langflow-base-nightly 0.5.0.dev38__py3-none-any.whl → 0.5.0.dev39__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (233) hide show
  1. langflow/alembic/versions/0882f9657f22_encrypt_existing_mcp_auth_settings_.py +122 -0
  2. langflow/api/v1/mcp_projects.py +373 -52
  3. langflow/api/v1/schemas.py +1 -2
  4. langflow/components/FAISS/__init__.py +34 -0
  5. langflow/components/agents/agent.py +246 -52
  6. langflow/components/cassandra/__init__.py +40 -0
  7. langflow/components/chroma/__init__.py +34 -0
  8. langflow/components/clickhouse/__init__.py +34 -0
  9. langflow/components/couchbase/__init__.py +34 -0
  10. langflow/components/datastax/__init__.py +3 -3
  11. langflow/components/elastic/__init__.py +37 -0
  12. langflow/components/milvus/__init__.py +34 -0
  13. langflow/components/mongodb/__init__.py +34 -0
  14. langflow/components/ollama/ollama.py +1 -0
  15. langflow/components/perplexity/perplexity.py +3 -13
  16. langflow/components/pgvector/__init__.py +34 -0
  17. langflow/components/pinecone/__init__.py +34 -0
  18. langflow/components/qdrant/__init__.py +34 -0
  19. langflow/components/redis/__init__.py +36 -2
  20. langflow/components/redis/redis.py +75 -29
  21. langflow/components/redis/redis_chat.py +43 -0
  22. langflow/components/supabase/__init__.py +37 -0
  23. langflow/components/upstash/__init__.py +34 -0
  24. langflow/components/vectara/__init__.py +37 -0
  25. langflow/components/vectorstores/__init__.py +0 -69
  26. langflow/components/vectorstores/local_db.py +1 -0
  27. langflow/components/weaviate/__init__.py +34 -0
  28. langflow/custom/dependency_analyzer.py +165 -0
  29. langflow/custom/utils.py +34 -16
  30. langflow/frontend/assets/{SlackIcon-BhW6H3JR.js → SlackIcon-Cr3Q15Px.js} +1 -1
  31. langflow/frontend/assets/{Wikipedia-Dx5jbiy3.js → Wikipedia-GxM5sPdM.js} +1 -1
  32. langflow/frontend/assets/{Wolfram-CIyonzwo.js → Wolfram-BN3-VOCA.js} +1 -1
  33. langflow/frontend/assets/{index-DOEvKC2X.js → index-28oOcafk.js} +1 -1
  34. langflow/frontend/assets/{index-Bhv79Zso.js → index-2wSXqBtB.js} +1 -1
  35. langflow/frontend/assets/{index-BRmSeoWR.js → index-3wW7BClE.js} +1 -1
  36. langflow/frontend/assets/{index-eUkS6iJM.js → index-6pyH3ZJB.js} +1 -1
  37. langflow/frontend/assets/{index-Cr5v2ave.js → index-AWCSdofD.js} +1 -1
  38. langflow/frontend/assets/{index-C27Jj_26.js → index-B2Zgv_xv.js} +1 -1
  39. langflow/frontend/assets/{index-BKKrUElc.js → index-B2ptVQGM.js} +1 -1
  40. langflow/frontend/assets/{index-BnAFhkSN.js → index-B3TANVes.js} +1 -1
  41. langflow/frontend/assets/{index-hZUcL0MZ.js → index-B4yCvZKV.js} +1 -1
  42. langflow/frontend/assets/{index-BPR2mEFC.js → index-BC65VuWx.js} +1 -1
  43. langflow/frontend/assets/{index-CgU7KF4I.js → index-BCDSei1q.js} +1 -1
  44. langflow/frontend/assets/{index-CzHzeZuA.js → index-BJy50PvP.js} +1 -1
  45. langflow/frontend/assets/{index-DkGhPNeA.js → index-BKseQQ2I.js} +1 -1
  46. langflow/frontend/assets/{index-BVFaF7HW.js → index-BLTxEeTi.js} +1 -1
