextInput(\n name=\"column_name\",\n display_name=\"Column Name\",\n info=(\n \"The name of the DataFrame column to treat as text messages. \"\n \"If empty, all columns will be formatted in TOML.\"\n ),\n required=False,\n advanced=False,\n ),\n MessageTextInput(\n name=\"output_column_name\",\n display_name=\"Output Column Name\",\n info=\"Name of the column where the model's response will be stored.\",\n value=\"model_response\",\n required=False,\n advanced=True,\n ),\n BoolInput(\n name=\"enable_metadata\",\n display_name=\"Enable Metadata\",\n info=\"If True, add metadata to the output DataFrame.\",\n value=False,\n required=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(\n display_name=\"LLM Results\",\n name=\"batch_results\",\n method=\"run_batch\",\n info=\"A DataFrame with all original columns plus the model's response column.\",\n ),\n ]\n\n def _format_row_as_toml(self, row: dict[str, Any]) -> str:\n \"\"\"Convert a dictionary (row) into a TOML-formatted string.\"\"\"\n formatted_dict = {str(col): {\"value\": str(val)} for col, val in row.items()}\n return toml.dumps(formatted_dict)\n\n def _create_base_row(\n self, original_row: dict[str, Any], model_response: str = \"\", batch_index: int = -1\n ) -> dict[str, Any]:\n \"\"\"Create a base row with original columns and additional metadata.\"\"\"\n row = original_row.copy()\n row[self.output_column_name] = model_response\n row[\"batch_index\"] = batch_index\n return row\n\n def _add_metadata(\n self, row: dict[str, Any], *, success: bool = True, system_msg: str = \"\", error: str | None = None\n ) -> None:\n \"\"\"Add metadata to a row if enabled.\"\"\"\n if not self.enable_metadata:\n return\n\n if success:\n row[\"metadata\"] = {\n \"has_system_message\": bool(system_msg),\n \"input_length\": len(row.get(\"text_input\", \"\")),\n \"response_length\": len(row[self.output_column_name]),\n \"processing_status\": \"success\",\n }\n else:\n row[\"metadata\"] = {\n \"error\": error,\n \"processing_status\": \"failed\",\n }\n\n async def run_batch(self) -> DataFrame:\n \"\"\"Process each row in df[column_name] with the language model asynchronously.\n\n Returns:\n DataFrame: A new DataFrame containing:\n - All original columns\n - The model's response column (customizable name)\n - 'batch_index' column for processing order\n - 'metadata' (optional)\n\n Raises:\n ValueError: If the specified column is not found in the DataFrame\n TypeError: If the model is not compatible or input types are wrong\n \"\"\"\n model: Runnable = self.model\n system_msg = self.system_message or \"\"\n df: DataFrame = self.df\n col_name = self.column_name or \"\"\n\n # Validate inputs first\n if not isinstance(df, DataFrame):\n msg = f\"Expected DataFrame input, got {type(df)}\"\n raise TypeError(msg)\n\n if col_name and col_name not in df.columns:\n msg = f\"Column '{col_name}' not found in the DataFrame. Available columns: {', '.join(df.columns)}\"\n raise ValueError(msg)\n\n try:\n # Determine text input for each row\n if col_name:\n user_texts = df[col_name].astype(str).tolist()\n else:\n user_texts = [\n self._format_row_as_toml(cast(\"dict[str, Any]\", row)) for row in df.to_dict(orient=\"records\")\n ]\n\n total_rows = len(user_texts)\n await logger.ainfo(f\"Processing {total_rows} rows with batch run\")\n\n # Prepare the batch of conversations\n conversations = [\n [{\"role\": \"system\", \"content\": system_msg}, {\"role\": \"user\", \"content\": text}]\n if system_msg\n else [{\"role\": \"user\", \"content\": text}]\n for text in user_texts\n ]\n\n # Configure the model with project info and callbacks\n model = model.with_config(\n {\n \"run_name\": self.display_name,\n \"project_name\": self.get_project_name(),\n \"callbacks\": self.get_langchain_callbacks(),\n }\n )\n # Process batches and track progress\n responses_with_idx = list(\n zip(\n range(len(conversations)),\n await model.abatch(list(conversations)),\n strict=True,\n )\n )\n\n # Sort by index to maintain order\n responses_with_idx.sort(key=lambda x: x[0])\n\n # Build the final data with enhanced metadata\n rows: list[dict[str, Any]] = []\n for idx, (original_row, response) in enumerate(\n zip(df.to_dict(orient=\"records\"), responses_with_idx, strict=False)\n ):\n response_text = response[1].content if hasattr(response[1], \"content\") else str(response[1])\n row = self._create_base_row(\n cast(\"dict[str, Any]\", original_row), model_response=response_text, batch_index=idx\n )\n self._add_metadata(row, success=True, system_msg=system_msg)\n rows.append(row)\n\n # Log progress\n if (idx + 1) % max(1, total_rows // 10) == 0:\n await logger.ainfo(f\"Processed {idx + 1}/{total_rows} rows\")\n\n await logger.ainfo(\"Batch processing completed successfully\")\n return DataFrame(rows)\n\n except (KeyError, AttributeError) as e:\n # Handle data structure and attribute access errors\n await logger.aerror(f\"Data processing error: {e!s}\")\n error_row = self._create_base_row(dict.fromkeys(df.columns, \"\"), model_response=\"\", batch_index=-1)\n self._add_metadata(error_row, success=False, error=str(e))\n return DataFrame([error_row])\n"
346
+ "value": "from __future__ import annotations\n\nfrom typing import TYPE_CHECKING, Any, cast\n\nimport toml # type: ignore[import-untyped]\n\nfrom lfx.custom.custom_component.component import Component\nfrom lfx.io import BoolInput, DataFrameInput, HandleInput, MessageTextInput, MultilineInput, Output\nfrom lfx.log.logger import logger\nfrom lfx.schema.dataframe import DataFrame\n\nif TYPE_CHECKING:\n from langchain_core.runnables import Runnable\n\n\nclass BatchRunComponent(Component):\n display_name = \"Batch Run\"\n description = \"Runs an LLM on each row of a DataFrame column. If no column is specified, all columns are used.\"\n documentation: str = \"https://docs.langflow.org/components-processing#batch-run\"\n icon = \"List\"\n\n inputs = [\n HandleInput(\n name=\"model\",\n display_name=\"Language Model\",\n info=\"Connect the 'Language Model' output from your LLM component here.\",\n input_types=[\"LanguageModel\"],\n required=True,\n ),\n MultilineInput(\n name=\"system_message\",\n display_name=\"Instructions\",\n info=\"Multi-line system instruction for all rows in the DataFrame.\",\n required=False,\n ),\n DataFrameInput(\n name=\"df\",\n display_name=\"DataFrame\",\n info=\"The DataFrame whose column (specified by 'column_name') we'll treat as text messages.\",\n required=True,\n ),\n MessageTextInput(\n name=\"column_name\",\n display_name=\"Column Name\",\n info=(\n \"The name of the DataFrame column to treat as text messages. \"\n \"If empty, all columns will be formatted in TOML.\"\n ),\n required=False,\n advanced=False,\n ),\n MessageTextInput(\n name=\"output_column_name\",\n display_name=\"Output Column Name\",\n info=\"Name of the column where the model's response will be stored.\",\n value=\"model_response\",\n required=False,\n advanced=True,\n ),\n BoolInput(\n name=\"enable_metadata\",\n display_name=\"Enable Metadata\",\n info=\"If True, add metadata to the output DataFrame.\",\n value=False,\n required=False,\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(\n display_name=\"LLM Results\",\n name=\"batch_results\",\n method=\"run_batch\",\n info=\"A DataFrame with all original columns plus the model's response column.\",\n ),\n ]\n\n def _format_row_as_toml(self, row: dict[str, Any]) -> str:\n \"\"\"Convert a dictionary (row) into a TOML-formatted string.