langflow-base-nightly 0.5.1.dev3__py3-none-any.whl → 0.5.1.dev4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- langflow/__init__.py +215 -0
- langflow/__main__.py +16 -2
- langflow/alembic/versions/006b3990db50_add_unique_constraints.py +4 -7
- langflow/alembic/versions/012fb73ac359_add_folder_table.py +4 -5
- langflow/alembic/versions/0ae3a2674f32_update_the_columns_that_need_to_change_.py +11 -20
- langflow/alembic/versions/0b8757876a7c_.py +4 -7
- langflow/alembic/versions/0d60fcbd4e8e_create_vertex_builds_table.py +4 -6
- langflow/alembic/versions/1a110b568907_replace_credential_table_with_variable.py +4 -5
- langflow/alembic/versions/1b8b740a6fa3_remove_fk_constraint_in_message_.py +32 -27
- langflow/alembic/versions/1c79524817ed_add_unique_constraints_per_user_in_.py +4 -5
- langflow/alembic/versions/1d90f8a0efe1_update_description_columns_type.py +4 -5
- langflow/alembic/versions/1eab2c3eb45e_event_error.py +14 -15
- langflow/alembic/versions/1ef9c4f3765d_.py +5 -10
- langflow/alembic/versions/1f4d6df60295_add_default_fields_column.py +4 -5
- langflow/alembic/versions/260dbcc8b680_adds_tables.py +4 -5
- langflow/alembic/versions/29fe8f1f806b_add_missing_index.py +4 -5
- langflow/alembic/versions/2ac71eb9c3ae_adds_credential_table.py +4 -7
- langflow/alembic/versions/3bb0ddf32dfb_add_unique_constraints_per_user_in_flow_.py +4 -5
- langflow/alembic/versions/4e5980a44eaa_fix_date_times_again.py +1 -2
- langflow/alembic/versions/58b28437a398_modify_nullable.py +1 -2
- langflow/alembic/versions/5ace73a7f223_new_remove_table_upgrade_op.py +6 -12
- langflow/alembic/versions/631faacf5da2_add_webhook_columns.py +4 -5
- langflow/alembic/versions/63b9c451fd30_add_icon_and_icon_bg_color_to_flow.py +4 -5
- langflow/alembic/versions/66f72f04a1de_add_mcp_support_with_project_settings_.py +21 -23
- langflow/alembic/versions/67cc006d50bf_add_profile_image_column.py +4 -5
- langflow/alembic/versions/6e7b581b5648_fix_nullable.py +4 -5
- langflow/alembic/versions/7843803a87b5_store_updates.py +4 -6
- langflow/alembic/versions/79e675cb6752_change_datetime_type.py +1 -2
- langflow/alembic/versions/7d2162acc8b2_adds_updated_at_and_folder_cols.py +4 -10
- langflow/alembic/versions/90be8e2ed91e_create_transactions_table.py +4 -6
- langflow/alembic/versions/93e2705fa8d6_add_column_save_path_to_flow.py +7 -9
- langflow/alembic/versions/a72f5cf9c2f9_add_endpoint_name_col.py +4 -5
- langflow/alembic/versions/b2fa308044b5_add_unique_constraints.py +1 -2
- langflow/alembic/versions/bc2f01c40e4a_new_fixes.py +4 -5
- langflow/alembic/versions/c153816fd85f_set_name_and_value_to_not_nullable.py +4 -5
- langflow/alembic/versions/d066bfd22890_add_message_table.py +4 -4
- langflow/alembic/versions/d2d475a1f7c0_add_tags_column_to_flow.py +12 -13
- langflow/alembic/versions/d3dbf656a499_add_gradient_column_in_flow.py +12 -12
- langflow/alembic/versions/d9a6ea21edcd_rename_default_folder.py +7 -10
- langflow/alembic/versions/dd9e0804ebd1_add_v2_file_table.py +8 -7
- langflow/alembic/versions/e3162c1804e6_add_persistent_locked_state.py +10 -10
- langflow/alembic/versions/e3bc869fa272_fix_nullable.py +4 -5
- langflow/alembic/versions/e56d87f8994a_add_optins_column_to_user.py +13 -14
- langflow/alembic/versions/e5a65ecff2cd_nullable_in_vertex_build.py +4 -5
- langflow/alembic/versions/eb5866d51fd2_change_columns_to_be_nullable.py +4 -5
- langflow/alembic/versions/eb5e72293a8e_add_error_and_edit_flags_to_message.py +4 -5
- langflow/alembic/versions/f3b2d1f1002d_add_column_access_type_to_flow.py +19 -15
- langflow/alembic/versions/f5ee9749d1a6_user_id_can_be_null_in_flow.py +4 -6
- langflow/alembic/versions/fd531f8868b1_fix_credential_table.py +5 -8
- langflow/api/build.py +5 -4
- langflow/api/health_check_router.py +1 -1
- langflow/api/limited_background_tasks.py +1 -1
- langflow/api/log_router.py +1 -2
- langflow/api/utils.py +2 -2
- langflow/api/v1/base.py +1 -2
- langflow/api/v1/callback.py +4 -9
- langflow/api/v1/chat.py +6 -7
- langflow/api/v1/endpoints.py +15 -15
- langflow/api/v1/files.py +1 -1
- langflow/api/v1/flows.py +1 -1
- langflow/api/v1/knowledge_bases.py +1 -1
- langflow/api/v1/mcp.py +1 -1
- langflow/api/v1/mcp_projects.py +14 -5
- langflow/api/v1/mcp_utils.py +3 -3
- langflow/api/v1/openai_responses.py +4 -4
- langflow/api/v1/schemas.py +3 -38
- langflow/api/v1/starter_projects.py +61 -3
- langflow/api/v1/store.py +1 -1
- langflow/api/v1/validate.py +3 -3
- langflow/api/v1/voice_mode.py +2 -2
- langflow/api/v2/files.py +1 -1
- langflow/api/v2/mcp.py +2 -2
- langflow/base/__init__.py +11 -0
- langflow/base/agents/__init__.py +3 -0
- langflow/base/data/__init__.py +2 -4
- langflow/base/data/utils.py +2 -197
- langflow/base/embeddings/__init__.py +3 -0
- langflow/base/io/__init__.py +7 -0
- langflow/base/io/chat.py +5 -18
- langflow/base/io/text.py +2 -21
- langflow/base/knowledge_bases/__init__.py +3 -0
- langflow/base/memory/__init__.py +3 -0
- langflow/base/models/__init__.py +2 -2
- langflow/base/models/openai_constants.py +6 -120
- langflow/base/prompts/__init__.py +3 -0
- langflow/base/prompts/api_utils.py +2 -223
- langflow/base/textsplitters/__init__.py +3 -0
- langflow/base/tools/__init__.py +3 -0
- langflow/base/vectorstores/__init__.py +3 -0
- langflow/components/__init__.py +7 -259
- langflow/components/agents.py +6 -0
- langflow/components/anthropic.py +6 -0
- langflow/components/data.py +6 -0
- langflow/components/helpers.py +6 -0
- langflow/components/knowledge_bases/ingestion.py +13 -14
- langflow/components/knowledge_bases/retrieval.py +8 -7
- langflow/components/openai.py +6 -0
- langflow/components/processing/__init__.py +1 -117
- langflow/components/processing/converter.py +3 -149
- langflow/custom/__init__.py +26 -3
- langflow/custom/custom_component/__init__.py +4 -0
- langflow/custom/custom_component/component.py +20 -1738
- langflow/custom/custom_component/component_with_cache.py +1 -8
- langflow/custom/custom_component/custom_component.py +1 -552
- langflow/custom/utils.py +1 -872
- langflow/custom/validate.py +1 -0
- langflow/events/event_manager.py +18 -108
- langflow/field_typing/__init__.py +6 -6
- langflow/field_typing/constants.py +87 -122
- langflow/field_typing/range_spec.py +2 -32
- langflow/frontend/assets/{SlackIcon-Cc7Qnzki.js → SlackIcon-v88osOTA.js} +1 -1
- langflow/frontend/assets/{Wikipedia-7ulMZY46.js → Wikipedia-DD_S2k00.js} +1 -1
- langflow/frontend/assets/{Wolfram-By9PGsHS.js → Wolfram-EO2C5noN.js} +1 -1
- langflow/frontend/assets/{index-DVLIDc2_.js → index-1Gv1mfvk.js} +1 -1
- langflow/frontend/assets/{index-MVW4HTEk.js → index-7v-bzlzf.js} +1 -1
- langflow/frontend/assets/{index-CUzlcce2.js → index-9CbMazbV.js} +1 -1
- langflow/frontend/assets/{index-CU16NJD7.js → index-B8ZHP8g2.js} +1 -1
- langflow/frontend/assets/{index-v8eXbWlM.js → index-B8y2e6vN.js} +1 -1
- langflow/frontend/assets/{index-BX_asvRB.js → index-BBRUGsyr.js} +1 -1
- langflow/frontend/assets/{index-9FL5xjkL.js → index-BGwqQwlh.js} +1 -1
- langflow/frontend/assets/{index-BAn-AzCS.js → index-BIq-k-FG.js} +1 -1
- langflow/frontend/assets/{index-D5c2nNvp.js → index-BSN73YP8.js} +1 -1
- langflow/frontend/assets/{index-DMCerPJM.js → index-BU8R8jRn.js} +1 -1
- langflow/frontend/assets/{index-CvSoff-8.js → index-BV6yx8ey.js} +1 -1
- langflow/frontend/assets/{index-BISPW-f6.js → index-BYIsg-Eh.js} +1 -1
- langflow/frontend/assets/{index-GzOGB_fo.js → index-B_ksDBSQ.js} +1 -1
- langflow/frontend/assets/{index-BIqEYjNT.js → index-Ba1UOZ9A.js} +1 -1
- langflow/frontend/assets/{index-ByxGmq5p.js → index-Ba9tKRQg.js} +1 -1
- langflow/frontend/assets/{index-BLEWsL1U.js → index-Bbfaw8ca.js} +1 -1
- langflow/frontend/assets/{index-C_MhBX6R.js → index-BbuGqvAx.js} +1 -1
- langflow/frontend/assets/{index-RH_I78z_.js → index-BeoXu1YX.js} +1 -1
- langflow/frontend/assets/{index-cYFKmtmg.js → index-BfjZmOnH.js} +1 -1
- langflow/frontend/assets/{index-Bm9i8F4W.js → index-Bjzy_HZB.js} +1 -1
- langflow/frontend/assets/{index-_szO7sta.js → index-BofEkpYB.js} +1 -1
- langflow/frontend/assets/{index-DP1oE6QB.js → index-Bp7Mty2H.js} +1 -1
- langflow/frontend/assets/{index-CeswGUz3.js → index-BqX1H6yK.js} +1 -1
- langflow/frontend/assets/{index-C8pI0lzi.js → index-BqtBAJAN.js} +1 -1
- langflow/frontend/assets/{index-BusCv3bR.js → index-Bsfraj7A.js} +1 -1
- langflow/frontend/assets/{index-BWnKMRFJ.js → index-BtFl7fER.js} +1 -1
- langflow/frontend/assets/{index-DnlVWWU8.js → index-BvX993Sv.js} +1 -1
- langflow/frontend/assets/{index-C676MS3I.js → index-BvgQ2vzM.js} +1 -1
- langflow/frontend/assets/{index-DJ6HD14g.js → index-BwY98u8n.js} +1 -1
- langflow/frontend/assets/{index-C51yNvIL.js → index-C-RIJAOS.js} +1 -1
- langflow/frontend/assets/{index-DiblXWmk.js → index-C1K6A38P.js} +1 -1
- langflow/frontend/assets/{index-Co__gFM1.js → index-C3Vwhx0t.js} +1 -1
- langflow/frontend/assets/{index-Coi86oqP.js → index-C5XUG_gr.js} +1 -1
- langflow/frontend/assets/{index-jwzN3Jd_.js → index-C6ouLG9o.js} +1 -1
- langflow/frontend/assets/{index-CQQ-4XMS.js → index-C7ZJ_Z6f.js} +1 -1
- langflow/frontend/assets/{index-Bl7RpmrB.js → index-CCOGIwGY.js} +1 -1
- langflow/frontend/assets/{index-CVkIdc6y.js → index-CCcye2rt.js} +1 -1
- langflow/frontend/assets/{index-bMhyLtgS.js → index-CFR4yJQB.js} +1 -1
- langflow/frontend/assets/{index-aAgSKWb3.js → index-CIGmPP0H.js} +1 -1
- langflow/frontend/assets/{index-BGt6jQ4x.js → index-CJmMEa6d.js} +1 -1
- langflow/frontend/assets/{index-DX7JcSMz.js → index-CJxD7lyU.js} +1 -1
- langflow/frontend/assets/{index-BZ-A4K98.js → index-CL_vu6ut.js} +1 -1
- langflow/frontend/assets/{index-BMpKFGhI.js → index-COf3UnBn.js} +1 -1
- langflow/frontend/assets/{index-xN8ogFdo.js → index-CV9650h_.js} +1 -1
- langflow/frontend/assets/{index-OsUvqIUr.js → index-CVDzych0.js} +1 -1
- langflow/frontend/assets/{index-BH7AyHxp.js → index-CWIHsC4D.js} +1 -1
- langflow/frontend/assets/{index-mjwtJmkP.js → index-CXCnFZ0L.js} +1 -1
- langflow/frontend/assets/{index-3jlSQi5Y.js → index-Ca_Pw_Dn.js} +1 -1
- langflow/frontend/assets/{index-D-SnFlhU.js → index-Cbb3bX9e.js} +1 -1
- langflow/frontend/assets/{index--e0oQqZh.js → index-CcJtOz-Z.js} +1 -1
- langflow/frontend/assets/{index-S-sc0Cm9.js → index-CfTbTHEv.js} +1 -1
- langflow/frontend/assets/{index-Deu8rlaZ.js → index-ChoxDAgX.js} +1 -1
- langflow/frontend/assets/{index-lnF9Eqr2.js → index-Cn4gw8aE.js} +1 -1
- langflow/frontend/assets/{index-C_NwzK6j.js → index-CnpLg4zX.js} +1 -1
- langflow/frontend/assets/{index-DznH7Jbq.js → index-Cpao2omG.js} +1 -1
- langflow/frontend/assets/{index-DpWrk8mA.js → index-CqoxM01j.js} +1 -1
- langflow/frontend/assets/{index-Bw-TIIC6.js → index-CrHf2Ic1.js} +1 -1
- langflow/frontend/assets/{index-DmYLDQag.js → index-CrV0uIjp.js} +1 -1
- langflow/frontend/assets/{index-Dp7ZQyL3.js → index-CssADaak.js} +1 -1
- langflow/frontend/assets/{index-CNh0rwur.js → index-CtJdNLy9.js} +1 -1
- langflow/frontend/assets/{index-Ca1b7Iag.js → index-CyeWD2dh.js} +1 -1
- langflow/frontend/assets/{index-DcApTyZ7.js → index-D1xzD7uc.js} +1 -1
- langflow/frontend/assets/{index-B3GvPjhD.js → index-D6MuXC4L.js} +1 -1
- langflow/frontend/assets/{index-Cw0UComa.js → index-D8w9zvIF.js} +1 -1
- langflow/frontend/assets/{index-C-2MRYoJ.js → index-D98Gn0A6.js} +1 -1
- langflow/frontend/assets/{index-aWnZIwHd.js → index-DBhjpWkf.js} +1 -1
- langflow/frontend/assets/{index-nw3WF9lY.js → index-DCCRJzcY.js} +1 -1
- langflow/frontend/assets/{index-RjeC0kaX.js → index-DCTRSkEW.js} +1 -1
- langflow/frontend/assets/{index-B_kBTgxV.js → index-DCUfitVj.js} +1 -1