  47. langflow/frontend/assets/{index-cEXY6V06.js → index-BRg1f4Mu.js} +1 -1
  48. langflow/frontend/assets/{index-C2eQmQsn.js → index-BS8Vo8nc.js} +1 -1
  49. langflow/frontend/assets/{index-gdb7XMS8.js → index-BTKOU4xC.js} +1 -1
  50. langflow/frontend/assets/{index-U9GWm1eH.js → index-BVwJDmw-.js} +1 -1
  51. langflow/frontend/assets/{index-BWt5xGeA.js → index-BWYuQ2Sj.js} +1 -1
  52. langflow/frontend/assets/{index-Dx-Z87KT.js → index-BWdLILDG.js} +1 -1
  53. langflow/frontend/assets/{index-paQEWYGT.js → index-BZcw4827.js} +1 -1
  54. langflow/frontend/assets/{index-BDQrd7Tj.js → index-Bbi87Ve4.js} +1 -1
  55. langflow/frontend/assets/{index-vJOO5U8M.js → index-Bf0IYKLd.js} +1 -1
  56. langflow/frontend/assets/{index-1Q3VBqKn.js → index-Bg5nrMRh.js} +1 -1
  57. langflow/frontend/assets/{index-BFQ8KFK0.js → index-BiC280Nx.js} +1 -1
  58. langflow/frontend/assets/{index-CFNTYfFK.js → index-BiKKN6FR.js} +1 -1
  59. langflow/frontend/assets/{index-BPfdqCc_.js → index-Bief6eyJ.js} +1 -1
  60. langflow/frontend/assets/{index-Cxy9sEpy.js → index-BkXec1Yf.js} +1 -1
  61. langflow/frontend/assets/{index-D4tjMhfY.js → index-Bnl6QHtP.js} +1 -1
  62. langflow/frontend/assets/{index-BD7Io1hL.js → index-BpxbUiZD.js} +1978 -1978
  63. langflow/frontend/assets/{index-Ch5r0oW6.js → index-BrJV8psX.js} +1 -1
  64. langflow/frontend/assets/{index-DOQDkSoK.js → index-BwLWcUXL.js} +1 -1
  65. langflow/frontend/assets/{index-CMHpjHZl.js → index-Bx7dBY26.js} +1 -1
  66. langflow/frontend/assets/{index-CbnWRlYY.js → index-C-EdnFdA.js} +1 -1
  67. langflow/frontend/assets/{index-DljpLeCW.js → index-C-Xfg4cD.js} +1 -1
  68. langflow/frontend/assets/{index-Bwi4flFg.js → index-C1f2wMat.js} +1 -1
  69. langflow/frontend/assets/index-C1xroOlH.css +1 -0
  70. langflow/frontend/assets/{index-D6CSIrp1.js → index-C3KequvP.js} +1 -1
  71. langflow/frontend/assets/{index-BYjw7Gk3.js → index-C3ZjKdCD.js} +1 -1
  72. langflow/frontend/assets/{index-DIKUsGLF.js → index-C3l0zYn0.js} +1 -1
  73. langflow/frontend/assets/{index-CfPBgkqg.js → index-C3yvArUT.js} +1 -1
  74. langflow/frontend/assets/{index-CsLQiWNf.js → index-C9Cxnkl8.js} +1 -1
  75. langflow/frontend/assets/{index-mzl9ULw5.js → index-CBc8fEAE.js} +1 -1
  76. langflow/frontend/assets/{index-CEJNWPhA.js → index-CBvrGgID.js} +1 -1
  77. langflow/frontend/assets/{index-DwfHWnX7.js → index-CD-PqGCY.js} +1 -1
  78. langflow/frontend/assets/{index-dyXKnkMi.js → index-CGO1CiUr.js} +1 -1
  79. langflow/frontend/assets/{index-Dka_Rk4-.js → index-CH5UVA9b.js} +1 -1
  80. langflow/frontend/assets/{index-uiKla4UR.js → index-CLJeJYjH.js} +1 -1
  81. langflow/frontend/assets/{index-D9kwEzPB.js → index-CMZ79X-Y.js} +1 -1
  82. langflow/frontend/assets/{index-BrVhdPZb.js → index-CMzfJKiW.js} +1 -1
  83. langflow/frontend/assets/{index-Bct1s6__.js → index-CNw1H-Wc.js} +1 -1
  84. langflow/frontend/assets/{index-B7uEuOPK.js → index-CPHEscq9.js} +1 -1
  85. langflow/frontend/assets/{index-ekfMOqrF.js → index-CRPKJZw9.js} +1 -1