\"\"\"\n formatted_dict = {str(col): {\"value\": str(val)} for col, val in row.items()}\n return toml.dumps(formatted_dict)\n\n def _create_base_row(\n self, original_row: dict[str, Any], model_response: str = \"\", batch_index: int = -1\n ) -> dict[str, Any]:\n \"\"\"Create a base row with original columns and additional metadata.\"\"\"\n row = original_row.copy()\n row[self.output_column_name] = model_response\n row[\"batch_index\"] = batch_index\n return row\n\n def _add_metadata(\n self, row: dict[str, Any], *, success: bool = True, system_msg: str = \"\", error: str | None = None\n ) -> None:\n \"\"\"Add metadata to a row if enabled.\"\"\"\n if not self.enable_metadata:\n return\n\n if success:\n row[\"metadata\"] = {\n \"has_system_message\": bool(system_msg),\n \"input_length\": len(row.get(\"text_input\", \"\")),\n \"response_length\": len(row[self.output_column_name]),\n \"processing_status\": \"success\",\n }\n else:\n row[\"metadata\"] = {\n \"error\": error,\n \"processing_status\": \"failed\",\n }\n\n async def run_batch(self) -> DataFrame:\n \"\"\"Process each row in df[column_name] with the language model asynchronously.\n\n Returns:\n DataFrame: A new DataFrame containing:\n - All original columns\n - The model's response column (customizable name)\n - 'batch_index' column for processing order\n - 'metadata' (optional)\n\n Raises:\n ValueError: If the specified column is not found in the DataFrame\n TypeError: If the model is not compatible or input types are wrong\n \"\"\"\n model: Runnable = self.model\n system_msg = self.system_message or \"\"\n df: DataFrame = self.df\n col_name = self.column_name or \"\"\n\n # Validate inputs first\n if not isinstance(df, DataFrame):\n msg = f\"Expected DataFrame input, got {type(df)}\"\n raise TypeError(msg)\n\n if col_name and col_name not in df.columns:\n msg = f\"Column '{col_name}' not found in the DataFrame. Available columns: {', '.join(df.columns)}\"\n raise ValueError(msg)\n\n try:\n # Determine text input for each row\n if col_name:\n user_texts = df[col_name].astype(str).tolist()\n else:\n user_texts = [\n self._format_row_as_toml(cast(\"dict[str, Any]\", row)) for row in df.to_dict(orient=\"records\")\n ]\n\n total_rows = len(user_texts)\n await logger.ainfo(f\"Processing {total_rows} rows with batch run\")\n\n # Prepare the batch of conversations\n conversations = [\n [{\"role\": \"system\", \"content\": system_msg}, {\"role\": \"user\", \"content\": text}]\n if system_msg\n else [{\"role\": \"user\", \"content\": text}]\n for text in user_texts\n ]\n\n # Configure the model with project info and callbacks\n model = model.with_config(\n {\n \"run_name\": self.display_name,\n \"project_name\": self.get_project_name(),\n \"callbacks\": self.get_langchain_callbacks(),\n }\n )\n # Process batches and track progress\n responses_with_idx = list(\n zip(\n range(len(conversations)),\n await model.abatch(list(conversations)),\n strict=True,\n )\n )\n\n # Sort by index to maintain order\n responses_with_idx.sort(key=lambda x: x[0])\n\n # Build the final data with enhanced metadata\n rows: list[dict[str, Any]] = []\n for idx, (original_row, response) in enumerate(\n zip(df.to_dict(orient=\"records\"), responses_with_idx, strict=False)\n ):\n response_text = response[1].content if hasattr(response[1], \"content\") else str(response[1])\n row = self._create_base_row(\n cast(\"dict[str, Any]\", original_row), model_response=response_text, batch_index=idx\n )\n self._add_metadata(row, success=True, system_msg=system_msg)\n rows.append(row)\n\n # Log progress\n if (idx + 1) % max(1, total_rows // 10) == 0:\n await logger.ainfo(f\"Processed {idx + 1}/{total_rows} rows\")\n\n await logger.ainfo(\"Batch processing completed successfully\")\n return DataFrame(rows)\n\n except (KeyError, AttributeError) as e:\n # Handle data structure and attribute access errors\n await logger.aerror(f\"Data processing error: {e!s}\")\n error_row = self._create_base_row(dict.fromkeys(df.columns, \"\"), model_response=\"\", batch_index=-1)\n self._add_metadata(error_row, success=False, error=str(e))\n return DataFrame([error_row])\n"
347
347
  },
348
348
  "column_name": {
349
349
  "_input_type": "StrInput",
@@ -520,7 +520,7 @@
520
520
  "legacy": false,
521
521
  "lf_version": "1.4.3",
522
522
  "metadata": {
523
- "code_hash": "aeda2975f4aa",
523
+ "code_hash": "20398e0d18df",
524
524
  "dependencies": {
525
525
  "dependencies": [
526
526
  {
@@ -532,13 +532,13 @@
532
532
  "version": "2.154.0"
533
533
  },
534
534
  {
535
- "name": "langflow",
535
+ "name": "lfx",
536
536
  "version": null
537
537
  }
538
538
  ],
539
539
  "total_dependencies": 3
540
540
  },
541
- "module": "langflow.components.youtube.comments.YouTubeCommentsComponent"
541
+ "module": "lfx.components.youtube.comments.YouTubeCommentsComponent"
542
542
  },
543
543
  "minimized": false,
544
544
  "output_types": [],
@@ -595,7 +595,7 @@
595
595
  "show": true,
596
596
  "title_case": false,
597
597
  "type": "code",
598
- "value": "from contextlib import contextmanager\n\nimport pandas as pd\nfrom googleapiclient.discovery import build\nfrom googleapiclient.errors import HttpError\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.inputs.inputs import BoolInput, DropdownInput, IntInput, MessageTextInput, SecretStrInput\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.template.field.base import Output\n\n\nclass YouTubeCommentsComponent(Component):\n \"\"\"A component that retrieves comments from YouTube videos.\"\"\"\n\n display_name: str = \"YouTube Comments\"\n description: str = \"Retrieves and analyzes comments from YouTube videos.\"\n icon: str = \"YouTube\"\n\n # Constants\n COMMENTS_DISABLED_STATUS = 403\n NOT_FOUND_STATUS = 404\n API_MAX_RESULTS = 100\n\n inputs = [\n MessageTextInput(\n name=\"video_url\",\n display_name=\"Video URL\",\n info=\"The URL of the YouTube video to get comments from.\",\n tool_mode=True,\n required=True,\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"YouTube API Key\",\n info=\"Your YouTube Data API key.\",\n required=True,\n ),\n IntInput(\n name=\"max_results\",\n display_name=\"Max Results\",\n value=20,\n info=\"The maximum number of comments to return.\",\n ),\n DropdownInput(\n name=\"sort_by\",\n display_name=\"Sort By\",\n options=[\"time\", \"relevance\"],\n value=\"relevance\",\n info=\"Sort comments by time or relevance.\",\n ),\n BoolInput(\n name=\"include_replies\",\n display_name=\"Include Replies\",\n value=False,\n info=\"Whether to include replies to comments.\",\n advanced=True,\n ),\n BoolInput(\n name=\"include_metrics\",\n display_name=\"Include Metrics\",\n value=True,\n info=\"Include metrics like like count and reply count.\",\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(name=\"comments\", display_name=\"Comments\", method=\"get_video_comments\"),\n ]\n\n def _extract_video_id(self, video_url: str) -> str:\n \"\"\"Extracts the video ID from a YouTube URL.\"\"\"\n import re\n\n patterns = [\n r\"(?:youtube\\.com\\/watch\\?v=|youtu.be\\/|youtube.com\\/embed\\/)([^&\\n?#]+)\",\n r\"youtube.com\\/shorts\\/([^&\\n?#]+)\",\n ]\n\n for pattern in patterns:\n match = re.search(pattern, video_url)\n if match:\n return match.group(1)\n\n return video_url.strip()\n\n def _process_reply(self, reply: dict, parent_id: str, *, include_metrics: bool = True) -> dict:\n \"\"\"Process a single reply comment.