- langflow/frontend/assets/{index-ChsGhZn3.js → index-DDdz-Xcl.js} +1 -1
- langflow/frontend/assets/{index-7yAHPRxv.js → index-DGdMwZjG.js} +1 -1
- langflow/frontend/assets/{index-DjQElpEg.js → index-DGtl2vMw.js} +1 -1
- langflow/frontend/assets/{index-BCXhKCOK.js → index-DHVdkrni.js} +1 -1
- langflow/frontend/assets/{index-S8uJXTOq.js → index-DJBWwjgl.js} +1 -1
- langflow/frontend/assets/{index-qiVTWUuf.js → index-DMAkJ_qX.js} +1 -1
- langflow/frontend/assets/{index-D-WStJI6.js → index-DMEvEQI5.js} +1 -1
- langflow/frontend/assets/{index-BhqVw9WQ.js → index-DNGRoOsp.js} +1 -1
- langflow/frontend/assets/{index-Cu7vC48Y.js → index-DNT_TUTa.js} +1 -1
- langflow/frontend/assets/{index-Bhcv5M0n.js → index-DQKOH_9K.js} +1 -1
- langflow/frontend/assets/{index-CLcaktde.js → index-DQhqqtqQ.js} +1 -1
- langflow/frontend/assets/{index-DZVgPCio.js → index-DRM7KKnG.js} +1 -1
- langflow/frontend/assets/{index-uybez8MR.js → index-DSCtl3a5.js} +1 -1
- langflow/frontend/assets/{index-CJ5A6STv.js → index-DSLNlm0Z.js} +1 -1
- langflow/frontend/assets/{index-Drg8me2a.js → index-DT-PspE-.js} +1 -1
- langflow/frontend/assets/{index-DsEZjOcp.js → index-DTpbH-p8.js} +1 -1
- langflow/frontend/assets/{index-DrXXKzpD.js → index-DWV6MsIq.js} +1 -1
- langflow/frontend/assets/{index-4JIEdyIM.js → index-DWeL4US_.js} +1 -1
- langflow/frontend/assets/{index-BlDsBQ_1.js → index-DYKZHhpU.js} +1 -1
- langflow/frontend/assets/{index-DFY8YFbC.js → index-DZyQHiMR.js} +1 -1
- langflow/frontend/assets/{index-CKPZpkQk.js → index-Dc6qVuSa.js} +1 -1
- langflow/frontend/assets/{index-yyAaYjLR.js → index-DkYuicnC.js} +1 -1
- langflow/frontend/assets/{index-DmVt5Jlx.js → index-Dlj_2mMs.js} +1 -1
- langflow/frontend/assets/{index-BvRIG6P5.js → index-DmGJUrEp.js} +1 -1
- langflow/frontend/assets/{index-BWFIrwW1.js → index-Dn6hpCAZ.js} +1 -1
- langflow/frontend/assets/{index-Cb5G9Ifd.js → index-DrJU8Fgb.js} +1 -1
- langflow/frontend/assets/{index-COoTCxvs.js → index-DsWfdCzp.js} +1 -1
- langflow/frontend/assets/{index-ZjeocHyu.js → index-DvCPWs2_.js} +1 -1
- langflow/frontend/assets/{index-B5LHnuQR.js → index-DvPVq7OP.js} +1 -1
- langflow/frontend/assets/{index-BnCnYnao.js → index-Dw71ufW4.js} +1 -1
- langflow/frontend/assets/{index-AALDfCyt.js → index-DxkJactf.js} +1 -1
- langflow/frontend/assets/{index-k9jP5chN.js → index-Dz2GTphU.js} +1 -1
- langflow/frontend/assets/{index-BdjfHsrf.js → index-Fvd524_c.js} +1 -1
- langflow/frontend/assets/{index-AKVkmT4S.js → index-GAQ0Mk2M.js} +1 -1
- langflow/frontend/assets/{index-BZSa2qz7.js → index-Hm5-4ItD.js} +1 -1
- langflow/frontend/assets/{index-DbfS_UH-.js → index-IT67FzsK.js} +1 -1
- langflow/frontend/assets/{index-BLXN681C.js → index-ItYiij1i.js} +1 -1
- langflow/frontend/assets/{index-CiklyQU3.js → index-IuR_FEdB.js} +1 -1
- langflow/frontend/assets/{index-xV6ystWy.js → index-Jj60FQkv.js} +1 -1
- langflow/frontend/assets/{index-C_157Mb-.js → index-LlvshmVz.js} +1 -1
- langflow/frontend/assets/{index-CDphUsa3.js → index-LwKh3I_W.js} +1 -1
- langflow/frontend/assets/{index-BrDz-PxE.js → index-N-xxmKKH.js} +1 -1
- langflow/frontend/assets/{index-BsdLyYMY.js → index-RwpaHIAH.js} +1 -1
- langflow/frontend/assets/{index-Cu2Xr6_j.js → index-TVvsp-xh.js} +1 -1
- langflow/frontend/assets/{index-CPiM2oyj.js → index-TdE2u9zP.js} +1 -1
- langflow/frontend/assets/{index-DOj_QWqG.js → index-_x-NkYeW.js} +1 -1
- langflow/frontend/assets/{index-YJsAl7vm.js → index-a-YclEbW.js} +1 -1
- langflow/frontend/assets/{index-5-CSw2-z.js → index-e9MFKUCo.js} +1 -1
- langflow/frontend/assets/{index-BSwBVwyF.js → index-krPr8f2F.js} +1 -1
- langflow/frontend/assets/{index-Df6psZEj.js → index-kveiUWuL.js} +1 -1
- langflow/frontend/assets/{index-CF4_Og1m.js → index-lE3oSjJi.js} +1 -1
- langflow/frontend/assets/{index-C6nzdeYx.js → index-lM3UYg7F.js} +1 -1
- langflow/frontend/assets/{index-C-wnbBBY.js → index-nsRk3qgA.js} +1 -1
- langflow/frontend/assets/{index-D234yKNJ.js → index-pBO0SZLD.js} +4 -4
- langflow/frontend/assets/{index-BMvp94tO.js → index-pbZHsbuE.js} +1 -1
- langflow/frontend/assets/{index-hg2y9OAt.js → index-sfX3aWyp.js} +1 -1
- langflow/frontend/assets/{index-DTCrijba.js → index-xQz-VJ0-.js} +1 -1
- langflow/frontend/assets/{index-SB4rw8D5.js → index-yfcsaHS6.js} +1 -1
- langflow/frontend/assets/{index-C-bjC2sz.js → index-zcGjo9fx.js} +1 -1
- langflow/frontend/assets/lazyIconImports-BjqDmNYG.js +2 -0
- langflow/frontend/assets/{use-post-add-user-JUeLDErC.js → use-post-add-user-w3vpKSOB.js} +1 -1
- langflow/frontend/index.html +1 -1
- langflow/graph/__init__.py +4 -4
- langflow/helpers/data.py +2 -2
- langflow/helpers/flow.py +9 -7
- langflow/helpers/user.py +2 -2
- langflow/initial_setup/setup.py +9 -9
- langflow/initial_setup/starter_projects/Basic Prompt Chaining.json +119 -41
- langflow/initial_setup/starter_projects/Basic Prompting.json +45 -19
- langflow/initial_setup/starter_projects/Blog Writer.json +53 -21
- langflow/initial_setup/starter_projects/Custom Component Generator.json +121 -97
- langflow/initial_setup/starter_projects/Document Q&A.json +46 -18
- langflow/initial_setup/starter_projects/Financial Report Parser.json +49 -17
- langflow/initial_setup/starter_projects/Hybrid Search RAG.json +89 -50
- langflow/initial_setup/starter_projects/Image Sentiment Analysis.json +86 -22
- langflow/initial_setup/starter_projects/Instagram Copywriter.json +210 -57
- langflow/initial_setup/starter_projects/Invoice Summarizer.json +132 -35
- langflow/initial_setup/starter_projects/Knowledge Ingestion.json +8 -8
- langflow/initial_setup/starter_projects/Knowledge Retrieval.json +8 -8
- langflow/initial_setup/starter_projects/Market Research.json +174 -48
- langflow/initial_setup/starter_projects/Meeting Summary.json +102 -38
- langflow/initial_setup/starter_projects/Memory Chatbot.json +49 -21
- langflow/initial_setup/starter_projects/News Aggregator.json +140 -39
- langflow/initial_setup/starter_projects/Nvidia Remix.json +153 -181
- langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +132 -35
- langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json +106 -43
- langflow/initial_setup/starter_projects/Price Deal Finder.json +136 -39
- langflow/initial_setup/starter_projects/Research Agent.json +206 -53
- langflow/initial_setup/starter_projects/Research Translation Loop.json +66 -34
- langflow/initial_setup/starter_projects/SEO Keyword Generator.json +41 -15
- langflow/initial_setup/starter_projects/SaaS Pricing.json +128 -31
- langflow/initial_setup/starter_projects/Search agent.json +132 -35
- langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +422 -98
- langflow/initial_setup/starter_projects/Simple Agent.json +150 -42
- langflow/initial_setup/starter_projects/Social Media Agent.json +150 -42
- langflow/initial_setup/starter_projects/Text Sentiment Analysis.json +120 -24
- langflow/initial_setup/starter_projects/Travel Planning Agents.json +418 -94
- langflow/initial_setup/starter_projects/Twitter Thread Generator.json +69 -37
- langflow/initial_setup/starter_projects/Vector Store RAG.json +66 -38
- langflow/initial_setup/starter_projects/Youtube Analysis.json +191 -51
- langflow/initial_setup/starter_projects/basic_prompting.py +4 -4
- langflow/initial_setup/starter_projects/blog_writer.py +5 -5
- langflow/initial_setup/starter_projects/complex_agent.py +8 -8
- langflow/initial_setup/starter_projects/document_qa.py +5 -5
- langflow/initial_setup/starter_projects/hierarchical_tasks_agent.py +8 -8
- langflow/initial_setup/starter_projects/memory_chatbot.py +6 -6
- langflow/initial_setup/starter_projects/sequential_tasks_agent.py +7 -7
- langflow/initial_setup/starter_projects/vector_store_rag.py +8 -8
- langflow/inputs/__init__.py +3 -2
- langflow/inputs/constants.py +3 -2
- langflow/inputs/input_mixin.py +49 -310
- langflow/inputs/inputs.py +72 -703
- langflow/inputs/validators.py +2 -18
- langflow/interface/__init__.py +4 -0
- langflow/interface/components.py +3 -491
- langflow/interface/initialize/loading.py +7 -6
- langflow/interface/listing.py +3 -25
- langflow/interface/run.py +1 -1
- langflow/interface/utils.py +3 -111
- langflow/io/__init__.py +2 -2
- langflow/io/schema.py +11 -302
- langflow/load/__init__.py +4 -2
- langflow/load/utils.py +2 -96
- langflow/logging/__init__.py +2 -1
- langflow/logging/setup.py +1 -1
- langflow/main.py +8 -5
- langflow/memory.py +12 -6
- langflow/middleware.py +1 -1
- langflow/processing/process.py +7 -7
- langflow/schema/__init__.py +22 -5
- langflow/schema/artifact.py +1 -1
- langflow/schema/data.py +5 -303
- langflow/schema/dataframe.py +2 -205
- langflow/schema/graph.py +4 -45
- langflow/schema/image.py +2 -67
- langflow/schema/message.py +6 -470
- langflow/schema/playground_events.py +5 -6
- langflow/schema/schema.py +24 -117
- langflow/serialization/constants.py +3 -2
- langflow/serialization/serialization.py +1 -1
- langflow/server.py +1 -2
- langflow/services/__init__.py +1 -2
- langflow/services/auth/mcp_encryption.py +1 -1
- langflow/services/auth/service.py +1 -1
- langflow/services/auth/utils.py +5 -5
- langflow/services/cache/disk.py +2 -2
- langflow/services/cache/factory.py +2 -2
- langflow/services/cache/service.py +2 -2
- langflow/services/cache/utils.py +0 -11
- langflow/services/database/factory.py +1 -1
- langflow/services/database/models/flow/model.py +1 -1
- langflow/services/database/models/message/crud.py +2 -1
- langflow/services/database/models/transactions/crud.py +1 -1
- langflow/services/database/models/user/crud.py +1 -1
- langflow/services/database/service.py +2 -2
- langflow/services/database/utils.py +1 -2
- langflow/services/deps.py +12 -17
- langflow/services/enhanced_manager.py +71 -0
- langflow/services/factory.py +14 -7
- langflow/services/flow/flow_runner.py +4 -4
- langflow/services/job_queue/service.py +2 -1
- langflow/services/manager.py +14 -130
- langflow/services/schema.py +0 -1
- langflow/services/session/service.py +3 -2
- langflow/services/settings/__init__.py +0 -3
- langflow/services/settings/base.py +16 -549
- langflow/services/settings/factory.py +2 -21
- langflow/services/settings/feature_flags.py +2 -11
- langflow/services/settings/service.py +2 -31
- langflow/services/shared_component_cache/factory.py +1 -1
- langflow/services/socket/service.py +1 -1
- langflow/services/socket/utils.py +1 -8
- langflow/services/state/factory.py +1 -1
- langflow/services/state/service.py +3 -2
- langflow/services/storage/factory.py +2 -2
- langflow/services/storage/local.py +1 -2
- langflow/services/storage/s3.py +1 -2
- langflow/services/storage/service.py +2 -1
- langflow/services/store/factory.py +1 -1
- langflow/services/store/service.py +2 -2
- langflow/services/store/utils.py +1 -2
- langflow/services/task/service.py +2 -1
- langflow/services/task/temp_flow_cleanup.py +1 -1
- langflow/services/telemetry/factory.py +1 -1
- langflow/services/telemetry/service.py +2 -3
- langflow/services/tracing/arize_phoenix.py +3 -3
- langflow/services/tracing/base.py +1 -1
- langflow/services/tracing/factory.py +1 -1
- langflow/services/tracing/langfuse.py +2 -2
- langflow/services/tracing/langsmith.py +2 -2
- langflow/services/tracing/langwatch.py +4 -4
- langflow/services/tracing/opik.py +2 -2
- langflow/services/tracing/service.py +17 -11
- langflow/services/tracing/traceloop.py +2 -2
- langflow/services/tracing/utils.py +1 -1
- langflow/services/utils.py +54 -9
- langflow/services/variable/factory.py +1 -1
- langflow/services/variable/kubernetes.py +2 -3