  86. langflow/frontend/assets/{index-G4ro0MjT.js → index-CRPyCfYy.js} +1 -1
  87. langflow/frontend/assets/{index-CSu8KHOi.js → index-CRcMqCIj.js} +1 -1
  88. langflow/frontend/assets/{index-DsoX2o1S.js → index-CUVDws8F.js} +1 -1
  89. langflow/frontend/assets/{index-r_8gs4nL.js → index-CVWQfRYZ.js} +1 -1
  90. langflow/frontend/assets/{index-7hzXChQz.js → index-CVl6MbaM.js} +1 -1
  91. langflow/frontend/assets/{index-B8UR8v-Q.js → index-CVwWoX99.js} +1 -1
  92. langflow/frontend/assets/{index-Dda2u_yz.js → index-CWPzZtSx.js} +1 -1
  93. langflow/frontend/assets/{index-BKeZt2hQ.js → index-CZqRL9DE.js} +1 -1
  94. langflow/frontend/assets/{index-DHngW1k8.js → index-CdIf07Rw.js} +1 -1
  95. langflow/frontend/assets/{index-C--IDAyc.js → index-Cewy7JZE.js} +1 -1
  96. langflow/frontend/assets/{index-DZP_SaHb.js → index-CfwLpbMM.js} +1 -1
  97. langflow/frontend/assets/{index-CuCM7Wu7.js → index-CiR1dxI4.js} +1 -1
  98. langflow/frontend/assets/{index-Xi4TplbI.js → index-CiixOzDG.js} +1 -1
  99. langflow/frontend/assets/{index-BLYw9MK2.js → index-ClsuDmR6.js} +1 -1
  100. langflow/frontend/assets/{index-DMCWDJOl.js → index-CmEYYRN1.js} +1 -1
  101. langflow/frontend/assets/{index-CrAF-31Y.js → index-Co20d-eQ.js} +1 -1
  102. langflow/frontend/assets/{index-DXAfIEvs.js → index-CpzXS6md.js} +1 -1
  103. langflow/frontend/assets/{index-BmYJJ5YS.js → index-Cqpzl1J4.js} +1 -1
  104. langflow/frontend/assets/{index-KWY77KfV.js → index-CtVIONP2.js} +1 -1
  105. langflow/frontend/assets/{index-B3KCdQ91.js → index-CuFXdTx4.js} +1 -1
  106. langflow/frontend/assets/{index-p2kStSPe.js → index-Cyd2HtHK.js} +1 -1
  107. langflow/frontend/assets/{index-CkjwSTSM.js → index-D-1tA8Dt.js} +1 -1
  108. langflow/frontend/assets/{index-BFf0HTFI.js → index-D-KY3kkq.js} +1 -1
  109. langflow/frontend/assets/{index-BYhcGLTV.js → index-D-_B1a8v.js} +1 -1
  110. langflow/frontend/assets/{index-Dr6pVDPI.js → index-D14EWPyZ.js} +1 -1
  111. langflow/frontend/assets/{index-BDuk0d7P.js → index-D2N3l-cw.js} +1 -1
  112. langflow/frontend/assets/{index-BvGQfVBD.js → index-D5ETnvJa.js} +1 -1
  113. langflow/frontend/assets/{index-D1oynC8a.js → index-D7kquVv2.js} +1 -1
  114. langflow/frontend/assets/{index-B1XqWJhG.js → index-DA6-bvgN.js} +1 -1
  115. langflow/frontend/assets/{index-DzIv3RyR.js → index-DDWBeudF.js} +1 -1
  116. langflow/frontend/assets/{index-BKlQbl-6.js → index-DDcMAaG4.js} +1 -1
  117. langflow/frontend/assets/{index-CkK25zZO.js → index-DHgomBdh.js} +1 -1
  118. langflow/frontend/assets/{index-Bj3lSwvZ.js → index-DJP-ss47.js} +1 -1
  119. langflow/frontend/assets/{index-DDXsm8tz.js → index-DQ7VYqQc.js} +1 -1
  120. langflow/frontend/assets/{index-BNQIbda3.js → index-DTqbvGC0.js} +1 -1
  121. langflow/frontend/assets/{index-BzoRPtTY.js → index-DUpri6zF.js} +1 -1
  122. langflow/frontend/assets/{index-35sspuLu.js → index-DV3utZDZ.js} +1 -1
  123. langflow/frontend/assets/{index-BpmqDOeZ.js → index-DXRfN4HV.js} +1 -1