\"\"\"\n reply_snippet = reply[\"snippet\"]\n reply_data = {\n \"comment_id\": reply[\"id\"],\n \"parent_comment_id\": parent_id,\n \"author\": reply_snippet[\"authorDisplayName\"],\n \"text\": reply_snippet[\"textDisplay\"],\n \"published_at\": reply_snippet[\"publishedAt\"],\n \"is_reply\": True,\n }\n if include_metrics:\n reply_data[\"like_count\"] = reply_snippet[\"likeCount\"]\n reply_data[\"reply_count\"] = 0 # Replies can't have replies\n\n return reply_data\n\n def _process_comment(\n self, item: dict, *, include_metrics: bool = True, include_replies: bool = False\n ) -> list[dict]:\n \"\"\"Process a single comment thread.\"\"\"\n comment = item[\"snippet\"][\"topLevelComment\"][\"snippet\"]\n comment_id = item[\"snippet\"][\"topLevelComment\"][\"id\"]\n\n # Basic comment data\n processed_comments = [\n {\n \"comment_id\": comment_id,\n \"parent_comment_id\": \"\", # Empty for top-level comments\n \"author\": comment[\"authorDisplayName\"],\n \"author_channel_url\": comment.get(\"authorChannelUrl\", \"\"),\n \"text\": comment[\"textDisplay\"],\n \"published_at\": comment[\"publishedAt\"],\n \"updated_at\": comment[\"updatedAt\"],\n \"is_reply\": False,\n }\n ]\n\n # Add metrics if requested\n if include_metrics:\n processed_comments[0].update(\n {\n \"like_count\": comment[\"likeCount\"],\n \"reply_count\": item[\"snippet\"][\"totalReplyCount\"],\n }\n )\n\n # Add replies if requested\n if include_replies and item[\"snippet\"][\"totalReplyCount\"] > 0 and \"replies\" in item:\n for reply in item[\"replies\"][\"comments\"]:\n reply_data = self._process_reply(reply, parent_id=comment_id, include_metrics=include_metrics)\n processed_comments.append(reply_data)\n\n return processed_comments\n\n @contextmanager\n def youtube_client(self):\n \"\"\"Context manager for YouTube API client.\"\"\"\n client = build(\"youtube\", \"v3\", developerKey=self.api_key)\n try:\n yield client\n finally:\n client.close()\n\n def get_video_comments(self) -> DataFrame:\n \"\"\"Retrieves comments from a YouTube video and returns as DataFrame.\"\"\"\n try:\n # Extract video ID from URL\n video_id = self._extract_video_id(self.video_url)\n\n # Use context manager for YouTube API client\n with self.youtube_client() as youtube:\n comments_data = []\n results_count = 0\n request = youtube.commentThreads().list(\n part=\"snippet,replies\",\n videoId=video_id,\n maxResults=min(self.API_MAX_RESULTS, self.max_results),\n order=self.sort_by,\n textFormat=\"plainText\",\n )\n\n while request and results_count < self.max_results:\n response = request.execute()\n\n for item in response.get(\"items\", []):\n if results_count >= self.max_results:\n break\n\n comments = self._process_comment(\n item, include_metrics=self.include_metrics, include_replies=self.include_replies\n )\n comments_data.extend(comments)\n results_count += 1\n\n # Get the next page if available and needed\n if \"nextPageToken\" in response and results_count < self.max_results:\n request = youtube.commentThreads().list(\n part=\"snippet,replies\",\n videoId=video_id,\n maxResults=min(self.API_MAX_RESULTS, self.max_results - results_count),\n order=self.sort_by,\n textFormat=\"plainText\",\n pageToken=response[\"nextPageToken\"],\n )\n else:\n request = None\n\n # Convert to DataFrame\n comments_df = pd.DataFrame(comments_data)\n\n # Add video metadata\n comments_df[\"video_id\"] = video_id\n comments_df[\"video_url\"] = self.video_url\n\n # Sort columns for better organization\n column_order = [\n \"video_id\",\n \"video_url\",\n \"comment_id\",\n \"parent_comment_id\",\n \"is_reply\",\n \"author\",\n \"author_channel_url\",\n \"text\",\n \"published_at\",\n \"updated_at\",\n ]\n\n if self.include_metrics:\n column_order.extend([\"like_count\", \"reply_count\"])\n\n comments_df = comments_df[column_order]\n\n return DataFrame(comments_df)\n\n except HttpError as e:\n error_message = f\"YouTube API error: {e!s}\"\n if e.resp.status == self.COMMENTS_DISABLED_STATUS:\n error_message = \"Comments are disabled for this video or API quota exceeded.\"\n elif e.resp.status == self.NOT_FOUND_STATUS:\n error_message = \"Video not found.\"\n\n return DataFrame(pd.DataFrame({\"error\": [error_message]}))\n"
598
+ "value": "from contextlib import contextmanager\n\nimport pandas as pd\nfrom googleapiclient.discovery import build\nfrom googleapiclient.errors import HttpError\n\nfrom lfx.custom.custom_component.component import Component\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, IntInput, MessageTextInput, SecretStrInput\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.template.field.base import Output\n\n\nclass YouTubeCommentsComponent(Component):\n \"\"\"A component that retrieves comments from YouTube videos.\"\"\"\n\n display_name: str = \"YouTube Comments\"\n description: str = \"Retrieves and analyzes comments from YouTube videos.\"\n icon: str = \"YouTube\"\n\n # Constants\n COMMENTS_DISABLED_STATUS = 403\n NOT_FOUND_STATUS = 404\n API_MAX_RESULTS = 100\n\n inputs = [\n MessageTextInput(\n name=\"video_url\",\n display_name=\"Video URL\",\n info=\"The URL of the YouTube video to get comments from.\",\n tool_mode=True,\n required=True,\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"YouTube API Key\",\n info=\"Your YouTube Data API key.\",\n required=True,\n ),\n IntInput(\n name=\"max_results\",\n display_name=\"Max Results\",\n value=20,\n info=\"The maximum number of comments to return.\",\n ),\n DropdownInput(\n name=\"sort_by\",\n display_name=\"Sort By\",\n options=[\"time\", \"relevance\"],\n value=\"relevance\",\n info=\"Sort comments by time or relevance.\",\n ),\n BoolInput(\n name=\"include_replies\",\n display_name=\"Include Replies\",\n value=False,\n info=\"Whether to include replies to comments.\",\n advanced=True,\n ),\n BoolInput(\n name=\"include_metrics\",\n display_name=\"Include Metrics\",\n value=True,\n info=\"Include metrics like like count and reply count.\",\n advanced=True,\n ),\n ]\n\n outputs = [\n Output(name=\"comments\", display_name=\"Comments\", method=\"get_video_comments\"),\n ]\n\n def _extract_video_id(self, video_url: str) -> str:\n \"\"\"Extracts the video ID from a YouTube URL.\"\"\"\n import re\n\n patterns = [\n r\"(?:youtube\\.com\\/watch\\?v=|youtu.be\\/|youtube.com\\/embed\\/)([^&\\n?#]+)\",\n r\"youtube.com\\/shorts\\/([^&\\n?#]+)\",\n ]\n\n for pattern in patterns:\n match = re.search(pattern, video_url)\n if match:\n return match.group(1)\n\n return video_url.strip()\n\n def _process_reply(self, reply: dict, parent_id: str, *, include_metrics: bool = True) -> dict:\n \"\"\"Process a single reply comment.\"\"\"\n reply_snippet = reply[\"snippet\"]\n reply_data = {\n \"comment_id\": reply[\"id\"],\n \"parent_comment_id\": parent_id,\n \"author\": reply_snippet[\"authorDisplayName\"],\n \"text\": reply_snippet[\"textDisplay\"],\n \"published_at\": reply_snippet[\"publishedAt\"],\n \"is_reply\": True,\n }\n if include_metrics:\n reply_data[\"like_count\"] = reply_snippet[\"likeCount\"]\n reply_data[\"reply_count\"] = 0 # Replies can't have replies\n\n return reply_data\n\n def _process_comment(\n self, item: dict, *, include_metrics: bool = True, include_replies: bool = False\n ) -> list[dict]:\n \"\"\"Process a single comment thread.