- langflow/services/variable/kubernetes_secrets.py +1 -2
- langflow/services/variable/service.py +2 -3
- langflow/template/__init__.py +2 -9
- langflow/template/field/__init__.py +3 -0
- langflow/template/field/base.py +2 -256
- langflow/template/frontend_node.py +3 -0
- langflow/template/utils.py +2 -216
- langflow/utils/constants.py +28 -204
- langflow/utils/lazy_load.py +3 -14
- langflow/utils/schemas.py +2 -3
- langflow/utils/template_validation.py +2 -2
- langflow/utils/util.py +59 -479
- langflow/utils/validate.py +2 -488
- langflow/utils/voice_utils.py +1 -2
- langflow/worker.py +1 -1
- {langflow_base_nightly-0.5.1.dev3.dist-info → langflow_base_nightly-0.5.1.dev4.dist-info}/METADATA +2 -1
- langflow_base_nightly-0.5.1.dev4.dist-info/RECORD +633 -0
- langflow/base/agents/agent.py +0 -267
- langflow/base/agents/callback.py +0 -130
- langflow/base/agents/context.py +0 -109
- langflow/base/agents/crewai/__init__.py +0 -0
- langflow/base/agents/crewai/crew.py +0 -231
- langflow/base/agents/crewai/tasks.py +0 -12
- langflow/base/agents/default_prompts.py +0 -23
- langflow/base/agents/errors.py +0 -15
- langflow/base/agents/events.py +0 -346
- langflow/base/agents/utils.py +0 -205
- langflow/base/astra_assistants/__init__.py +0 -0
- langflow/base/astra_assistants/util.py +0 -171
- langflow/base/chains/__init__.py +0 -0
- langflow/base/chains/model.py +0 -19
- langflow/base/composio/__init__.py +0 -0
- langflow/base/composio/composio_base.py +0 -1297
- langflow/base/compressors/__init__.py +0 -0
- langflow/base/compressors/model.py +0 -60
- langflow/base/constants.py +0 -46
- langflow/base/curl/__init__.py +0 -0
- langflow/base/curl/parse.py +0 -188
- langflow/base/data/base_file.py +0 -685
- langflow/base/data/docling_utils.py +0 -245
- langflow/base/document_transformers/__init__.py +0 -0
- langflow/base/document_transformers/model.py +0 -43
- langflow/base/embeddings/aiml_embeddings.py +0 -62
- langflow/base/embeddings/model.py +0 -26
- langflow/base/flow_processing/__init__.py +0 -0
- langflow/base/flow_processing/utils.py +0 -86
- langflow/base/huggingface/__init__.py +0 -0
- langflow/base/huggingface/model_bridge.py +0 -133
- langflow/base/langchain_utilities/__init__.py +0 -0
- langflow/base/langchain_utilities/model.py +0 -35
- langflow/base/langchain_utilities/spider_constants.py +0 -1
- langflow/base/langwatch/__init__.py +0 -0
- langflow/base/langwatch/utils.py +0 -18
- langflow/base/mcp/__init__.py +0 -0
- langflow/base/mcp/constants.py +0 -2
- langflow/base/mcp/util.py +0 -1524
- langflow/base/memory/memory.py +0 -49
- langflow/base/memory/model.py +0 -38
- langflow/base/models/aiml_constants.py +0 -51
- langflow/base/models/anthropic_constants.py +0 -47
- langflow/base/models/aws_constants.py +0 -151
- langflow/base/models/chat_result.py +0 -76
- langflow/base/models/google_generative_ai_constants.py +0 -70
- langflow/base/models/groq_constants.py +0 -134
- langflow/base/models/model.py +0 -375
- langflow/base/models/model_input_constants.py +0 -299
- langflow/base/models/model_metadata.py +0 -41
- langflow/base/models/model_utils.py +0 -8
- langflow/base/models/novita_constants.py +0 -35
- langflow/base/models/ollama_constants.py +0 -49
- langflow/base/models/sambanova_constants.py +0 -18
- langflow/base/processing/__init__.py +0 -0
- langflow/base/prompts/utils.py +0 -61
- langflow/base/textsplitters/model.py +0 -28
- langflow/base/tools/base.py +0 -26
- langflow/base/tools/component_tool.py +0 -324
- langflow/base/tools/constants.py +0 -49
- langflow/base/tools/flow_tool.py +0 -131
- langflow/base/tools/run_flow.py +0 -227
- langflow/base/vectorstores/model.py +0 -193
- langflow/base/vectorstores/utils.py +0 -22
- langflow/base/vectorstores/vector_store_connection_decorator.py +0 -52
- langflow/components/FAISS/__init__.py +0 -34
- langflow/components/FAISS/faiss.py +0 -111
- langflow/components/Notion/__init__.py +0 -19
- langflow/components/Notion/add_content_to_page.py +0 -269
- langflow/components/Notion/create_page.py +0 -94
- langflow/components/Notion/list_database_properties.py +0 -68
- langflow/components/Notion/list_pages.py +0 -122
- langflow/components/Notion/list_users.py +0 -77
- langflow/components/Notion/page_content_viewer.py +0 -93
- langflow/components/Notion/search.py +0 -111
- langflow/components/Notion/update_page_property.py +0 -114
- langflow/components/_importing.py +0 -37
- langflow/components/agentql/__init__.py +0 -3
- langflow/components/agentql/agentql_api.py +0 -151
- langflow/components/agents/__init__.py +0 -4
- langflow/components/agents/agent.py +0 -554
- langflow/components/agents/mcp_component.py +0 -501
- langflow/components/aiml/__init__.py +0 -37
- langflow/components/aiml/aiml.py +0 -112
- langflow/components/aiml/aiml_embeddings.py +0 -37
- langflow/components/amazon/__init__.py +0 -36
- langflow/components/amazon/amazon_bedrock_embedding.py +0 -109
- langflow/components/amazon/amazon_bedrock_model.py +0 -124
- langflow/components/amazon/s3_bucket_uploader.py +0 -211
- langflow/components/anthropic/__init__.py +0 -34
- langflow/components/anthropic/anthropic.py +0 -187
- langflow/components/apify/__init__.py +0 -5
- langflow/components/apify/apify_actor.py +0 -325
- langflow/components/arxiv/__init__.py +0 -3
- langflow/components/arxiv/arxiv.py +0 -163
- langflow/components/assemblyai/__init__.py +0 -46
- langflow/components/assemblyai/assemblyai_get_subtitles.py +0 -83
- langflow/components/assemblyai/assemblyai_lemur.py +0 -183
- langflow/components/assemblyai/assemblyai_list_transcripts.py +0 -95
- langflow/components/assemblyai/assemblyai_poll_transcript.py +0 -72
- langflow/components/assemblyai/assemblyai_start_transcript.py +0 -188
- langflow/components/azure/__init__.py +0 -37
- langflow/components/azure/azure_openai.py +0 -95
- langflow/components/azure/azure_openai_embeddings.py +0 -83
- langflow/components/baidu/__init__.py +0 -32
- langflow/components/baidu/baidu_qianfan_chat.py +0 -113
- langflow/components/bing/__init__.py +0 -3
- langflow/components/bing/bing_search_api.py +0 -61
- langflow/components/cassandra/__init__.py +0 -40
- langflow/components/cassandra/cassandra.py +0 -264
- langflow/components/cassandra/cassandra_chat.py +0 -92
- langflow/components/cassandra/cassandra_graph.py +0 -238
- langflow/components/chains/__init__.py +0 -0
- langflow/components/chroma/__init__.py +0 -34
- langflow/components/chroma/chroma.py +0 -167
- langflow/components/cleanlab/__init__.py +0 -40
- langflow/components/cleanlab/cleanlab_evaluator.py +0 -157
- langflow/components/cleanlab/cleanlab_rag_evaluator.py +0 -254
- langflow/components/cleanlab/cleanlab_remediator.py +0 -131
- langflow/components/clickhouse/__init__.py +0 -34
- langflow/components/clickhouse/clickhouse.py +0 -135
- langflow/components/cloudflare/__init__.py +0 -32
- langflow/components/cloudflare/cloudflare.py +0 -81
- langflow/components/cohere/__init__.py +0 -40
- langflow/components/cohere/cohere_embeddings.py +0 -81
- langflow/components/cohere/cohere_models.py +0 -46
- langflow/components/cohere/cohere_rerank.py +0 -51
- langflow/components/composio/__init__.py +0 -73
- langflow/components/composio/composio_api.py +0 -268
- langflow/components/composio/dropbox_compnent.py +0 -11
- langflow/components/composio/github_composio.py +0 -11
- langflow/components/composio/gmail_composio.py +0 -38
- langflow/components/composio/googlecalendar_composio.py +0 -11
- langflow/components/composio/googlemeet_composio.py +0 -11
- langflow/components/composio/googletasks_composio.py +0 -8
- langflow/components/composio/linear_composio.py +0 -11
- langflow/components/composio/outlook_composio.py +0 -11
- langflow/components/composio/reddit_composio.py +0 -11
- langflow/components/composio/slack_composio.py +0 -11
- langflow/components/composio/slackbot_composio.py +0 -11
- langflow/components/composio/supabase_composio.py +0 -11
- langflow/components/composio/todoist_composio.py +0 -11
- langflow/components/composio/youtube_composio.py +0 -11
- langflow/components/confluence/__init__.py +0 -3
- langflow/components/confluence/confluence.py +0 -84
- langflow/components/couchbase/__init__.py +0 -34
- langflow/components/couchbase/couchbase.py +0 -102
- langflow/components/crewai/__init__.py +0 -49
- langflow/components/crewai/crewai.py +0 -107
- langflow/components/crewai/hierarchical_crew.py +0 -46
- langflow/components/crewai/hierarchical_task.py +0 -44
- langflow/components/crewai/sequential_crew.py +0 -52
- langflow/components/crewai/sequential_task.py +0 -73
- langflow/components/crewai/sequential_task_agent.py +0 -143
- langflow/components/custom_component/__init__.py +0 -34
- langflow/components/custom_component/custom_component.py +0 -31
- langflow/components/data/__init__.py +0 -25
- langflow/components/data/api_request.py +0 -545
- langflow/components/data/csv_to_data.py +0 -95
- langflow/components/data/directory.py +0 -113
- langflow/components/data/file.py +0 -586
- langflow/components/data/json_to_data.py +0 -98
- langflow/components/data/news_search.py +0 -164
- langflow/components/data/rss.py +0 -69
- langflow/components/data/sql_executor.py +0 -99
- langflow/components/data/url.py +0 -299
- langflow/components/data/web_search.py +0 -112
- langflow/components/data/webhook.py +0 -56
- langflow/components/datastax/__init__.py +0 -70
- langflow/components/datastax/astra_assistant_manager.py +0 -306
- langflow/components/datastax/astra_db.py +0 -69
- langflow/components/datastax/astra_vectorize.py +0 -124
- langflow/components/datastax/astradb_cql.py +0 -314
- langflow/components/datastax/astradb_graph.py +0 -319
- langflow/components/datastax/astradb_tool.py +0 -414
- langflow/components/datastax/astradb_vectorstore.py +0 -1285
- langflow/components/datastax/create_assistant.py +0 -58
- langflow/components/datastax/create_thread.py +0 -32
- langflow/components/datastax/dotenv.py +0 -35
- langflow/components/datastax/get_assistant.py +0 -37
- langflow/components/datastax/getenvvar.py +0 -30
- langflow/components/datastax/graph_rag.py +0 -141
- langflow/components/datastax/hcd.py +0 -314
- langflow/components/datastax/list_assistants.py +0 -25
- langflow/components/datastax/run.py +0 -89
- langflow/components/deactivated/__init__.py +0 -19
- langflow/components/deactivated/amazon_kendra.py +0 -66
- langflow/components/deactivated/chat_litellm_model.py +0 -158
- langflow/components/deactivated/code_block_extractor.py +0 -26
- langflow/components/deactivated/documents_to_data.py +0 -22
- langflow/components/deactivated/embed.py +0 -16
- langflow/components/deactivated/extract_key_from_data.py +0 -46
- langflow/components/deactivated/json_document_builder.py +0 -59
- langflow/components/deactivated/list_flows.py +0 -20
- langflow/components/deactivated/mcp_sse.py +0 -61
- langflow/components/deactivated/mcp_stdio.py +0 -62
- langflow/components/deactivated/merge_data.py +0 -93
- langflow/components/deactivated/message.py +0 -37
- langflow/components/deactivated/metal.py +0 -54
- langflow/components/deactivated/multi_query.py +0 -59
- langflow/components/deactivated/retriever.py +0 -43
- langflow/components/deactivated/selective_passthrough.py +0 -77
- langflow/components/deactivated/should_run_next.py +0 -40
- langflow/components/deactivated/split_text.py +0 -63
- langflow/components/deactivated/store_message.py +0 -24
- langflow/components/deactivated/sub_flow.py +0 -124
- langflow/components/deactivated/vectara_self_query.py +0 -76