\"\"\"\n comment = item[\"snippet\"][\"topLevelComment\"][\"snippet\"]\n comment_id = item[\"snippet\"][\"topLevelComment\"][\"id\"]\n\n # Basic comment data\n processed_comments = [\n {\n \"comment_id\": comment_id,\n \"parent_comment_id\": \"\", # Empty for top-level comments\n \"author\": comment[\"authorDisplayName\"],\n \"author_channel_url\": comment.get(\"authorChannelUrl\", \"\"),\n \"text\": comment[\"textDisplay\"],\n \"published_at\": comment[\"publishedAt\"],\n \"updated_at\": comment[\"updatedAt\"],\n \"is_reply\": False,\n }\n ]\n\n # Add metrics if requested\n if include_metrics:\n processed_comments[0].update(\n {\n \"like_count\": comment[\"likeCount\"],\n \"reply_count\": item[\"snippet\"][\"totalReplyCount\"],\n }\n )\n\n # Add replies if requested\n if include_replies and item[\"snippet\"][\"totalReplyCount\"] > 0 and \"replies\" in item:\n for reply in item[\"replies\"][\"comments\"]:\n reply_data = self._process_reply(reply, parent_id=comment_id, include_metrics=include_metrics)\n processed_comments.append(reply_data)\n\n return processed_comments\n\n @contextmanager\n def youtube_client(self):\n \"\"\"Context manager for YouTube API client.\"\"\"\n client = build(\"youtube\", \"v3\", developerKey=self.api_key)\n try:\n yield client\n finally:\n client.close()\n\n def get_video_comments(self) -> DataFrame:\n \"\"\"Retrieves comments from a YouTube video and returns as DataFrame.\"\"\"\n try:\n # Extract video ID from URL\n video_id = self._extract_video_id(self.video_url)\n\n # Use context manager for YouTube API client\n with self.youtube_client() as youtube:\n comments_data = []\n results_count = 0\n request = youtube.commentThreads().list(\n part=\"snippet,replies\",\n videoId=video_id,\n maxResults=min(self.API_MAX_RESULTS, self.max_results),\n order=self.sort_by,\n textFormat=\"plainText\",\n )\n\n while request and results_count < self.max_results:\n response = request.execute()\n\n for item in response.get(\"items\", []):\n if results_count >= self.max_results:\n break\n\n comments = self._process_comment(\n item, include_metrics=self.include_metrics, include_replies=self.include_replies\n )\n comments_data.extend(comments)\n results_count += 1\n\n # Get the next page if available and needed\n if \"nextPageToken\" in response and results_count < self.max_results:\n request = youtube.commentThreads().list(\n part=\"snippet,replies\",\n videoId=video_id,\n maxResults=min(self.API_MAX_RESULTS, self.max_results - results_count),\n order=self.sort_by,\n textFormat=\"plainText\",\n pageToken=response[\"nextPageToken\"],\n )\n else:\n request = None\n\n # Convert to DataFrame\n comments_df = pd.DataFrame(comments_data)\n\n # Add video metadata\n comments_df[\"video_id\"] = video_id\n comments_df[\"video_url\"] = self.video_url\n\n # Sort columns for better organization\n column_order = [\n \"video_id\",\n \"video_url\",\n \"comment_id\",\n \"parent_comment_id\",\n \"is_reply\",\n \"author\",\n \"author_channel_url\",\n \"text\",\n \"published_at\",\n \"updated_at\",\n ]\n\n if self.include_metrics:\n column_order.extend([\"like_count\", \"reply_count\"])\n\n comments_df = comments_df[column_order]\n\n return DataFrame(comments_df)\n\n except HttpError as e:\n error_message = f\"YouTube API error: {e!s}\"\n if e.resp.status == self.COMMENTS_DISABLED_STATUS:\n error_message = \"Comments are disabled for this video or API quota exceeded.\"\n elif e.resp.status == self.NOT_FOUND_STATUS:\n error_message = \"Video not found.\"\n\n return DataFrame(pd.DataFrame({\"error\": [error_message]}))\n"
599
599
  },
600
600
  "include_metrics": {
601
601
  "_input_type": "BoolInput",
@@ -758,7 +758,27 @@
758
758
  "last_updated": "2025-07-07T14:52:14.999Z",
759
759
  "legacy": false,
760
760
  "lf_version": "1.4.3",
761
- "metadata": {},
761
+ "metadata": {
762
+ "code_hash": "1a4bc0f629fe",
763
+ "dependencies": {
764
+ "dependencies": [
765
+ {
766
+ "name": "langchain_core",
767
+ "version": "0.3.75"
768
+ },
769
+ {
770
+ "name": "pydantic",
771
+ "version": "2.10.6"
772
+ },
773
+ {
774
+ "name": "lfx",
775
+ "version": null
776
+ }
777
+ ],
778
+ "total_dependencies": 3
779
+ },
780
+ "module": "lfx.components.agents.agent.AgentComponent"
781
+ },
762
782
  "minimized": false,
763
783
  "output_types": [],
764
784
  "outputs": [
@@ -767,17 +787,28 @@
767
787
  "cache": true,
768
788
  "display_name": "Response",
769
789
  "group_outputs": false,
770
- "hidden": null,
771
790
  "method": "message_response",
772
791
  "name": "response",
773
- "options": null,
774
- "required_inputs": null,
775
792
  "selected": "Message",
776
793
  "tool_mode": true,
777
794
  "types": [
778
795
  "Message"
779
796
  ],
780
797
  "value": "__UNDEFINED__"
798
+ },
799
+ {
800
+ "allows_loop": false,
801
+ "cache": true,
802
+ "display_name": "Structured Response",
803
+ "group_outputs": false,
804
+ "method": "json_response",
805
+ "name": "structured_response",
806
+ "selected": "Data",
807
+ "tool_mode": false,
808
+ "types": [
809
+ "Data"
810
+ ],
811
+ "value": "__UNDEFINED__"
781
812
  }
782
813
  ],
783
814
  "pinned": false,
@@ -883,7 +914,7 @@
883
914
  "password": true,
884
915
  "placeholder": "",
885
916
  "real_time_refresh": true,
886
- "required": true,
917
+ "required": false,
887
918
  "show": true,
888
919
  "title_case": false,
889
920
  "type": "str",
@@ -905,7 +936,32 @@
905
936
  "show": true,
906
937
  "title_case": false,
907
938
  "type": "code",
908
- "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
939
+ "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool, Tool\nfrom pydantic import ValidationError\n\nfrom lfx.base.agents.agent import LCToolsAgentComponent\nfrom lfx.base.agents.events import ExceptionWithMessageError\nfrom lfx.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom lfx.base.models.model_utils import get_model_name\nfrom lfx.components.helpers.current_date import CurrentDateComponent\nfrom lfx.components.helpers.memory import MemoryComponent\nfrom lfx.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom lfx.custom.custom_component.component import get_component_toolkit\nfrom lfx.custom.utils import update_component_build_config\nfrom lfx.helpers.base_model import build_model_from_schema\nfrom lfx.inputs.inputs import TableInput\nfrom lfx.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dotdict import dotdict\nfrom lfx.schema.message import Message\nfrom lfx.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n if \"OpenAI\" in MODEL_PROVIDERS_DICT:\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n else:\n openai_inputs_filtered = []\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA]\n + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent.get_base_inputs(),\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n def _get_tools(self) -> list[Tool]:\n component_toolkit = get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
940
+ },
941
+ "format_instructions": {
942
+ "_input_type": "MultilineInput",
943
+ "advanced": true,
944
+ "copy_field": false,
945
+ "display_name": "Output Format Instructions",
946
+ "dynamic": false,
947
+ "info": "Generic Template for structured output formatting. Valid only with Structured response.",
948
+ "input_types": [
949
+ "Message"
950
+ ],
951
+ "list": false,
952
+ "list_add_label": "Add More",
953
+ "load_from_db": false,
954
+ "multiline": true,
955
+ "name": "format_instructions",
956
+ "placeholder": "",
957
+ "required": false,
958
+ "show": true,
959
+ "title_case": false,
960
+ "tool_mode": false,
961
+ "trace_as_input": true,
962
+ "trace_as_metadata": true,
963
+ "type": "str",
964
+ "value": "You are an AI that extracts structured JSON objects from unstructured text. Use a predefined schema with expected types (str, int, float, bool, dict). Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. Fill missing or ambiguous values with defaults: null for missing values. Remove exact duplicates but keep variations that have different field values. Always return valid JSON in the expected format, never throw errors. If multiple objects can be extracted, return them all in the structured format."
909
965
  },
910
966
  "handle_parsing_errors": {
911
967
  "_input_type": "BoolInput",
@@ -948,24 +1004,6 @@
948
1004
  "type": "str",
949
1005
  "value": ""
950
1006
  },
951
- "json_mode": {
952
- "_input_type": "BoolInput",
953
- "advanced": true,
954
- "display_name": "JSON Mode",
955
- "dynamic": false,
956
- "info": "If True, it will output JSON regardless of passing a schema.",
957
- "list": false,
958
- "list_add_label": "Add More",
959
- "name": "json_mode",
960
- "placeholder": "",
961
- "required": false,
962
- "show": true,
963
- "title_case": false,
964
- "tool_mode": false,
965
- "trace_as_metadata": true,
966
- "type": "bool",
967
- "value": false
968
- },
969
1007
  "max_iterations": {
970
1008
  "_input_type": "IntInput",
971
1009
  "advanced": true,
@@ -1060,12 +1098,20 @@
1060
1098
  "gpt-4.1",
1061
1099
  "gpt-4.1-mini",
1062
1100
  "gpt-4.1-nano",
1063
- "gpt-4.5-preview",
1064
1101
  "gpt-4-turbo",
1065
1102
  "gpt-4-turbo-preview",
1066
1103
  "gpt-4",
1067
1104
  "gpt-3.5-turbo",
1068
- "o1"
1105
+ "gpt-5",
1106
+ "gpt-5-mini",
1107
+ "gpt-5-nano",
1108
+ "gpt-5-chat-latest",
1109
+ "o1",
1110
+ "o3-mini",
1111
+ "o3",
1112
+ "o3-pro",
1113
+ "o4-mini",
1114
+ "o4-mini-high"
1069
1115
  ],
1070
1116
  "options_metadata": [],
1071
1117
  "placeholder": "",
@@ -1116,6 +1162,68 @@
1116
1162
  "type": "str",
1117
1163
  "value": ""
1118
1164
  },
1165
+ "output_schema": {
1166
+ "_input_type": "TableInput",
1167
+ "advanced": true,
1168
+ "display_name": "Output Schema",
1169
+ "dynamic": false,
1170
+ "info": "Schema Validation: Define the structure and data types for structured output. No validation if no output schema.",
1171
+ "is_list": true,
1172
+ "list_add_label": "Add More",
1173
+ "name": "output_schema",
1174
+ "placeholder": "",
1175
+ "required": false,
1176
+ "show": true,
1177
+ "table_icon": "Table",
1178
+ "table_schema": [
1179
+ {
1180
+ "default": "field",
1181
+ "description": "Specify the name of the output field.",
1182
+ "display_name": "Name",
1183
+ "edit_mode": "inline",
1184
+ "name": "name",
1185
+ "type": "str"
1186
+ },
1187
+ {
1188
+ "default": "description of field",
1189
+ "description": "Describe the purpose of the output field.",
1190
+ "display_name": "Description",
1191
+ "edit_mode": "popover",
1192
+ "name": "description",
1193
+ "type": "str"
1194
+ },
1195
+ {
1196
+ "default": "str",
1197
+ "description": "Indicate the data type of the output field (e.g., str, int, float, bool, dict).",
1198
+ "display_name": "Type",
1199
+ "edit_mode": "inline",
1200
+ "name": "type",
1201
+ "options": [
1202
+ "str",
1203
+ "int",
1204
+ "float",
1205
+ "bool",
1206
+ "dict"
1207
+ ],
1208
+ "type": "str"
1209
+ },
1210
+ {
1211
+ "default": "False",
1212
+ "description": "Set to True if this output field should be a list of the specified type.",
1213
+ "display_name": "As List",
1214
+ "edit_mode": "inline",
1215
+ "name": "multiple",
1216
+ "type": "boolean"
1217
+ }
1218
+ ],
1219
+ "title_case": false,
1220
+ "tool_mode": false,
1221
+ "trace_as_metadata": true,
1222
+ "trigger_icon": "Table",
1223
+ "trigger_text": "Open table",
1224
+ "type": "table",
1225
+ "value": []
1226
+ },
1119
1227
  "seed": {
1120
1228
  "_input_type": "IntInput",
1121
1229
  "advanced": true,
@@ -1473,7 +1581,7 @@
1473
1581
  "legacy": false,
1474
1582
  "lf_version": "1.4.3",
1475
1583
  "metadata": {
1476
- "code_hash": "6f74e04e39d5",
1584
+ "code_hash": "9619107fecd1",
1477
1585
  "dependencies": {
1478
1586
  "dependencies": [
1479
1587
  {
@@ -1485,13 +1593,13 @@
1485
1593
  "version": "0.116.1"
1486
1594
  },
1487
1595
  {
1488
- "name": "langflow",
1596
+ "name": "lfx",
1489
1597
  "version": null
1490
1598
  }
1491
1599
  ],
1492
1600
  "total_dependencies": 3
1493
1601
  },
1494
- "module": "langflow.components.input_output.chat_output.ChatOutput"
1602
+ "module": "lfx.components.input_output.chat_output.ChatOutput"
1495
1603
  },
1496
1604
  "minimized": true,
1497
1605
  "output_types": [],
@@ -1595,7 +1703,7 @@
1595
1703
  "show": true,
1596
1704
  "title_case": false,
1597
1705
  "type": "code",
1598
- "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom langflow.base.io.chat import ChatComponent\nfrom langflow.helpers.data import safe_convert\nfrom langflow.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom langflow.schema.data import Data\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.message import Message\nfrom langflow.schema.properties import Source\nfrom langflow.template.field.base import Output\nfrom langflow.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n info=\"Whether to clean the data\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, icon, display_name, source_id = self.get_properties_from_source_component()\n background_color = self.background_color\n text_color = self.text_color\n if self.chat_icon:\n icon = self.chat_icon\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n message.properties.icon = icon\n message.properties.background_color = background_color\n message.properties.text_color = text_color\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n return \"\\n\".join([safe_convert(item, clean_data=self.clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
1706
+ "value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n info=\"Whether to clean the data\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, icon, display_name, source_id = self.get_properties_from_source_component()\n background_color = self.background_color\n text_color = self.text_color\n if self.chat_icon:\n icon = self.chat_icon\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n message.properties.icon = icon\n message.properties.background_color = background_color\n message.properties.text_color = text_color\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n return \"\\n\".join([safe_convert(item, clean_data=self.clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
1599
1707
  },
1600
1708
  "data_template": {
1601
1709
  "_input_type": "MessageTextInput",
@@ -1801,7 +1909,7 @@
1801
1909
  "legacy": false,
1802
1910
  "lf_version": "1.4.3",
1803
1911
  "metadata": {
1804
- "code_hash": "c9f0262ff0b6",
1912
+ "code_hash": "c1771da1f21b",
1805
1913
  "dependencies": {
1806
1914
  "dependencies": [
1807
1915
  {
@@ -1817,13 +1925,13 @@
1817
1925
  "version": "0.3.21"
1818
1926
  },
1819
1927
  {
1820
- "name": "langflow",
1928
+ "name": "lfx",
1821
1929
  "version": null
1822
1930
  }
1823
1931
  ],
1824
1932
  "total_dependencies": 4
1825
1933
  },
1826
- "module": "langflow.components.youtube.youtube_transcripts.YouTubeTranscriptsComponent"
1934
+ "module": "lfx.components.youtube.youtube_transcripts.YouTubeTranscriptsComponent"
1827
1935
  },
1828
1936
  "minimized": false,
1829
1937
  "output_types": [],
@@ -1883,7 +1991,7 @@
1883
1991
  "show": true,
1884
1992
  "title_case": false,
1885
1993
  "type": "code",
1886