- langflow/components/deactivated/vector_store.py +0 -24
- langflow/components/deepseek/__init__.py +0 -34
- langflow/components/deepseek/deepseek.py +0 -136
- langflow/components/docling/__init__.py +0 -43
- langflow/components/docling/chunk_docling_document.py +0 -186
- langflow/components/docling/docling_inline.py +0 -235
- langflow/components/docling/docling_remote.py +0 -193
- langflow/components/docling/export_docling_document.py +0 -117
- langflow/components/documentloaders/__init__.py +0 -0
- langflow/components/duckduckgo/__init__.py +0 -3
- langflow/components/duckduckgo/duck_duck_go_search_run.py +0 -92
- langflow/components/elastic/__init__.py +0 -37
- langflow/components/elastic/elasticsearch.py +0 -267
- langflow/components/elastic/opensearch.py +0 -243
- langflow/components/embeddings/__init__.py +0 -37
- langflow/components/embeddings/similarity.py +0 -76
- langflow/components/embeddings/text_embedder.py +0 -64
- langflow/components/exa/__init__.py +0 -3
- langflow/components/exa/exa_search.py +0 -68
- langflow/components/firecrawl/__init__.py +0 -43
- langflow/components/firecrawl/firecrawl_crawl_api.py +0 -88
- langflow/components/firecrawl/firecrawl_extract_api.py +0 -136
- langflow/components/firecrawl/firecrawl_map_api.py +0 -89
- langflow/components/firecrawl/firecrawl_scrape_api.py +0 -73
- langflow/components/git/__init__.py +0 -4
- langflow/components/git/git.py +0 -262
- langflow/components/git/gitextractor.py +0 -196
- langflow/components/glean/__init__.py +0 -3
- langflow/components/glean/glean_search_api.py +0 -173
- langflow/components/google/__init__.py +0 -17
- langflow/components/google/gmail.py +0 -192
- langflow/components/google/google_bq_sql_executor.py +0 -157
- langflow/components/google/google_drive.py +0 -92
- langflow/components/google/google_drive_search.py +0 -152
- langflow/components/google/google_generative_ai.py +0 -147
- langflow/components/google/google_generative_ai_embeddings.py +0 -141
- langflow/components/google/google_oauth_token.py +0 -89
- langflow/components/google/google_search_api_core.py +0 -68
- langflow/components/google/google_serper_api_core.py +0 -74
- langflow/components/groq/__init__.py +0 -34
- langflow/components/groq/groq.py +0 -140
- langflow/components/helpers/__init__.py +0 -52
- langflow/components/helpers/calculator_core.py +0 -89
- langflow/components/helpers/create_list.py +0 -40
- langflow/components/helpers/current_date.py +0 -42
- langflow/components/helpers/id_generator.py +0 -42
- langflow/components/helpers/memory.py +0 -251
- langflow/components/helpers/output_parser.py +0 -45
- langflow/components/helpers/store_message.py +0 -90
- langflow/components/homeassistant/__init__.py +0 -7
- langflow/components/homeassistant/home_assistant_control.py +0 -152
- langflow/components/homeassistant/list_home_assistant_states.py +0 -137
- langflow/components/huggingface/__init__.py +0 -37
- langflow/components/huggingface/huggingface.py +0 -197
- langflow/components/huggingface/huggingface_inference_api.py +0 -106
- langflow/components/ibm/__init__.py +0 -34
- langflow/components/ibm/watsonx.py +0 -203
- langflow/components/ibm/watsonx_embeddings.py +0 -135
- langflow/components/icosacomputing/__init__.py +0 -5
- langflow/components/icosacomputing/combinatorial_reasoner.py +0 -84
- langflow/components/input_output/__init__.py +0 -38
- langflow/components/input_output/chat.py +0 -120
- langflow/components/input_output/chat_output.py +0 -200
- langflow/components/input_output/text.py +0 -27
- langflow/components/input_output/text_output.py +0 -29
- langflow/components/jigsawstack/__init__.py +0 -23
- langflow/components/jigsawstack/ai_scrape.py +0 -126
- langflow/components/jigsawstack/ai_web_search.py +0 -136
- langflow/components/jigsawstack/file_read.py +0 -115
- langflow/components/jigsawstack/file_upload.py +0 -94
- langflow/components/jigsawstack/image_generation.py +0 -205
- langflow/components/jigsawstack/nsfw.py +0 -60
- langflow/components/jigsawstack/object_detection.py +0 -124
- langflow/components/jigsawstack/sentiment.py +0 -112
- langflow/components/jigsawstack/text_to_sql.py +0 -90
- langflow/components/jigsawstack/text_translate.py +0 -77
- langflow/components/jigsawstack/vocr.py +0 -107
- langflow/components/langchain_utilities/__init__.py +0 -109
- langflow/components/langchain_utilities/character.py +0 -53
- langflow/components/langchain_utilities/conversation.py +0 -52
- langflow/components/langchain_utilities/csv_agent.py +0 -107
- langflow/components/langchain_utilities/fake_embeddings.py +0 -26
- langflow/components/langchain_utilities/html_link_extractor.py +0 -35
- langflow/components/langchain_utilities/json_agent.py +0 -45
- langflow/components/langchain_utilities/langchain_hub.py +0 -126
- langflow/components/langchain_utilities/language_recursive.py +0 -49
- langflow/components/langchain_utilities/language_semantic.py +0 -138
- langflow/components/langchain_utilities/llm_checker.py +0 -39
- langflow/components/langchain_utilities/llm_math.py +0 -42
- langflow/components/langchain_utilities/natural_language.py +0 -61
- langflow/components/langchain_utilities/openai_tools.py +0 -53
- langflow/components/langchain_utilities/openapi.py +0 -48
- langflow/components/langchain_utilities/recursive_character.py +0 -60
- langflow/components/langchain_utilities/retrieval_qa.py +0 -83
- langflow/components/langchain_utilities/runnable_executor.py +0 -137
- langflow/components/langchain_utilities/self_query.py +0 -80
- langflow/components/langchain_utilities/spider.py +0 -142
- langflow/components/langchain_utilities/sql.py +0 -40
- langflow/components/langchain_utilities/sql_database.py +0 -35
- langflow/components/langchain_utilities/sql_generator.py +0 -78
- langflow/components/langchain_utilities/tool_calling.py +0 -59
- langflow/components/langchain_utilities/vector_store_info.py +0 -49
- langflow/components/langchain_utilities/vector_store_router.py +0 -33
- langflow/components/langchain_utilities/xml_agent.py +0 -71
- langflow/components/langwatch/__init__.py +0 -3
- langflow/components/langwatch/langwatch.py +0 -278
- langflow/components/link_extractors/__init__.py +0 -0
- langflow/components/lmstudio/__init__.py +0 -34
- langflow/components/lmstudio/lmstudioembeddings.py +0 -89
- langflow/components/lmstudio/lmstudiomodel.py +0 -129
- langflow/components/logic/__init__.py +0 -52
- langflow/components/logic/conditional_router.py +0 -171
- langflow/components/logic/data_conditional_router.py +0 -125
- langflow/components/logic/flow_tool.py +0 -110
- langflow/components/logic/listen.py +0 -29
- langflow/components/logic/loop.py +0 -125
- langflow/components/logic/notify.py +0 -88
- langflow/components/logic/pass_message.py +0 -35
- langflow/components/logic/run_flow.py +0 -71
- langflow/components/logic/sub_flow.py +0 -114
- langflow/components/maritalk/__init__.py +0 -32
- langflow/components/maritalk/maritalk.py +0 -52
- langflow/components/mem0/__init__.py +0 -3
- langflow/components/mem0/mem0_chat_memory.py +0 -136
- langflow/components/milvus/__init__.py +0 -34
- langflow/components/milvus/milvus.py +0 -115
- langflow/components/mistral/__init__.py +0 -37
- langflow/components/mistral/mistral.py +0 -114
- langflow/components/mistral/mistral_embeddings.py +0 -58
- langflow/components/models/__init__.py +0 -34
- langflow/components/models/embedding_model.py +0 -114
- langflow/components/models/language_model.py +0 -144
- langflow/components/mongodb/__init__.py +0 -34
- langflow/components/mongodb/mongodb_atlas.py +0 -213
- langflow/components/needle/__init__.py +0 -3
- langflow/components/needle/needle.py +0 -104
- langflow/components/notdiamond/__init__.py +0 -36
- langflow/components/notdiamond/notdiamond.py +0 -228
- langflow/components/novita/__init__.py +0 -32
- langflow/components/novita/novita.py +0 -130
- langflow/components/nvidia/__init__.py +0 -57
- langflow/components/nvidia/nvidia.py +0 -157
- langflow/components/nvidia/nvidia_embedding.py +0 -77
- langflow/components/nvidia/nvidia_ingest.py +0 -317
- langflow/components/nvidia/nvidia_rerank.py +0 -63
- langflow/components/nvidia/system_assist.py +0 -65
- langflow/components/olivya/__init__.py +0 -3
- langflow/components/olivya/olivya.py +0 -116
- langflow/components/ollama/__init__.py +0 -37
- langflow/components/ollama/ollama.py +0 -330
- langflow/components/ollama/ollama_embeddings.py +0 -106
- langflow/components/openai/__init__.py +0 -37
- langflow/components/openai/openai.py +0 -100
- langflow/components/openai/openai_chat_model.py +0 -158
- langflow/components/openrouter/__init__.py +0 -32
- langflow/components/openrouter/openrouter.py +0 -202
- langflow/components/output_parsers/__init__.py +0 -0
- langflow/components/perplexity/__init__.py +0 -34
- langflow/components/perplexity/perplexity.py +0 -75
- langflow/components/pgvector/__init__.py +0 -34
- langflow/components/pgvector/pgvector.py +0 -72
- langflow/components/pinecone/__init__.py +0 -34
- langflow/components/pinecone/pinecone.py +0 -134
- langflow/components/processing/alter_metadata.py +0 -108
- langflow/components/processing/batch_run.py +0 -205
- langflow/components/processing/combine_text.py +0 -39
- langflow/components/processing/create_data.py +0 -110
- langflow/components/processing/data_operations.py +0 -438
- langflow/components/processing/data_to_dataframe.py +0 -70
- langflow/components/processing/dataframe_operations.py +0 -321
- langflow/components/processing/extract_key.py +0 -53
- langflow/components/processing/filter_data.py +0 -42
- langflow/components/processing/filter_data_values.py +0 -88
- langflow/components/processing/json_cleaner.py +0 -103
- langflow/components/processing/lambda_filter.py +0 -154
- langflow/components/processing/llm_router.py +0 -499
- langflow/components/processing/merge_data.py +0 -90
- langflow/components/processing/message_to_data.py +0 -36
- langflow/components/processing/parse_data.py +0 -70
- langflow/components/processing/parse_dataframe.py +0 -68
- langflow/components/processing/parse_json_data.py +0 -90
- langflow/components/processing/parser.py +0 -143
- langflow/components/processing/prompt.py +0 -67
- langflow/components/processing/python_repl_core.py +0 -98
- langflow/components/processing/regex.py +0 -82
- langflow/components/processing/save_file.py +0 -208
- langflow/components/processing/select_data.py +0 -48
- langflow/components/processing/split_text.py +0 -141
- langflow/components/processing/structured_output.py +0 -202
- langflow/components/processing/update_data.py +0 -160
- langflow/components/prototypes/__init__.py +0 -34
- langflow/components/prototypes/python_function.py +0 -73
- langflow/components/qdrant/__init__.py +0 -34
- langflow/components/qdrant/qdrant.py +0 -109
- langflow/components/redis/__init__.py +0 -37
- langflow/components/redis/redis.py +0 -89
- langflow/components/redis/redis_chat.py +0 -43
- langflow/components/sambanova/__init__.py +0 -32
- langflow/components/sambanova/sambanova.py +0 -84
- langflow/components/scrapegraph/__init__.py +0 -40
- langflow/components/scrapegraph/scrapegraph_markdownify_api.py +0 -64
- langflow/components/scrapegraph/scrapegraph_search_api.py +0 -64
- langflow/components/scrapegraph/scrapegraph_smart_scraper_api.py +0 -71
- langflow/components/searchapi/__init__.py +0 -36
- langflow/components/searchapi/search.py +0 -79
- langflow/components/serpapi/__init__.py +0 -3
- langflow/components/serpapi/serp.py +0 -115