- "value": "import pandas as pd\nimport youtube_transcript_api\nfrom langchain_community.document_loaders import YoutubeLoader\nfrom langchain_community.document_loaders.youtube import TranscriptFormat\n\nfrom langflow.custom.custom_component.component import Component\nfrom langflow.inputs.inputs import DropdownInput, IntInput, MultilineInput\nfrom langflow.schema.data import Data\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.message import Message\nfrom langflow.template.field.base import Output\n\n\nclass YouTubeTranscriptsComponent(Component):\n \"\"\"A component that extracts spoken content from YouTube videos as transcripts.\"\"\"\n\n display_name: str = \"YouTube Transcripts\"\n description: str = \"Extracts spoken content from YouTube videos with multiple output options.\"\n icon: str = \"YouTube\"\n name = \"YouTubeTranscripts\"\n\n inputs = [\n MultilineInput(\n name=\"url\",\n display_name=\"Video URL\",\n info=\"Enter the YouTube video URL to get transcripts from.\",\n tool_mode=True,\n required=True,\n ),\n IntInput(\n name=\"chunk_size_seconds\",\n display_name=\"Chunk Size (seconds)\",\n value=60,\n info=\"The size of each transcript chunk in seconds.\",\n ),\n DropdownInput(\n name=\"translation\",\n display_name=\"Translation Language\",\n advanced=True,\n options=[\"\", \"en\", \"es\", \"fr\", \"de\", \"it\", \"pt\", \"ru\", \"ja\", \"ko\", \"hi\", \"ar\", \"id\"],\n info=\"Translate the transcripts to the specified language. Leave empty for no translation.\",\n ),\n ]\n\n outputs = [\n Output(name=\"dataframe\", display_name=\"Chunks\", method=\"get_dataframe_output\"),\n Output(name=\"message\", display_name=\"Transcript\", method=\"get_message_output\"),\n Output(name=\"data_output\", display_name=\"Transcript + Source\", method=\"get_data_output\"),\n ]\n\n def _load_transcripts(self, *, as_chunks: bool = True):\n \"\"\"Internal method to load transcripts from YouTube.\"\"\"\n loader = YoutubeLoader.from_youtube_url(\n self.url,\n transcript_format=TranscriptFormat.CHUNKS if as_chunks else TranscriptFormat.TEXT,\n chunk_size_seconds=self.chunk_size_seconds,\n translation=self.translation or None,\n )\n return loader.load()\n\n def get_dataframe_output(self) -> DataFrame:\n \"\"\"Provides transcript output as a DataFrame with timestamp and text columns.\"\"\"\n try:\n transcripts = self._load_transcripts(as_chunks=True)\n\n # Create DataFrame with timestamp and text columns\n data = []\n for doc in transcripts:\n start_seconds = int(doc.metadata[\"start_seconds\"])\n start_minutes = start_seconds // 60\n start_seconds %= 60\n timestamp = f\"{start_minutes:02d}:{start_seconds:02d}\"\n data.append({\"timestamp\": timestamp, \"text\": doc.page_content})\n\n return DataFrame(pd.DataFrame(data))\n\n except (youtube_transcript_api.TranscriptsDisabled, youtube_transcript_api.NoTranscriptFound) as exc:\n return DataFrame(pd.DataFrame({\"error\": [f\"Failed to get YouTube transcripts: {exc!s}\"]}))\n\n def get_message_output(self) -> Message:\n \"\"\"Provides transcript output as continuous text.\"\"\"\n try:\n transcripts = self._load_transcripts(as_chunks=False)\n result = transcripts[0].page_content\n return Message(text=result)\n\n except (youtube_transcript_api.TranscriptsDisabled, youtube_transcript_api.NoTranscriptFound) as exc:\n error_msg = f\"Failed to get YouTube transcripts: {exc!s}\"\n return Message(text=error_msg)\n\n def get_data_output(self) -> Data:\n \"\"\"Creates a structured data object with transcript and metadata.\n\n Returns a Data object containing transcript text, video URL, and any error\n messages that occurred during processing. The object includes:\n - 'transcript': continuous text from the entire video (concatenated if multiple parts)\n - 'video_url': the input YouTube URL\n - 'error': error message if an exception occurs\n \"\"\"\n default_data = {\"transcript\": \"\", \"video_url\": self.url, \"error\": None}\n\n try:\n transcripts = self._load_transcripts(as_chunks=False)\n if not transcripts:\n default_data[\"error\"] = \"No transcripts found.\"\n return Data(data=default_data)\n\n # Combine all transcript parts\n full_transcript = \" \".join(doc.page_content for doc in transcripts)\n return Data(data={\"transcript\": full_transcript, \"video_url\": self.url})\n\n except (\n youtube_transcript_api.TranscriptsDisabled,\n youtube_transcript_api.NoTranscriptFound,\n youtube_transcript_api.CouldNotRetrieveTranscript,\n ) as exc:\n default_data[\"error\"] = str(exc)\n return Data(data=default_data)\n"
1994
+ "value": "import pandas as pd\nimport youtube_transcript_api\nfrom langchain_community.document_loaders import YoutubeLoader\nfrom langchain_community.document_loaders.youtube import TranscriptFormat\n\nfrom lfx.custom.custom_component.component import Component\nfrom lfx.inputs.inputs import DropdownInput, IntInput, MultilineInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.template.field.base import Output\n\n\nclass YouTubeTranscriptsComponent(Component):\n \"\"\"A component that extracts spoken content from YouTube videos as transcripts.\"\"\"\n\n display_name: str = \"YouTube Transcripts\"\n description: str = \"Extracts spoken content from YouTube videos with multiple output options.\"\n icon: str = \"YouTube\"\n name = \"YouTubeTranscripts\"\n\n inputs = [\n MultilineInput(\n name=\"url\",\n display_name=\"Video URL\",\n info=\"Enter the YouTube video URL to get transcripts from.\",\n tool_mode=True,\n required=True,\n ),\n IntInput(\n name=\"chunk_size_seconds\",\n display_name=\"Chunk Size (seconds)\",\n value=60,\n info=\"The size of each transcript chunk in seconds.\",\n ),\n DropdownInput(\n name=\"translation\",\n display_name=\"Translation Language\",\n advanced=True,\n options=[\"\", \"en\", \"es\", \"fr\", \"de\", \"it\", \"pt\", \"ru\", \"ja\", \"ko\", \"hi\", \"ar\", \"id\"],\n info=\"Translate the transcripts to the specified language. Leave empty for no translation.\",\n ),\n ]\n\n outputs = [\n Output(name=\"dataframe\", display_name=\"Chunks\", method=\"get_dataframe_output\"),\n Output(name=\"message\", display_name=\"Transcript\", method=\"get_message_output\"),\n Output(name=\"data_output\", display_name=\"Transcript + Source\", method=\"get_data_output\"),\n ]\n\n def _load_transcripts(self, *, as_chunks: bool = True):\n \"\"\"Internal method to load transcripts from YouTube.\"\"\"\n loader = YoutubeLoader.from_youtube_url(\n self.url,\n transcript_format=TranscriptFormat.CHUNKS if as_chunks else TranscriptFormat.TEXT,\n chunk_size_seconds=self.chunk_size_seconds,\n translation=self.translation or None,\n )\n return loader.load()\n\n def get_dataframe_output(self) -> DataFrame:\n \"\"\"Provides transcript output as a DataFrame with timestamp and text columns.\"\"\"\n try:\n transcripts = self._load_transcripts(as_chunks=True)\n\n # Create DataFrame with timestamp and text columns\n data = []\n for doc in transcripts:\n start_seconds = int(doc.metadata[\"start_seconds\"])\n start_minutes = start_seconds // 60\n start_seconds %= 60\n timestamp = f\"{start_minutes:02d}:{start_seconds:02d}\"\n data.append({\"timestamp\": timestamp, \"text\": doc.page_content})\n\n return DataFrame(pd.DataFrame(data))\n\n except (youtube_transcript_api.TranscriptsDisabled, youtube_transcript_api.NoTranscriptFound) as exc:\n return DataFrame(pd.DataFrame({\"error\": [f\"Failed to get YouTube transcripts: {exc!s}\"]}))\n\n def get_message_output(self) -> Message:\n \"\"\"Provides transcript output as continuous text.\"\"\"\n try:\n transcripts = self._load_transcripts(as_chunks=False)\n result = transcripts[0].page_content\n return Message(text=result)\n\n except (youtube_transcript_api.TranscriptsDisabled, youtube_transcript_api.NoTranscriptFound) as exc:\n error_msg = f\"Failed to get YouTube transcripts: {exc!s}\"\n return Message(text=error_msg)\n\n def get_data_output(self) -> Data:\n \"\"\"Creates a structured data object with transcript and metadata.\n\n Returns a Data object containing transcript text, video URL, and any error\n messages that occurred during processing. The object includes:\n - 'transcript': continuous text from the entire video (concatenated if multiple parts)\n - 'video_url': the input YouTube URL\n - 'error': error message if an exception occurs\n \"\"\"\n default_data = {\"transcript\": \"\", \"video_url\": self.url, \"error\": None}\n\n try:\n transcripts = self._load_transcripts(as_chunks=False)\n if not transcripts:\n default_data[\"error\"] = \"No transcripts found.\"\n return Data(data=default_data)\n\n # Combine all transcript parts\n full_transcript = \" \".join(doc.page_content for doc in transcripts)\n return Data(data={\"transcript\": full_transcript, \"video_url\": self.url})\n\n except (\n youtube_transcript_api.TranscriptsDisabled,\n youtube_transcript_api.NoTranscriptFound,\n youtube_transcript_api.CouldNotRetrieveTranscript,\n ) as exc:\n default_data[\"error\"] = str(exc)\n return Data(data=default_data)\n"
1887
1995
  },
1888
1996
  "tools_metadata": {
1889
1997
  "_input_type": "ToolsInput",
@@ -2254,7 +2362,7 @@
2254
2362
  "category": "models",
2255
2363
  "conditional_paths": [],
2256
2364
  "custom_fields": {},
2257
- "description": "Runs a language model given a specified provider. ",
2365
+ "description": "Runs a language model given a specified provider.",
2258
2366
  "display_name": "Language Model",
2259
2367
  "documentation": "",
2260
2368
  "edited": false,
@@ -2274,12 +2382,35 @@
2274
2382
  "legacy": false,
2275
2383
  "lf_version": "1.4.3",
2276
2384
  "metadata": {
2385
+ "code_hash": "bb5f8714781b",
2386
+ "dependencies": {
2387
+ "dependencies": [
2388
+ {
2389
+ "name": "langchain_anthropic",
2390
+ "version": "0.3.14"
2391
+ },
2392
+ {
2393
+ "name": "langchain_google_genai",
2394
+ "version": "2.0.6"
2395
+ },
2396
+ {
2397
+ "name": "langchain_openai",
2398
+ "version": "0.3.23"
2399
+ },
2400
+ {
2401
+ "name": "lfx",
2402
+ "version": null
2403
+ }
2404
+ ],
2405
+ "total_dependencies": 4
2406
+ },
2277
2407
  "keywords": [
2278
2408
  "model",
2279
2409
  "llm",
2280
2410
  "language model",
2281
2411
  "large language model"
2282
- ]
2412
+ ],
2413
+ "module": "lfx.components.models.language_model.LanguageModelComponent"
2283
2414
  },
2284
2415
  "minimized": false,
2285
2416
  "output_types": [],
@@ -2356,7 +2487,7 @@
2356
2487
  "show": true,
2357
2488
  "title_case": false,
2358
2489
  "type": "code",
2359
- "value": "from typing import Any\n\nfrom langchain_anthropic import ChatAnthropic\nfrom langchain_google_genai import ChatGoogleGenerativeAI\nfrom langchain_openai import ChatOpenAI\n\nfrom langflow.base.models.anthropic_constants import ANTHROPIC_MODELS\nfrom langflow.base.models.google_generative_ai_constants import GOOGLE_GENERATIVE_AI_MODELS\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_CHAT_MODEL_NAMES, OPENAI_REASONING_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs.inputs import BoolInput\nfrom langflow.io import DropdownInput, MessageInput, MultilineInput, SecretStrInput, SliderInput\nfrom langflow.schema.dotdict import dotdict\n\n\nclass LanguageModelComponent(LCModelComponent):\n display_name = \"Language Model\"\n description = \"Runs a language model given a specified provider.\"\n documentation: str = \"https://docs.langflow.org/components-models\"\n icon = \"brain-circuit\"\n category = \"models\"\n priority = 0 # Set priority to 0 to make it appear first\n\n inputs = [\n DropdownInput(\n name=\"provider\",\n display_name=\"Model Provider\",\n options=[\"OpenAI\", \"Anthropic\", \"Google\"],\n value=\"OpenAI\",\n info=\"Select the model provider\",\n real_time_refresh=True,\n options_metadata=[{\"icon\": \"OpenAI\"}, {\"icon\": \"Anthropic\"}, {\"icon\": \"GoogleGenerativeAI\"}],\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n options=OPENAI_CHAT_MODEL_NAMES + OPENAI_REASONING_MODEL_NAMES,\n value=OPENAI_CHAT_MODEL_NAMES[0],\n info=\"Select the model to use\",\n real_time_refresh=True,\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"Model Provider API key\",\n required=False,\n show=True,\n real_time_refresh=True,\n ),\n MessageInput(\n name=\"input_value\",\n display_name=\"Input\",\n info=\"The input text to send to the model\",\n ),\n MultilineInput(\n name=\"system_message\",\n display_name=\"System Message\",\n info=\"A system message that helps set the behavior of the assistant\",\n advanced=False,\n ),\n BoolInput(\n name=\"stream\",\n display_name=\"Stream\",\n info=\"Whether to stream the response\",\n value=False,\n advanced=True,\n ),\n SliderInput(\n name=\"temperature\",\n display_name=\"Temperature\",\n value=0.1,\n info=\"Controls randomness in responses\",\n range_spec=RangeSpec(min=0, max=1, step=0.01),\n advanced=True,\n ),\n ]\n\n def build_model(self) -> LanguageModel:\n provider = self.provider\n model_name = self.model_name\n temperature = self.temperature\n stream = self.stream\n\n if provider == \"OpenAI\":\n if not self.api_key:\n msg = \"OpenAI API key is required when using OpenAI provider\"\n raise ValueError(msg)\n\n if model_name in OPENAI_REASONING_MODEL_NAMES:\n # reasoning models do not support temperature (yet)\n temperature = None\n\n return ChatOpenAI(\n model_name=model_name,\n temperature=temperature,\n streaming=stream,\n openai_api_key=self.api_key,\n )\n if provider == \"Anthropic\":\n if not self.api_key:\n msg = \"Anthropic API key is required when using Anthropic provider\"\n raise ValueError(msg)\n return ChatAnthropic(\n model=model_name,\n temperature=temperature,\n streaming=stream,\n anthropic_api_key=self.api_key,\n )\n if provider == \"Google\":\n if not self.api_key:\n msg = \"Google API key is required when using Google provider\"\n raise ValueError(msg)\n return ChatGoogleGenerativeAI(\n model=model_name,\n temperature=temperature,\n streaming=stream,\n google_api_key=self.api_key,\n )\n msg = f\"Unknown provider: {provider}\"\n raise ValueError(msg)\n\n def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None) -> dotdict:\n if field_name == \"provider\":\n if field_value == \"OpenAI\":\n build_config[\"model_name\"][\"options\"] = OPENAI_CHAT_MODEL_NAMES + OPENAI_REASONING_MODEL_NAMES\n build_config[\"model_name\"][\"value\"] = OPENAI_CHAT_MODEL_NAMES[0]\n build_config[\"api_key\"][\"display_name\"] = \"OpenAI API Key\"\n elif field_value == \"Anthropic\":\n build_config[\"model_name\"][\"options\"] = ANTHROPIC_MODELS\n build_config[\"model_name\"][\"value\"] = ANTHROPIC_MODELS[0]\n build_config[\"api_key\"][\"display_name\"] = \"Anthropic API Key\"\n elif field_value == \"Google\":\n build_config[\"model_name\"][\"options\"] = GOOGLE_GENERATIVE_AI_MODELS\n build_config[\"model_name\"][\"value\"] = GOOGLE_GENERATIVE_AI_MODELS[0]\n build_config[\"api_key\"][\"display_name\"] = \"Google API Key\"\n elif field_name == \"model_name\" and field_value.startswith(\"o1\") and self.provider == \"OpenAI\":\n # Hide system_message for o1 models - currently unsupported\n if \"system_message\" in build_config:\n build_config[\"system_message\"][\"show\"] = False\n elif field_name == \"model_name\" and not field_value.startswith(\"o1\") and \"system_message\" in build_config:\n build_config[\"system_message\"][\"show\"] = True\n return build_config\n"
2490