- langflow/components/serper/__init__.py +0 -3
- langflow/components/serper/google_serper_api_core.py +0 -74
- langflow/components/supabase/__init__.py +0 -37
- langflow/components/supabase/supabase.py +0 -76
- langflow/components/tavily/__init__.py +0 -4
- langflow/components/tavily/tavily_extract.py +0 -117
- langflow/components/tavily/tavily_search.py +0 -212
- langflow/components/textsplitters/__init__.py +0 -0
- langflow/components/toolkits/__init__.py +0 -0
- langflow/components/tools/__init__.py +0 -72
- langflow/components/tools/calculator.py +0 -103
- langflow/components/tools/google_search_api.py +0 -45
- langflow/components/tools/google_serper_api.py +0 -115
- langflow/components/tools/python_code_structured_tool.py +0 -327
- langflow/components/tools/python_repl.py +0 -97
- langflow/components/tools/search_api.py +0 -87
- langflow/components/tools/searxng.py +0 -145
- langflow/components/tools/serp_api.py +0 -119
- langflow/components/tools/tavily_search_tool.py +0 -344
- langflow/components/tools/wikidata_api.py +0 -102
- langflow/components/tools/wikipedia_api.py +0 -49
- langflow/components/tools/yahoo_finance.py +0 -124
- langflow/components/twelvelabs/__init__.py +0 -52
- langflow/components/twelvelabs/convert_astra_results.py +0 -84
- langflow/components/twelvelabs/pegasus_index.py +0 -311
- langflow/components/twelvelabs/split_video.py +0 -291
- langflow/components/twelvelabs/text_embeddings.py +0 -57
- langflow/components/twelvelabs/twelvelabs_pegasus.py +0 -408
- langflow/components/twelvelabs/video_embeddings.py +0 -100
- langflow/components/twelvelabs/video_file.py +0 -179
- langflow/components/unstructured/__init__.py +0 -3
- langflow/components/unstructured/unstructured.py +0 -121
- langflow/components/upstash/__init__.py +0 -34
- langflow/components/upstash/upstash.py +0 -124
- langflow/components/vectara/__init__.py +0 -37
- langflow/components/vectara/vectara.py +0 -97
- langflow/components/vectara/vectara_rag.py +0 -164
- langflow/components/vectorstores/__init__.py +0 -34
- langflow/components/vectorstores/local_db.py +0 -261
- langflow/components/vertexai/__init__.py +0 -37
- langflow/components/vertexai/vertexai.py +0 -71
- langflow/components/vertexai/vertexai_embeddings.py +0 -67
- langflow/components/weaviate/__init__.py +0 -34
- langflow/components/weaviate/weaviate.py +0 -89
- langflow/components/wikipedia/__init__.py +0 -4
- langflow/components/wikipedia/wikidata.py +0 -86
- langflow/components/wikipedia/wikipedia.py +0 -53
- langflow/components/wolframalpha/__init__.py +0 -3
- langflow/components/wolframalpha/wolfram_alpha_api.py +0 -54
- langflow/components/xai/__init__.py +0 -32
- langflow/components/xai/xai.py +0 -167
- langflow/components/yahoosearch/__init__.py +0 -3
- langflow/components/yahoosearch/yahoo.py +0 -137
- langflow/components/youtube/__init__.py +0 -52
- langflow/components/youtube/channel.py +0 -227
- langflow/components/youtube/comments.py +0 -231
- langflow/components/youtube/playlist.py +0 -33
- langflow/components/youtube/search.py +0 -120
- langflow/components/youtube/trending.py +0 -285
- langflow/components/youtube/video_details.py +0 -263
- langflow/components/youtube/youtube_transcripts.py +0 -118
- langflow/components/zep/__init__.py +0 -3
- langflow/components/zep/zep.py +0 -44
- langflow/custom/attributes.py +0 -86
- langflow/custom/code_parser/__init__.py +0 -3
- langflow/custom/code_parser/code_parser.py +0 -361
- langflow/custom/custom_component/base_component.py +0 -118
- langflow/custom/dependency_analyzer.py +0 -165
- langflow/custom/directory_reader/__init__.py +0 -3
- langflow/custom/directory_reader/directory_reader.py +0 -359
- langflow/custom/directory_reader/utils.py +0 -171
- langflow/custom/eval.py +0 -12
- langflow/custom/schema.py +0 -32
- langflow/custom/tree_visitor.py +0 -21
- langflow/frontend/assets/lazyIconImports-Ci-S9xBA.js +0 -2
- langflow/graph/edge/__init__.py +0 -0
- langflow/graph/edge/base.py +0 -277
- langflow/graph/edge/schema.py +0 -119
- langflow/graph/edge/utils.py +0 -0
- langflow/graph/graph/__init__.py +0 -0
- langflow/graph/graph/ascii.py +0 -202
- langflow/graph/graph/base.py +0 -2185
- langflow/graph/graph/constants.py +0 -58
- langflow/graph/graph/runnable_vertices_manager.py +0 -133
- langflow/graph/graph/schema.py +0 -53
- langflow/graph/graph/state_model.py +0 -66
- langflow/graph/graph/utils.py +0 -1024
- langflow/graph/schema.py +0 -75
- langflow/graph/state/__init__.py +0 -0
- langflow/graph/state/model.py +0 -237
- langflow/graph/utils.py +0 -229
- langflow/graph/vertex/__init__.py +0 -0
- langflow/graph/vertex/base.py +0 -811
- langflow/graph/vertex/constants.py +0 -0
- langflow/graph/vertex/exceptions.py +0 -4
- langflow/graph/vertex/param_handler.py +0 -255
- langflow/graph/vertex/schema.py +0 -26
- langflow/graph/vertex/utils.py +0 -19
- langflow/graph/vertex/vertex_types.py +0 -489
- langflow/legacy_custom/__init__.py +0 -0
- langflow/legacy_custom/customs.py +0 -16
- langflow/load/load.py +0 -250
- langflow/logging/logger.py +0 -369
- langflow/processing/utils.py +0 -25
- langflow/schema/openai_responses_schemas.py +0 -74
- langflow/schema/serialize.py +0 -13
- langflow/services/chat/config.py +0 -2
- langflow/services/settings/auth.py +0 -130
- langflow/services/settings/constants.py +0 -31
- langflow/services/settings/manager.py +0 -49
- langflow/services/settings/utils.py +0 -40
- langflow/template/field/prompt.py +0 -2
- langflow/template/frontend_node/__init__.py +0 -6
- langflow/template/frontend_node/base.py +0 -212
- langflow/template/frontend_node/constants.py +0 -65
- langflow/template/frontend_node/custom_components.py +0 -97
- langflow/template/template/__init__.py +0 -0
- langflow/template/template/base.py +0 -99
- langflow/utils/async_helpers.py +0 -42
- langflow/utils/concurrency.py +0 -60
- langflow/utils/util_strings.py +0 -56
- langflow_base_nightly-0.5.1.dev3.dist-info/RECORD +0 -1159
- {langflow_base_nightly-0.5.1.dev3.dist-info → langflow_base_nightly-0.5.1.dev4.dist-info}/WHEEL +0 -0
- {langflow_base_nightly-0.5.1.dev3.dist-info → langflow_base_nightly-0.5.1.dev4.dist-info}/entry_points.txt +0 -0
|
@@ -228,17 +228,17 @@
|
|
|
228
228
|
"legacy": false,
|
|
229
229
|
"lf_version": "1.2.0",
|
|
230
230
|
"metadata": {
|
|
231
|
-
"code_hash": "
|
|
231
|
+
"code_hash": "715a37648834",
|
|
232
232
|
"dependencies": {
|
|
233
233
|
"dependencies": [
|
|
234
234
|
{
|
|
235
|
-
"name": "
|
|
235
|
+
"name": "lfx",
|
|
236
236
|
"version": null
|
|
237
237
|
}
|
|
238
238
|
],
|
|
239
239
|
"total_dependencies": 1
|
|
240
240
|
},
|
|
241
|
-
"module": "
|
|
241
|
+
"module": "lfx.components.input_output.chat.ChatInput"
|
|
242
242
|
},
|
|
243
243
|
"output_types": [],
|
|
244
244
|
"outputs": [
|
|
@@ -318,7 +318,7 @@
|
|
|
318
318
|
"show": true,
|
|
319
319
|
"title_case": false,
|
|
320
320
|
"type": "code",
|
|
321
|
-
"value": "from
|
|
321
|
+
"value": "from lfx.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.inputs.inputs import BoolInput\nfrom lfx.io import (\n DropdownInput,\n FileInput,\n MessageTextInput,\n MultilineInput,\n Output,\n)\nfrom lfx.schema.message import Message\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_USER,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-input\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n minimized = True\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n input_types=[],\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n temp_file=True,\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Chat Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n background_color = self.background_color\n text_color = self.text_color\n icon = self.chat_icon\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n files=self.files,\n properties={\n \"background_color\": background_color,\n \"text_color\": text_color,\n \"icon\": icon,\n },\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n"
|
|
322
322
|
},
|
|
323
323
|
"files": {
|
|
324
324
|
"_input_type": "FileInput",
|
|
@@ -538,7 +538,7 @@
|
|
|
538
538
|
"legacy": false,
|
|
539
539
|
"lf_version": "1.2.0",
|
|
540
540
|
"metadata": {
|
|
541
|
-
"code_hash": "
|
|
541
|
+
"code_hash": "9619107fecd1",
|
|
542
542
|
"dependencies": {
|
|
543
543
|
"dependencies": [
|
|
544
544
|
{
|
|
@@ -550,13 +550,13 @@
|
|
|
550
550
|
"version": "0.116.1"
|
|
551
551
|
},
|
|
552
552
|
{
|
|
553
|
-
"name": "
|
|
553
|
+
"name": "lfx",
|
|
554
554
|
"version": null
|
|
555
555
|
}
|
|
556
556
|
],
|
|
557
557
|
"total_dependencies": 3
|
|
558
558
|
},
|
|
559
|
-
"module": "
|
|
559
|
+
"module": "lfx.components.input_output.chat_output.ChatOutput"
|
|
560
560
|
},
|
|
561
561
|
"output_types": [],
|
|
562
562
|
"outputs": [
|
|
@@ -656,7 +656,7 @@
|
|
|
656
656
|
"show": true,
|
|
657
657
|
"title_case": false,
|
|
658
658
|
"type": "code",
|
|
659
|
-
"value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom
|
|
659
|
+
"value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom lfx.base.io.chat import ChatComponent\nfrom lfx.helpers.data import safe_convert\nfrom lfx.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\nfrom lfx.schema.message import Message\nfrom lfx.schema.properties import Source\nfrom lfx.template.field.base import Output\nfrom lfx.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n info=\"Whether to clean the data\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, icon, display_name, source_id = self.get_properties_from_source_component()\n background_color = self.background_color\n text_color = self.text_color\n if self.chat_icon:\n icon = self.chat_icon\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n message.properties.icon = icon\n message.properties.background_color = background_color\n message.properties.text_color = text_color\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n return \"\\n\".join([safe_convert(item, clean_data=self.clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
|
|
660
660
|
},
|
|
661
661
|
"data_template": {
|
|
662
662
|
"_input_type": "MessageTextInput",
|
|
@@ -1302,17 +1302,17 @@
|
|
|
1302
1302
|
"legacy": false,
|
|
1303
1303
|
"lf_version": "1.2.0",
|
|
1304
1304
|
"metadata": {
|
|
1305
|
-
"code_hash": "
|
|
1305
|
+
"code_hash": "5fcfa26be77d",
|
|
1306
1306
|
"dependencies": {
|
|
1307
1307
|
"dependencies": [
|
|
1308
1308
|
{
|
|
1309
|
-
"name": "
|
|
1309
|
+
"name": "lfx",
|
|
1310
1310
|
"version": null
|
|
1311
1311
|
}
|
|
1312
1312
|
],
|
|
1313
1313
|
"total_dependencies": 1
|
|
1314
1314
|
},
|
|
1315
|
-
"module": "
|
|
1315
|
+
"module": "lfx.components.helpers.calculator_core.CalculatorComponent"
|
|
1316
1316
|
},
|
|
1317
1317
|
"minimized": false,
|
|
1318
1318
|
"output_types": [],
|
|
@@ -1355,7 +1355,7 @@
|
|
|
1355
1355
|
"show": true,
|
|
1356
1356
|
"title_case": false,
|
|
1357
1357
|
"type": "code",
|
|
1358
|
-
"value": "import ast\nimport operator\nfrom collections.abc import Callable\n\nfrom
|
|
1358
|
+