+ "value": "from typing import Any\n\nfrom langchain_anthropic import ChatAnthropic\nfrom langchain_google_genai import ChatGoogleGenerativeAI\nfrom langchain_openai import ChatOpenAI\n\nfrom lfx.base.models.anthropic_constants import ANTHROPIC_MODELS\nfrom lfx.base.models.google_generative_ai_constants import GOOGLE_GENERATIVE_AI_MODELS\nfrom lfx.base.models.model import LCModelComponent\nfrom lfx.base.models.openai_constants import OPENAI_CHAT_MODEL_NAMES, OPENAI_REASONING_MODEL_NAMES\nfrom lfx.field_typing import LanguageModel\nfrom lfx.field_typing.range_spec import RangeSpec\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import DropdownInput, MessageInput, MultilineInput, SecretStrInput, SliderInput\nfrom lfx.schema.dotdict import dotdict\n\n\nclass LanguageModelComponent(LCModelComponent):\n display_name = \"Language Model\"\n description = \"Runs a language model given a specified provider.\"\n documentation: str = \"https://docs.langflow.org/components-models\"\n icon = \"brain-circuit\"\n category = \"models\"\n priority = 0 # Set priority to 0 to make it appear first\n\n inputs = [\n DropdownInput(\n name=\"provider\",\n display_name=\"Model Provider\",\n options=[\"OpenAI\", \"Anthropic\", \"Google\"],\n value=\"OpenAI\",\n info=\"Select the model provider\",\n real_time_refresh=True,\n options_metadata=[{\"icon\": \"OpenAI\"}, {\"icon\": \"Anthropic\"}, {\"icon\": \"GoogleGenerativeAI\"}],\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n options=OPENAI_CHAT_MODEL_NAMES + OPENAI_REASONING_MODEL_NAMES,\n value=OPENAI_CHAT_MODEL_NAMES[0],\n info=\"Select the model to use\",\n real_time_refresh=True,\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"Model Provider API key\",\n required=False,\n show=True,\n real_time_refresh=True,\n ),\n MessageInput(\n name=\"input_value\",\n display_name=\"Input\",\n info=\"The input text to send to the model\",\n ),\n MultilineInput(\n name=\"system_message\",\n display_name=\"System Message\",\n info=\"A system message that helps set the behavior of the assistant\",\n advanced=False,\n ),\n BoolInput(\n name=\"stream\",\n display_name=\"Stream\",\n info=\"Whether to stream the response\",\n value=False,\n advanced=True,\n ),\n SliderInput(\n name=\"temperature\",\n display_name=\"Temperature\",\n value=0.1,\n info=\"Controls randomness in responses\",\n range_spec=RangeSpec(min=0, max=1, step=0.01),\n advanced=True,\n ),\n ]\n\n def build_model(self) -> LanguageModel:\n provider = self.provider\n model_name = self.model_name\n temperature = self.temperature\n stream = self.stream\n\n if provider == \"OpenAI\":\n if not self.api_key:\n msg = \"OpenAI API key is required when using OpenAI provider\"\n raise ValueError(msg)\n\n if model_name in OPENAI_REASONING_MODEL_NAMES:\n # reasoning models do not support temperature (yet)\n temperature = None\n\n return ChatOpenAI(\n model_name=model_name,\n temperature=temperature,\n streaming=stream,\n openai_api_key=self.api_key,\n )\n if provider == \"Anthropic\":\n if not self.api_key:\n msg = \"Anthropic API key is required when using Anthropic provider\"\n raise ValueError(msg)\n return ChatAnthropic(\n model=model_name,\n temperature=temperature,\n streaming=stream,\n anthropic_api_key=self.api_key,\n )\n if provider == \"Google\":\n if not self.api_key:\n msg = \"Google API key is required when using Google provider\"\n raise ValueError(msg)\n return ChatGoogleGenerativeAI(\n model=model_name,\n temperature=temperature,\n streaming=stream,\n google_api_key=self.api_key,\n )\n msg = f\"Unknown provider: {provider}\"\n raise ValueError(msg)\n\n def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None) -> dotdict:\n if field_name == \"provider\":\n if field_value == \"OpenAI\":\n build_config[\"model_name\"][\"options\"] = OPENAI_CHAT_MODEL_NAMES + OPENAI_REASONING_MODEL_NAMES\n build_config[\"model_name\"][\"value\"] = OPENAI_CHAT_MODEL_NAMES[0]\n build_config[\"api_key\"][\"display_name\"] = \"OpenAI API Key\"\n elif field_value == \"Anthropic\":\n build_config[\"model_name\"][\"options\"] = ANTHROPIC_MODELS\n build_config[\"model_name\"][\"value\"] = ANTHROPIC_MODELS[0]\n build_config[\"api_key\"][\"display_name\"] = \"Anthropic API Key\"\n elif field_value == \"Google\":\n build_config[\"model_name\"][\"options\"] = GOOGLE_GENERATIVE_AI_MODELS\n build_config[\"model_name\"][\"value\"] = GOOGLE_GENERATIVE_AI_MODELS[0]\n build_config[\"api_key\"][\"display_name\"] = \"Google API Key\"\n elif field_name == \"model_name\" and field_value.startswith(\"o1\") and self.provider == \"OpenAI\":\n # Hide system_message for o1 models - currently unsupported\n if \"system_message\" in build_config:\n build_config[\"system_message\"][\"show\"] = False\n elif field_name == \"model_name\" and not field_value.startswith(\"o1\") and \"system_message\" in build_config:\n build_config[\"system_message\"][\"show\"] = True\n return build_config\n"
2360
2491
  },
2361
2492
  "input_value": {
2362
2493
  "_input_type": "MessageInput",
@@ -2396,11 +2527,20 @@
2396
2527
  "gpt-4.1",
2397
2528
  "gpt-4.1-mini",
2398
2529
  "gpt-4.1-nano",
2399
- "gpt-4.5-preview",
2400
2530
  "gpt-4-turbo",
2401
2531
  "gpt-4-turbo-preview",
2402
2532
  "gpt-4",
2403
- "gpt-3.5-turbo"
2533
+ "gpt-3.5-turbo",
2534
+ "gpt-5",
2535
+ "gpt-5-mini",
2536
+ "gpt-5-nano",
2537
+ "gpt-5-chat-latest",
2538
+ "o1",
2539
+ "o3-mini",
2540
+ "o3",
2541
+ "o3-pro",
2542
+ "o4-mini",
2543
+ "o4-mini-high"
2404
2544
  ],
2405
2545
  "options_metadata": [],
2406
2546
  "placeholder": "",
@@ -2572,17 +2712,17 @@
2572
2712
  "legacy": false,
2573
2713
  "lf_version": "1.4.3",
2574
2714
  "metadata": {
2575
- "code_hash": "192913db3453",
2715
+ "code_hash": "715a37648834",
2576
2716
  "dependencies": {
2577
2717
  "dependencies": [
2578
2718
  {
2579
- "name": "langflow",
2719
+ "name": "lfx",
2580
2720
  "version": null
2581
2721
  }
2582
2722
  ],
2583
2723
  "total_dependencies": 1
2584
2724
  },
2585
- "module": "langflow.components.input_output.chat.ChatInput"
2725
+ "module": "lfx.components.input_output.chat.ChatInput"
2586
2726
  },
2587
2727
  "minimized": true,
2588
2728
  "output_types": [],
@@ -2668,7 +2808,7 @@
2668
2808
  "show": true,
2669
2809
  "title_case": false,
2670
2810
  "type": "code",
2671
- "value": "from langflow.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom langflow.base.io.chat import ChatComponent\nfrom langflow.inputs.inputs import BoolInput\nfrom langflow.io import (\n DropdownInput,\n FileInput,\n MessageTextInput,\n MultilineInput,\n Output,\n)\nfrom langflow.schema.message import Message\nfrom langflow.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_USER,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-input\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n minimized = True\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n input_types=[],\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n temp_file=True,\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Chat Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n background_color = self.background_color\n text_color = self.text_color\n icon = self.chat_icon\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n files=self.files,\n properties={\n \"background_color\": background_color,\n \"text_color\": text_color,\n \"icon\": icon,\n },\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n"
2811
+ "value": "from lfx.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import (\n DropdownInput,\n FileInput,\n MessageTextInput,\n MultilineInput,\n Output,\n)\nfrom lfx.schema.message import Message\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_USER,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-input\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n minimized = True\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n input_types=[],\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n temp_file=True,\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Chat Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n background_color = self.background_color\n text_color = self.text_color\n icon = self.chat_icon\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n files=self.files,\n properties={\n \"background_color\": background_color,\n \"text_color\": text_color,\n \"icon\": icon,\n },\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n"
2672
2812
  },
2673
2813
  "files": {
2674
2814
  "_input_type": "FileInput",