"value": "import ast\nimport operator\nfrom collections.abc import Callable\n\nfrom lfx.custom.custom_component.component import Component\nfrom lfx.inputs.inputs import MessageTextInput\nfrom lfx.io import Output\nfrom lfx.schema.data import Data\n\n\nclass CalculatorComponent(Component):\n display_name = \"Calculator\"\n description = \"Perform basic arithmetic operations on a given expression.\"\n documentation: str = \"https://docs.langflow.org/components-helpers#calculator\"\n icon = \"calculator\"\n\n # Cache operators dictionary as a class variable\n OPERATORS: dict[type[ast.operator], Callable] = {\n ast.Add: operator.add,\n ast.Sub: operator.sub,\n ast.Mult: operator.mul,\n ast.Div: operator.truediv,\n ast.Pow: operator.pow,\n }\n\n inputs = [\n MessageTextInput(\n name=\"expression\",\n display_name=\"Expression\",\n info=\"The arithmetic expression to evaluate (e.g., '4*4*(33/22)+12-20').\",\n tool_mode=True,\n ),\n ]\n\n outputs = [\n Output(display_name=\"Data\", name=\"result\", type_=Data, method=\"evaluate_expression\"),\n ]\n\n def _eval_expr(self, node: ast.AST) -> float:\n \"\"\"Evaluate an AST node recursively.\"\"\"\n if isinstance(node, ast.Constant):\n if isinstance(node.value, int | float):\n return float(node.value)\n error_msg = f\"Unsupported constant type: {type(node.value).__name__}\"\n raise TypeError(error_msg)\n if isinstance(node, ast.Num): # For backwards compatibility\n if isinstance(node.n, int | float):\n return float(node.n)\n error_msg = f\"Unsupported number type: {type(node.n).__name__}\"\n raise TypeError(error_msg)\n\n if isinstance(node, ast.BinOp):\n op_type = type(node.op)\n if op_type not in self.OPERATORS:\n error_msg = f\"Unsupported binary operator: {op_type.__name__}\"\n raise TypeError(error_msg)\n\n left = self._eval_expr(node.left)\n right = self._eval_expr(node.right)\n return self.OPERATORS[op_type](left, right)\n\n error_msg = f\"Unsupported operation or expression type: {type(node).__name__}\"\n raise TypeError(error_msg)\n\n def evaluate_expression(self) -> Data:\n \"\"\"Evaluate the mathematical expression and return the result.\"\"\"\n try:\n tree = ast.parse(self.expression, mode=\"eval\")\n result = self._eval_expr(tree.body)\n\n formatted_result = f\"{float(result):.6f}\".rstrip(\"0\").rstrip(\".\")\n self.log(f\"Calculation result: {formatted_result}\")\n\n self.status = formatted_result\n return Data(data={\"result\": formatted_result})\n\n except ZeroDivisionError:\n error_message = \"Error: Division by zero\"\n self.status = error_message\n return Data(data={\"error\": error_message, \"input\": self.expression})\n\n except (SyntaxError, TypeError, KeyError, ValueError, AttributeError, OverflowError) as e:\n error_message = f\"Invalid expression: {e!s}\"\n self.status = error_message\n return Data(data={\"error\": error_message, \"input\": self.expression})\n\n def build(self):\n \"\"\"Return the main evaluation function.\"\"\"\n return self.evaluate_expression\n"
|
|
1359
1359
|
},
|
|
1360
1360
|
"expression": {
|
|
1361
1361
|
"_input_type": "MessageTextInput",
|
|
@@ -1469,7 +1469,7 @@
|
|
|
1469
1469
|
"legacy": false,
|
|
1470
1470
|
"lf_version": "1.2.0",
|
|
1471
1471
|
"metadata": {
|
|
1472
|
-
"code_hash": "
|
|
1472
|
+
"code_hash": "625d1f5b3290",
|
|
1473
1473
|
"dependencies": {
|
|
1474
1474
|
"dependencies": [
|
|
1475
1475
|
{
|
|
@@ -1477,13 +1477,13 @@
|
|
|
1477
1477
|
"version": "0.3.21"
|
|
1478
1478
|
},
|
|
1479
1479
|
{
|
|
1480
|
-
"name": "
|
|
1480
|
+
"name": "lfx",
|
|
1481
1481
|
"version": null
|
|
1482
1482
|
}
|
|
1483
1483
|
],
|
|
1484
1484
|
"total_dependencies": 2
|
|
1485
1485
|
},
|
|
1486
|
-
"module": "
|
|
1486
|
+
"module": "lfx.components.searchapi.search.SearchComponent"
|
|
1487
1487
|
},
|
|
1488
1488
|
"minimized": false,
|
|
1489
1489
|
"output_types": [],
|
|
@@ -1542,7 +1542,7 @@
|
|
|
1542
1542
|
"show": true,
|
|
1543
1543
|
"title_case": false,
|
|
1544
1544
|
"type": "code",
|
|
1545
|
-
"value": "from typing import Any\n\nfrom langchain_community.utilities.searchapi import SearchApiAPIWrapper\n\nfrom
|
|
1545
|
+
"value": "from typing import Any\n\nfrom langchain_community.utilities.searchapi import SearchApiAPIWrapper\n\nfrom lfx.custom.custom_component.component import Component\nfrom lfx.inputs.inputs import DictInput, DropdownInput, IntInput, MultilineInput, SecretStrInput\nfrom lfx.io import Output\nfrom lfx.schema.data import Data\nfrom lfx.schema.dataframe import DataFrame\n\n\nclass SearchComponent(Component):\n display_name: str = \"SearchApi\"\n description: str = \"Calls the SearchApi API with result limiting. Supports Google, Bing and DuckDuckGo.\"\n documentation: str = \"https://www.searchapi.io/docs/google\"\n icon = \"SearchAPI\"\n\n inputs = [\n DropdownInput(name=\"engine\", display_name=\"Engine\", value=\"google\", options=[\"google\", \"bing\", \"duckduckgo\"]),\n SecretStrInput(name=\"api_key\", display_name=\"SearchAPI API Key\", required=True),\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input\",\n tool_mode=True,\n ),\n DictInput(name=\"search_params\", display_name=\"Search parameters\", advanced=True, is_list=True),\n IntInput(name=\"max_results\", display_name=\"Max Results\", value=5, advanced=True),\n IntInput(name=\"max_snippet_length\", display_name=\"Max Snippet Length\", value=100, advanced=True),\n ]\n\n outputs = [\n Output(display_name=\"DataFrame\", name=\"dataframe\", method=\"fetch_content_dataframe\"),\n ]\n\n def _build_wrapper(self):\n return SearchApiAPIWrapper(engine=self.engine, searchapi_api_key=self.api_key)\n\n def run_model(self) -> DataFrame:\n return self.fetch_content_dataframe()\n\n def fetch_content(self) -> list[Data]:\n wrapper = self._build_wrapper()\n\n def search_func(\n query: str, params: dict[str, Any] | None = None, max_results: int = 5, max_snippet_length: int = 100\n ) -> list[Data]:\n params = params or {}\n full_results = wrapper.results(query=query, **params)\n organic_results = full_results.get(\"organic_results\", [])[:max_results]\n\n return [\n Data(\n text=result.get(\"snippet\", \"\"),\n data={\n \"title\": result.get(\"title\", \"\")[:max_snippet_length],\n \"link\": result.get(\"link\", \"\"),\n \"snippet\": result.get(\"snippet\", \"\")[:max_snippet_length],\n },\n )\n for result in organic_results\n ]\n\n results = search_func(\n self.input_value,\n self.search_params or {},\n self.max_results,\n self.max_snippet_length,\n )\n self.status = results\n return results\n\n def fetch_content_dataframe(self) -> DataFrame:\n \"\"\"Convert the search results to a DataFrame.\n\n Returns:\n DataFrame: A DataFrame containing the search results.\n \"\"\"\n data = self.fetch_content()\n return DataFrame(data)\n"
|
|
1546
1546
|
},
|
|
1547
1547
|
"engine": {
|
|
1548
1548
|
"_input_type": "DropdownInput",
|
|
@@ -1745,7 +1745,27 @@
|
|
|
1745
1745
|
"frozen": false,
|
|
1746
1746
|
"icon": "bot",
|
|
1747
1747
|
"legacy": false,
|
|
1748
|
-
"metadata": {
|
|
1748
|
+
"metadata": {
|
|
1749
|
+
"code_hash": "1a4bc0f629fe",
|
|
1750
|
+
"dependencies": {
|
|
1751
|
+
"dependencies": [
|
|
1752
|
+
{
|
|
1753
|
+
"name": "langchain_core",
|
|
1754
|
+
"version": "0.3.75"
|
|
1755
|
+
},
|
|
1756
|
+
{
|
|
1757
|
+
"name": "pydantic",
|
|
1758
|
+
"version": "2.10.6"
|
|
1759
|
+
},
|
|
1760
|
+
{
|
|
1761
|
+
"name": "lfx",
|
|
1762
|
+
"version": null
|
|
1763
|
+
}
|
|
1764
|
+
],
|
|
1765
|
+
"total_dependencies": 3
|
|
1766
|
+
},
|
|
1767
|
+
"module": "lfx.components.agents.agent.AgentComponent"
|
|
1768
|
+
},
|
|
1749
1769
|
"minimized": false,
|
|
1750
1770
|
"output_types": [],
|
|
1751
1771
|
"outputs": [
|
|
@@ -1754,17 +1774,28 @@
|
|
|
1754
1774
|
"cache": true,
|
|
1755
1775
|
"display_name": "Response",
|
|
1756
1776
|
"group_outputs": false,
|
|
1757
|
-
"hidden": null,
|
|
1758
1777
|
"method": "message_response",
|
|
1759
1778
|
"name": "response",
|
|
1760
|
-
"options": null,
|
|
1761
|
-
"required_inputs": null,
|
|
1762
1779
|
"selected": "Message",
|
|
1763
1780
|
"tool_mode": true,
|
|
1764
1781
|
"types": [
|
|
1765
1782
|
"Message"
|
|
1766
1783
|
],
|
|
1767
1784
|
"value": "__UNDEFINED__"
|
|
1785
|
+
},
|
|
1786
|
+
{
|
|
1787
|
+
"allows_loop": false,
|
|
1788
|
+
"cache": true,
|
|
1789
|
+
"display_name": "Structured Response",
|
|
1790
|
+
"group_outputs": false,
|
|
1791
|
+
"method": "json_response",
|
|
1792
|
+
"name": "structured_response",
|
|
1793
|
+
"selected": "Data",
|
|
1794
|
+
"tool_mode": false,
|
|
1795
|
+
"types": [
|
|
1796
|
+
"Data"
|
|
1797
|
+
],
|
|
1798
|
+
"value": "__UNDEFINED__"
|
|
1768
1799
|
}
|
|
1769
1800
|
],
|
|
1770
1801
|
"pinned": false,
|
|
@@ -1870,7 +1901,7 @@
|
|
|
1870
1901
|
"password": true,
|
|
1871
1902
|
"placeholder": "",
|
|
1872
1903
|
"real_time_refresh": true,
|
|
1873
|
-
"required":
|
|
1904
|
+
"required": false,
|
|
1874
1905
|
"show": true,
|
|
1875
1906
|
"title_case": false,
|
|
1876
1907
|
"type": "str",
|
|
@@ -1892,7 +1923,32 @@
|
|
|
1892
1923
|
"show": true,
|
|
1893
1924
|
"title_case": false,
|
|
1894
1925
|
"type": "code",
|
|
1895
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1926
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool, Tool\nfrom pydantic import ValidationError\n\nfrom lfx.base.agents.agent import LCToolsAgentComponent\nfrom lfx.base.agents.events import ExceptionWithMessageError\nfrom lfx.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom lfx.base.models.model_utils import get_model_name\nfrom lfx.components.helpers.current_date import CurrentDateComponent\nfrom lfx.components.helpers.memory import MemoryComponent\nfrom lfx.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom lfx.custom.custom_component.component import get_component_toolkit\nfrom lfx.custom.utils import update_component_build_config\nfrom lfx.helpers.base_model import build_model_from_schema\nfrom lfx.inputs.inputs import TableInput\nfrom lfx.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dotdict import dotdict\nfrom lfx.schema.message import Message\nfrom lfx.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n if \"OpenAI\" in MODEL_PROVIDERS_DICT:\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n else:\n openai_inputs_filtered = []\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA]\n + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent.get_base_inputs(),\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n def _get_tools(self) -> list[Tool]:\n component_toolkit = get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
1927
|
+
},
|
|
1928
|
+
"format_instructions": {
|
|
1929
|
+
"_input_type": "MultilineInput",
|
|
1930
|
+
"advanced": true,
|
|
1931
|
+
"copy_field": false,
|
|
1932
|
+
"display_name": "Output Format Instructions",
|
|
1933
|
+
"dynamic": false,
|
|
1934
|
+
"info": "Generic Template for structured output formatting. Valid only with Structured response.",
|
|
1935
|
+
"input_types": [
|
|
1936
|
+
"Message"
|
|
1937
|
+
],
|
|
1938
|
+
"list": false,
|
|
1939
|
+
"list_add_label": "Add More",
|
|
1940
|
+
"load_from_db": false,
|
|
1941
|
+
"multiline": true,
|
|
1942
|
+
"name": "format_instructions",
|
|
1943
|
+
"placeholder": "",
|
|
1944
|
+
"required": false,
|
|
1945
|
+
"show": true,
|
|
1946
|
+
"title_case": false,
|
|
1947
|
+
"tool_mode": false,
|
|
1948
|
+
"trace_as_input": true,
|
|
1949
|
+
"trace_as_metadata": true,
|
|
1950
|
+
"type": "str",
|
|
1951
|
+
"value": "You are an AI that extracts structured JSON objects from unstructured text. Use a predefined schema with expected types (str, int, float, bool, dict). Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. Fill missing or ambiguous values with defaults: null for missing values. Remove exact duplicates but keep variations that have different field values. Always return valid JSON in the expected format, never throw errors. If multiple objects can be extracted, return them all in the structured format."
|
|
1896
1952
|
},
|
|
1897
1953
|
"handle_parsing_errors": {
|
|
1898
1954
|
"_input_type": "BoolInput",
|
|
@@ -1935,24 +1991,6 @@
|
|
|
1935
1991
|
"type": "str",
|
|
1936
1992
|
"value": ""
|
|
1937
1993
|
},
|
|
1938
|
-
"json_mode": {
|
|
1939
|
-
"_input_type": "BoolInput",
|
|
1940
|
-
"advanced": true,
|
|
1941
|
-
"display_name": "JSON Mode",
|
|
1942
|
-
"dynamic": false,
|
|
1943
|
-
"info": "If True, it will output JSON regardless of passing a schema.",
|
|
1944
|
-
"list": false,
|
|
1945
|
-
"list_add_label": "Add More",
|
|
1946
|
-
"name": "json_mode",
|
|
1947
|
-
"placeholder": "",
|
|
1948
|
-
"required": false,
|
|
1949
|
-
"show": true,
|
|
1950
|
-
"title_case": false,
|
|
1951
|
-
"tool_mode": false,
|
|
1952
|
-
"trace_as_metadata": true,
|
|
1953
|
-
"type": "bool",
|
|
1954
|
-
"value": false
|
|
1955
|
-
},
|
|
1956
1994
|
"max_iterations": {
|
|
1957
1995
|
"_input_type": "IntInput",
|
|
1958
1996
|
"advanced": true,
|
|
@@ -2047,12 +2085,20 @@
|
|
|
2047
2085
|
"gpt-4.1",
|
|
2048
2086
|
"gpt-4.1-mini",
|
|
2049
2087
|
"gpt-4.1-nano",
|
|
2050
|
-
"gpt-4.5-preview",
|
|
2051
2088
|
"gpt-4-turbo",
|
|
2052
2089
|
"gpt-4-turbo-preview",
|
|
2053
2090
|
"gpt-4",
|
|
2054
2091
|
"gpt-3.5-turbo",
|
|
2055
|
-
"
|
|
2092
|
+
"gpt-5",
|
|
2093
|
+
"gpt-5-mini",
|
|
2094
|
+
"gpt-5-nano",
|
|
2095
|
+
"gpt-5-chat-latest",
|
|
2096
|
+
"o1",
|
|
2097
|
+
"o3-mini",
|
|
2098
|
+
"o3",
|
|
2099
|
+
"o3-pro",
|
|
2100
|
+
"o4-mini",
|
|
2101
|
+
"o4-mini-high"
|
|
2056
2102
|
],
|
|
2057
2103
|
"options_metadata": [],
|
|
2058
2104
|
"placeholder": "",
|
|
@@ -2103,6 +2149,68 @@
|
|
|
2103
2149
|
"type": "str",
|
|
2104
2150
|
"value": ""
|
|
2105
2151
|
},
|
|
2152
|
+
"output_schema": {
|
|
2153
|
+
"_input_type": "TableInput",
|
|
2154
|
+
"advanced": true,
|
|
2155
|
+
"display_name": "Output Schema",
|
|
2156
|
+
"dynamic": false,
|
|
2157
|
+
"info": "Schema Validation: Define the structure and data types for structured output. No validation if no output schema.",
|
|
2158
|
+
"is_list": true,
|
|
2159
|
+
"list_add_label": "Add More",
|
|
2160
|
+
"name": "output_schema",
|
|
2161
|
+
"placeholder": "",
|
|
2162
|
+
"required": false,
|
|
2163
|
+
"show": true,
|
|
2164
|
+
"table_icon": "Table",
|
|
2165
|
+
"table_schema": [
|
|
2166
|
+
{
|
|
2167
|
+
"default": "field",
|
|
2168
|
+
"description": "Specify the name of the output field.",
|
|
2169
|
+
"display_name": "Name",
|
|
2170
|
+
"edit_mode": "inline",
|
|
2171
|
+
"name": "name",
|
|
2172
|
+
"type": "str"
|
|
2173
|
+
},
|
|
2174
|
+
{
|
|
2175
|
+
"default": "description of field",
|
|
2176
|
+
"description": "Describe the purpose of the output field.",
|
|
2177
|
+
"display_name": "Description",
|
|
2178
|
+
"edit_mode": "popover",
|
|
2179
|
+
"name": "description",
|
|
2180
|
+
"type": "str"
|
|
2181
|
+
},
|
|
2182
|
+
{
|
|
2183
|
+
"default": "str",
|
|
2184
|
+
"description": "Indicate the data type of the output field (e.g., str, int, float, bool, dict).",
|
|
2185
|
+
"display_name": "Type",
|
|
2186
|
+
"edit_mode": "inline",
|
|
2187
|
+
"name": "type",
|
|
2188
|
+
"options": [
|
|
2189
|
+
"str",
|
|
2190
|
+
"int",
|
|
2191
|
+
"float",
|
|
2192
|
+
"bool",
|
|
2193
|
+
"dict"
|
|
2194
|
+
],
|
|
2195
|
+
"type": "str"
|
|
2196
|
+
},
|
|
2197
|
+
{
|
|
2198
|
+
"default": "False",
|
|
2199
|
+
"description": "Set to True if this output field should be a list of the specified type.",
|
|
2200
|
+
"display_name": "As List",
|
|
2201
|
+
"edit_mode": "inline",
|
|
2202
|
+
"name": "multiple",
|
|
2203
|
+
"type": "boolean"
|
|
2204
|
+
}
|
|
2205
|
+
],
|
|
2206
|
+
"title_case": false,
|
|
2207
|
+
"tool_mode": false,
|
|
2208
|
+
"trace_as_metadata": true,
|
|
2209
|
+
"trigger_icon": "Table",
|
|
2210
|
+
"trigger_text": "Open table",
|
|
2211
|
+
"type": "table",
|
|
2212
|
+
"value": []
|
|
2213
|
+
},
|
|
2106
2214
|
"seed": {
|
|
2107
2215
|
"_input_type": "IntInput",
|
|
2108
2216
|
"advanced": true,
|
|
@@ -2289,7 +2397,27 @@
|
|
|
2289
2397
|
"frozen": false,
|
|
2290
2398
|
"icon": "bot",
|
|
2291
2399
|
"legacy": false,
|
|
2292
|
-
"metadata": {
|
|
2400
|
+
"metadata": {
|
|
2401
|
+
"code_hash": "1a4bc0f629fe",
|
|
2402
|
+
"dependencies": {
|
|
2403
|
+
"dependencies": [
|
|
2404
|
+
{
|
|
2405
|
+
"name": "langchain_core",
|
|
2406
|
+
"version": "0.3.75"
|
|
2407
|
+
},
|
|
2408
|
+
{
|
|
2409
|
+
"name": "pydantic",
|
|
2410
|
+
"version": "2.10.6"
|
|
2411
|
+
},
|
|
2412
|
+
{
|
|
2413
|
+
"name": "lfx",
|
|
2414
|
+
"version": null
|
|
2415
|
+
}
|
|
2416
|
+
],
|
|
2417
|
+
"total_dependencies": 3
|
|
2418
|
+
},
|
|
2419
|
+
"module": "lfx.components.agents.agent.AgentComponent"
|
|
2420
|
+
},
|
|
2293
2421
|
"minimized": false,
|
|
2294
2422
|
"output_types": [],
|
|
2295
2423
|
"outputs": [
|
|
@@ -2298,17 +2426,28 @@
|
|
|
2298
2426
|
"cache": true,
|
|
2299
2427
|
"display_name": "Response",
|
|
2300
2428
|
"group_outputs": false,
|
|
2301
|
-
"hidden": null,
|
|
2302
2429
|
"method": "message_response",
|
|
2303
2430
|
"name": "response",
|
|
2304
|
-
"options": null,
|
|
2305
|
-
"required_inputs": null,
|
|
2306
2431
|
"selected": "Message",
|
|
2307
2432
|
"tool_mode": true,
|
|
2308
2433
|
"types": [
|
|
2309
2434
|
"Message"
|
|
2310
2435
|
],
|
|
2311
2436
|
"value": "__UNDEFINED__"
|
|
2437
|
+
},
|
|
2438
|
+
{
|
|
2439
|
+
"allows_loop": false,
|
|
2440
|
+
"cache": true,
|
|
2441
|
+
"display_name": "Structured Response",
|
|
2442
|
+
"group_outputs": false,
|
|
2443
|
+
"method": "json_response",
|
|
2444
|
+
"name": "structured_response",
|
|
2445
|
+
"selected": "Data",
|
|
2446
|
+
"tool_mode": false,
|
|
2447
|
+
"types": [
|
|
2448
|
+
"Data"
|
|
2449
|
+
],
|
|
2450
|
+
"value": "__UNDEFINED__"
|
|
2312
2451
|
}
|
|
2313
2452
|
],
|
|
2314
2453
|
"pinned": false,
|
|
@@ -2414,7 +2553,7 @@
|
|
|
2414
2553
|
"password": true,
|
|
2415
2554
|
"placeholder": "",
|
|
2416
2555
|
"real_time_refresh": true,
|
|
2417
|
-
"required":
|
|
2556
|
+
"required": false,
|
|
2418
2557
|
"show": true,
|
|
2419
2558
|
"title_case": false,
|
|
2420
2559
|
"type": "str",
|
|
@@ -2436,7 +2575,32 @@
|
|
|
2436
2575
|
"show": true,
|
|
2437
2576
|
"title_case": false,
|
|
2438
2577
|
"type": "code",
|
|
2439
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
2578
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool, Tool\nfrom pydantic import ValidationError\n\nfrom lfx.base.agents.agent import LCToolsAgentComponent\nfrom lfx.base.agents.events import ExceptionWithMessageError\nfrom lfx.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom lfx.base.models.model_utils import get_model_name\nfrom lfx.components.helpers.current_date import CurrentDateComponent\nfrom lfx.components.helpers.memory import MemoryComponent\nfrom lfx.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom lfx.custom.custom_component.component import get_component_toolkit\nfrom lfx.custom.utils import update_component_build_config\nfrom lfx.helpers.base_model import build_model_from_schema\nfrom lfx.inputs.inputs import TableInput\nfrom lfx.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dotdict import dotdict\nfrom lfx.schema.message import Message\nfrom lfx.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n if \"OpenAI\" in MODEL_PROVIDERS_DICT:\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n else:\n openai_inputs_filtered = []\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA]\n + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent.get_base_inputs(),\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n def _get_tools(self) -> list[Tool]:\n component_toolkit = get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
2579
|
+
},
|
|
2580
|
+
"format_instructions": {
|
|
2581
|
+
"_input_type": "MultilineInput",
|
|
2582
|
+
"advanced": true,
|
|
2583
|
+
"copy_field": false,
|
|
2584
|
+
"display_name": "Output Format Instructions",
|
|
2585
|
+
"dynamic": false,
|
|
2586
|
+
"info": "Generic Template for structured output formatting. Valid only with Structured response.",
|
|
2587
|
+
"input_types": [
|
|
2588
|
+
"Message"
|
|
2589
|
+
],
|
|
2590
|
+
"list": false,
|
|
2591
|
+
"list_add_label": "Add More",
|
|
2592
|
+
"load_from_db": false,
|
|
2593
|
+
"multiline": true,
|
|
2594
|
+
"name": "format_instructions",
|
|
2595
|
+
"placeholder": "",
|
|
2596
|
+
"required": false,
|
|
2597
|
+
"show": true,
|
|
2598
|
+
"title_case": false,
|
|
2599
|
+
"tool_mode": false,
|
|
2600
|
+
"trace_as_input": true,
|
|
2601
|
+
"trace_as_metadata": true,
|
|
2602
|
+
"type": "str",
|
|
2603
|
+
"value": "You are an AI that extracts structured JSON objects from unstructured text. Use a predefined schema with expected types (str, int, float, bool, dict). Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. Fill missing or ambiguous values with defaults: null for missing values. Remove exact duplicates but keep variations that have different field values. Always return valid JSON in the expected format, never throw errors. If multiple objects can be extracted, return them all in the structured format."
|
|
2440
2604
|
},
|
|
2441
2605
|
"handle_parsing_errors": {
|
|
2442
2606
|
"_input_type": "BoolInput",
|
|
@@ -2479,24 +2643,6 @@
|
|
|
2479
2643
|
"type": "str",
|
|
2480
2644
|
"value": ""
|
|
2481
2645
|
},
|
|
2482
|
-
"json_mode": {
|
|
2483
|
-
"_input_type": "BoolInput",
|
|
2484
|
-
"advanced": true,
|
|
2485
|
-
"display_name": "JSON Mode",
|
|
2486
|
-
"dynamic": false,
|
|
2487
|
-
"info": "If True, it will output JSON regardless of passing a schema.",
|
|
2488
|
-
"list": false,
|
|
2489
|
-
"list_add_label": "Add More",
|
|
2490
|
-
"name": "json_mode",
|
|
2491
|
-
"placeholder": "",
|
|
2492
|
-
"required": false,
|
|
2493
|
-
"show": true,
|
|
2494
|
-
"title_case": false,
|
|
2495
|
-
"tool_mode": false,
|
|
2496
|
-
"trace_as_metadata": true,
|
|
2497
|
-
"type": "bool",
|
|
2498
|
-
"value": false
|
|
2499
|
-
},
|
|
2500
2646
|
"max_iterations": {
|
|
2501
2647
|
"_input_type": "IntInput",
|
|
2502
2648
|
"advanced": true,
|
|
@@ -2591,12 +2737,20 @@
|
|
|
2591
2737
|
"gpt-4.1",
|
|
2592
2738
|
"gpt-4.1-mini",
|
|
2593
2739
|
"gpt-4.1-nano",
|
|
2594
|
-
"gpt-4.5-preview",
|
|
2595
2740
|
"gpt-4-turbo",
|
|
2596
2741
|
"gpt-4-turbo-preview",
|
|
2597
2742
|
"gpt-4",
|
|
2598
2743
|
"gpt-3.5-turbo",
|
|
2599
|
-
"
|
|
2744
|
+
"gpt-5",
|
|
2745
|
+
"gpt-5-mini",
|
|
2746
|
+
"gpt-5-nano",
|
|
2747
|
+
"gpt-5-chat-latest",
|
|
2748
|
+
"o1",
|
|
2749
|
+
"o3-mini",
|
|
2750
|
+
"o3",
|
|
2751
|
+
"o3-pro",
|
|
2752
|
+
"o4-mini",
|
|
2753
|
+
"o4-mini-high"
|
|
2600
2754
|
],
|
|
2601
2755
|
"options_metadata": [],
|
|
2602
2756
|
"placeholder": "",
|
|
@@ -2647,6 +2801,68 @@
|
|
|
2647
2801
|
"type": "str",
|
|
2648
2802
|
"value": ""
|
|
2649
2803
|
},
|
|
2804
|
+
"output_schema": {
|
|
2805
|
+
"_input_type": "TableInput",
|
|
2806
|
+
"advanced": true,
|
|
2807
|
+
"display_name": "Output Schema",
|
|
2808
|
+
"dynamic": false,
|
|
2809
|
+
"info": "Schema Validation: Define the structure and data types for structured output. No validation if no output schema.",
|
|
2810
|
+
"is_list": true,
|
|
2811
|
+
"list_add_label": "Add More",
|
|
2812
|
+
"name": "output_schema",
|
|
2813
|
+
"placeholder": "",
|
|
2814
|
+
"required": false,
|
|
2815
|
+
"show": true,
|
|
2816
|
+
"table_icon": "Table",
|
|
2817
|
+
"table_schema": [
|
|
2818
|
+
{
|
|
2819
|
+
"default": "field",
|
|
2820
|
+
"description": "Specify the name of the output field.",
|
|
2821
|
+
"display_name": "Name",
|
|
2822
|
+
"edit_mode": "inline",
|
|
2823
|
+
"name": "name",
|
|
2824
|
+
"type": "str"
|
|
2825
|
+
},
|
|
2826
|
+
{
|
|
2827
|
+
"default": "description of field",
|
|
2828
|
+
"description": "Describe the purpose of the output field.",
|
|
2829
|
+
"display_name": "Description",
|
|
2830
|
+
"edit_mode": "popover",
|
|
2831
|
+
"name": "description",
|
|
2832
|
+
"type": "str"
|
|
2833
|
+
},
|
|
2834
|
+
{
|
|
2835
|
+
"default": "str",
|
|
2836
|
+
"description": "Indicate the data type of the output field (e.g., str, int, float, bool, dict).",
|
|
2837
|
+
"display_name": "Type",
|
|
2838
|
+
"edit_mode": "inline",
|
|
2839
|
+
"name": "type",
|
|
2840
|
+
"options": [
|
|
2841
|
+
"str",
|
|
2842
|
+
"int",
|
|
2843
|
+
"float",
|
|
2844
|
+
"bool",
|
|
2845
|
+
"dict"
|
|
2846
|
+
],
|
|
2847
|
+
"type": "str"
|
|
2848
|
+
},
|
|
2849
|
+
{
|
|
2850
|
+
"default": "False",
|
|
2851
|
+
"description": "Set to True if this output field should be a list of the specified type.",
|
|
2852
|
+
"display_name": "As List",
|
|
2853
|
+
"edit_mode": "inline",
|
|
2854
|
+
"name": "multiple",
|
|
2855
|
+
"type": "boolean"
|
|
2856
|
+
}
|
|
2857
|
+
],
|
|
2858
|
+
"title_case": false,
|
|
2859
|
+
"tool_mode": false,
|
|
2860
|
+
"trace_as_metadata": true,
|
|
2861
|
+
"trigger_icon": "Table",
|
|
2862
|
+
"trigger_text": "Open table",
|
|
2863
|
+
"type": "table",
|
|
2864
|
+
"value": []
|
|
2865
|
+
},
|
|
2650
2866
|
"seed": {
|
|
2651
2867
|
"_input_type": "IntInput",
|
|
2652
2868
|
"advanced": true,
|
|
@@ -2833,7 +3049,27 @@
|
|
|
2833
3049
|
"frozen": false,
|
|
2834
3050
|
"icon": "bot",
|
|
2835
3051
|
"legacy": false,
|
|
2836
|
-
"metadata": {
|
|
3052
|
+
"metadata": {
|
|
3053
|
+
"code_hash": "1a4bc0f629fe",
|
|
3054
|
+
"dependencies": {
|
|
3055
|
+
"dependencies": [
|
|
3056
|
+
{
|
|
3057
|
+
"name": "langchain_core",
|
|
3058
|
+
"version": "0.3.75"
|
|
3059
|
+
},
|
|
3060
|
+
{
|
|
3061
|
+
"name": "pydantic",
|
|
3062
|
+
"version": "2.10.6"
|
|
3063
|
+
},
|
|
3064
|
+
{
|
|
3065
|
+
"name": "lfx",
|
|
3066
|
+
"version": null
|
|
3067
|
+
}
|
|
3068
|
+
],
|
|
3069
|
+
"total_dependencies": 3
|
|
3070
|
+
},
|
|
3071
|
+
"module": "lfx.components.agents.agent.AgentComponent"
|
|
3072
|
+
},
|
|
2837
3073
|
"minimized": false,
|
|
2838
3074
|
"output_types": [],
|
|
2839
3075
|
"outputs": [
|
|
@@ -2842,17 +3078,28 @@
|
|
|
2842
3078
|
"cache": true,
|
|
2843
3079
|
"display_name": "Response",
|
|
2844
3080
|
"group_outputs": false,
|
|
2845
|
-
"hidden": null,
|
|
2846
3081
|
"method": "message_response",
|
|
2847
3082
|
"name": "response",
|
|
2848
|
-
"options": null,
|
|
2849
|
-
"required_inputs": null,
|
|
2850
3083
|
"selected": "Message",
|
|
2851
3084
|
"tool_mode": true,
|
|
2852
3085
|
"types": [
|
|
2853
3086
|
"Message"
|
|
2854
3087
|
],
|
|
2855
3088
|
"value": "__UNDEFINED__"
|
|
3089
|
+
},
|
|
3090
|
+
{
|
|
3091
|
+
"allows_loop": false,
|
|
3092
|
+
"cache": true,
|
|
3093
|
+
"display_name": "Structured Response",
|
|
3094
|
+
"group_outputs": false,
|
|
3095
|
+
"method": "json_response",
|
|
3096
|
+
"name": "structured_response",
|
|
3097
|
+
"selected": "Data",
|
|
3098
|
+
"tool_mode": false,
|
|
3099
|
+
"types": [
|
|
3100
|
+
"Data"
|
|
3101
|
+
],
|
|
3102
|
+
"value": "__UNDEFINED__"
|
|
2856
3103
|
}
|
|
2857
3104
|
],
|
|
2858
3105
|
"pinned": false,
|
|
@@ -2958,7 +3205,7 @@
|
|
|
2958
3205
|
"password": true,
|
|
2959
3206
|
"placeholder": "",
|
|
2960
3207
|
"real_time_refresh": true,
|
|
2961
|
-
"required":
|
|
3208
|
+
"required": false,
|
|
2962
3209
|
"show": true,
|
|
2963
3210
|
"title_case": false,
|
|
2964
3211
|
"type": "str",
|
|
@@ -2980,7 +3227,32 @@
|
|
|
2980
3227
|
"show": true,
|
|
2981
3228
|
"title_case": false,
|
|
2982
3229
|
"type": "code",
|
|
2983
|
-
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
3230
|
+
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool, Tool\nfrom pydantic import ValidationError\n\nfrom lfx.base.agents.agent import LCToolsAgentComponent\nfrom lfx.base.agents.events import ExceptionWithMessageError\nfrom lfx.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom lfx.base.models.model_utils import get_model_name\nfrom lfx.components.helpers.current_date import CurrentDateComponent\nfrom lfx.components.helpers.memory import MemoryComponent\nfrom lfx.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom lfx.custom.custom_component.component import get_component_toolkit\nfrom lfx.custom.utils import update_component_build_config\nfrom lfx.helpers.base_model import build_model_from_schema\nfrom lfx.inputs.inputs import TableInput\nfrom lfx.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom lfx.log.logger import logger\nfrom lfx.schema.data import Data\nfrom lfx.schema.dotdict import dotdict\nfrom lfx.schema.message import Message\nfrom lfx.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n if \"OpenAI\" in MODEL_PROVIDERS_DICT:\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n else:\n openai_inputs_filtered = []\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST if key in MODELS_METADATA]\n + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent.get_base_inputs(),\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n build_config[\"agent_llm\"][\"display_name\"] = \"Model Provider\"\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n def _get_tools(self) -> list[Tool]:\n component_toolkit = get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
|
3231
|
+
},
|
|
3232
|
+
"format_instructions": {
|
|
3233
|
+
"_input_type": "MultilineInput",
|
|
3234
|
+
"advanced": true,
|
|
3235
|
+
"copy_field": false,
|
|
3236
|
+
"display_name": "Output Format Instructions",
|
|
3237
|
+
"dynamic": false,
|
|
3238
|
+
"info": "Generic Template for structured output formatting. Valid only with Structured response.",
|
|
3239
|
+
"input_types": [
|
|
3240
|
+
"Message"
|
|
3241
|
+
],
|
|
3242
|
+
"list": false,
|
|
3243
|
+
"list_add_label": "Add More",
|
|
3244
|
+
"load_from_db": false,
|
|
3245
|
+
"multiline": true,
|
|
3246
|
+
"name": "format_instructions",
|
|
3247
|
+
"placeholder": "",
|
|
3248
|
+
"required": false,
|
|
3249
|
+
"show": true,
|
|
3250
|
+
"title_case": false,
|
|
3251
|
+
"tool_mode": false,
|
|
3252
|
+
"trace_as_input": true,
|
|
3253
|
+
"trace_as_metadata": true,
|
|
3254
|
+
"type": "str",
|
|
3255
|
+
"value": "You are an AI that extracts structured JSON objects from unstructured text. Use a predefined schema with expected types (str, int, float, bool, dict). Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. Fill missing or ambiguous values with defaults: null for missing values. Remove exact duplicates but keep variations that have different field values. Always return valid JSON in the expected format, never throw errors. If multiple objects can be extracted, return them all in the structured format."
|
|
2984
3256
|
},
|
|
2985
3257
|
"handle_parsing_errors": {
|
|
2986
3258
|
"_input_type": "BoolInput",
|
|
@@ -3023,24 +3295,6 @@
|
|
|
3023
3295
|
"type": "str",
|
|
3024
3296
|
"value": ""
|
|
3025
3297
|
},
|
|
3026
|
-
"json_mode": {
|
|
3027
|
-
"_input_type": "BoolInput",
|
|
3028
|
-
"advanced": true,
|
|
3029
|
-
"display_name": "JSON Mode",
|
|
3030
|
-
"dynamic": false,
|
|
3031
|
-
"info": "If True, it will output JSON regardless of passing a schema.",
|
|
3032
|
-
"list": false,
|
|
3033
|
-
"list_add_label": "Add More",
|
|
3034
|
-
"name": "json_mode",
|
|
3035
|
-
"placeholder": "",
|
|
3036
|
-
"required": false,
|
|
3037
|
-
"show": true,
|
|
3038
|
-
"title_case": false,
|
|
3039
|
-
"tool_mode": false,
|
|
3040
|
-
"trace_as_metadata": true,
|
|
3041
|
-
"type": "bool",
|
|
3042
|
-
"value": false
|
|
3043
|
-
},
|
|
3044
3298
|
"max_iterations": {
|
|
3045
3299
|
"_input_type": "IntInput",
|
|
3046
3300
|
"advanced": true,
|
|
@@ -3135,12 +3389,20 @@
|
|
|
3135
3389
|
"gpt-4.1",
|
|
3136
3390
|
"gpt-4.1-mini",
|
|
3137
3391
|
"gpt-4.1-nano",
|
|
3138
|
-
"gpt-4.5-preview",
|
|
3139
3392
|
"gpt-4-turbo",
|
|
3140
3393
|
"gpt-4-turbo-preview",
|
|
3141
3394
|
"gpt-4",
|
|
3142
3395
|
"gpt-3.5-turbo",
|
|
3143
|
-
"
|
|
3396
|
+
"gpt-5",
|
|
3397
|
+
"gpt-5-mini",
|
|
3398
|
+
"gpt-5-nano",
|
|
3399
|
+
"gpt-5-chat-latest",
|
|
3400
|
+
"o1",
|
|
3401
|
+
"o3-mini",
|
|
3402
|
+
"o3",
|
|
3403
|
+
"o3-pro",
|
|
3404
|
+
"o4-mini",
|
|
3405
|
+
"o4-mini-high"
|
|
3144
3406
|
],
|
|
3145
3407
|
"options_metadata": [],
|
|
3146
3408
|
"placeholder": "",
|
|
@@ -3191,6 +3453,68 @@
|
|
|
3191
3453
|
"type": "str",
|
|
3192
3454
|
"value": ""
|
|
3193
3455
|
},
|
|
3456
|
+
"output_schema": {
|
|
3457
|
+
"_input_type": "TableInput",
|
|
3458
|
+
"advanced": true,
|
|
3459
|
+
"display_name": "Output Schema",
|
|
3460
|
+
"dynamic": false,
|
|
3461
|
+
"info": "Schema Validation: Define the structure and data types for structured output. No validation if no output schema.",
|
|
3462
|
+
"is_list": true,
|
|
3463
|
+
"list_add_label": "Add More",
|
|
3464
|
+
"name": "output_schema",
|
|
3465
|
+
"placeholder": "",
|
|
3466
|
+
"required": false,
|
|
3467
|
+
"show": true,
|
|
3468
|
+
"table_icon": "Table",
|
|
3469
|
+
"table_schema": [
|
|
3470
|
+
{
|
|
3471
|
+
"default": "field",
|
|
3472
|
+
"description": "Specify the name of the output field.",
|
|
3473
|
+
"display_name": "Name",
|
|
3474
|
+
"edit_mode": "inline",
|
|
3475
|
+
"name": "name",
|
|
3476
|
+
"type": "str"
|
|
3477
|
+
},
|
|
3478
|
+
{
|
|
3479
|
+
"default": "description of field",
|
|
3480
|
+
"description": "Describe the purpose of the output field.",
|
|
3481
|
+
"display_name": "Description",
|
|
3482
|
+
"edit_mode": "popover",
|
|
3483
|
+
"name": "description",
|
|
3484
|
+
"type": "str"
|
|
3485
|
+
},
|
|
3486
|
+
{
|
|
3487
|
+
"default": "str",
|
|
3488
|
+
"description": "Indicate the data type of the output field (e.g., str, int, float, bool, dict).",
|
|
3489
|
+
"display_name": "Type",
|
|
3490
|
+
"edit_mode": "inline",
|
|
3491
|
+
"name": "type",
|
|
3492
|
+
"options": [
|
|
3493
|
+
"str",
|
|
3494
|
+
"int",
|
|
3495
|
+
"float",
|
|
3496
|
+
"bool",
|
|
3497
|
+
"dict"
|
|
3498
|
+
],
|
|
3499
|
+
"type": "str"
|
|
3500
|
+
},
|
|
3501
|
+
{
|
|
3502
|
+
"default": "False",
|
|
3503
|
+
"description": "Set to True if this output field should be a list of the specified type.",
|
|
3504
|
+
"display_name": "As List",
|
|
3505
|
+
"edit_mode": "inline",
|
|
3506
|
+
"name": "multiple",
|
|
3507
|
+
"type": "boolean"
|
|
3508
|
+
}
|
|
3509
|
+
],
|
|
3510
|
+
"title_case": false,
|
|
3511
|
+
"tool_mode": false,
|
|
3512
|
+
"trace_as_metadata": true,
|
|
3513
|
+
"trigger_icon": "Table",
|
|
3514
|
+
"trigger_text": "Open table",
|
|
3515
|
+
"type": "table",
|
|
3516
|
+
"value": []
|
|
3517
|
+
},
|
|
3194
3518
|
"seed": {
|
|
3195
3519
|
"_input_type": "IntInput",
|
|
3196
3520
|
"advanced": true,
|