  124. langflow/frontend/assets/{index-C0E3_MIK.js → index-Db9dYSzy.js} +1 -1
  125. langflow/frontend/assets/{index-C8K0r39B.js → index-DdtMEn6I.js} +1 -1
  126. langflow/frontend/assets/{index-BLsVo9iW.js → index-DfDhMHgQ.js} +1 -1
  127. langflow/frontend/assets/{index-BZFljdMa.js → index-Dfe7qfvf.js} +1 -1
  128. langflow/frontend/assets/{index-CyP3py8K.js → index-DhtZ5hx8.js} +1 -1
  129. langflow/frontend/assets/{index-w72fDjpG.js → index-DiB3CTo8.js} +1 -1
  130. langflow/frontend/assets/{index-CY7_TBTC.js → index-DiGWASY5.js} +1 -1
  131. langflow/frontend/assets/{index-CmSFKgiD.js → index-Dl5amdBz.js} +1 -1
  132. langflow/frontend/assets/{index-B0m53xKd.js → index-DlD4dXlZ.js} +1 -1
  133. langflow/frontend/assets/{index-DnVYJtVO.js → index-DmeiHnfl.js} +1 -1
  134. langflow/frontend/assets/index-Dmu-X5-4.js +1 -0
  135. langflow/frontend/assets/{index-CWYiSeWV.js → index-DpVWih90.js} +1 -1
  136. langflow/frontend/assets/{index-CjsommIr.js → index-DrDrcajG.js} +1 -1
  137. langflow/frontend/assets/{index-Un9pWxnP.js → index-Du-pc0KE.js} +1 -1
  138. langflow/frontend/assets/{index-oxHBZk2v.js → index-DwPkMTaY.js} +1 -1
  139. langflow/frontend/assets/{index-CgwykVGh.js → index-DwQEZe3C.js} +1 -1
  140. langflow/frontend/assets/{index-BmIx1cws.js → index-DyJFTK24.js} +1 -1
  141. langflow/frontend/assets/{index-0XQqYgdG.js → index-J38wh62w.js} +1 -1
  142. langflow/frontend/assets/{index-H7J7w7fa.js → index-Kwdl-e29.js} +1 -1
  143. langflow/frontend/assets/{index-CUKmGsI6.js → index-OwPvCmpW.js} +1 -1
  144. langflow/frontend/assets/{index-zV82kQ6k.js → index-Tw3Os-DN.js} +1 -1
  145. langflow/frontend/assets/{index-8cuhogZP.js → index-X0guhYF8.js} +1 -1
  146. langflow/frontend/assets/{index-BUse-kxM.js → index-dJWNxIRH.js} +1 -1
  147. langflow/frontend/assets/{index-DyqITq51.js → index-dcJ8-agu.js} +1 -1
  148. langflow/frontend/assets/{index-Cg53lrYh.js → index-eo2mAtL-.js} +1 -1
  149. langflow/frontend/assets/{index-DqbzUcI5.js → index-hG24k5xJ.js} +1 -1
  150. langflow/frontend/assets/{index-BQrVDjR1.js → index-h_aSZHf3.js} +1 -1
  151. langflow/frontend/assets/{index-kkA-qHB_.js → index-hbndqB9B.js} +1 -1
  152. langflow/frontend/assets/{index-DZxUIhWh.js → index-iJngutFo.js} +1 -1
  153. langflow/frontend/assets/{index-Dg8N3NSO.js → index-lTpteg8t.js} +1 -1
  154. langflow/frontend/assets/{index-DDhJVVel.js → index-lZX9AvZW.js} +1 -1
  155. langflow/frontend/assets/{index-BHhnpSkW.js → index-m8QA6VNM.js} +1 -1
  156. langflow/frontend/assets/{index-Bk4mTwnI.js → index-o0D2S7xW.js} +1 -1
  157. langflow/frontend/assets/{index-DJESSNJi.js → index-ovFJ_0J6.js} +1 -1
  158. langflow/frontend/assets/{index-DH6o91_s.js → index-pYJJOcma.js} +1 -1
  159. langflow/frontend/assets/{index-Bo-ww0Bb.js → index-sI75DsdM.js} +1 -1
  160. langflow/frontend/assets/{index-BcAgItH4.js → index-xvFOmxx4.js} +1 -1
  161. langflow/frontend/assets/{index-_cbGmjF4.js → index-z3SRY-mX.js} +1 -1
  162. langflow/frontend/assets/lazyIconImports-D97HEZkE.js +2 -0
  163. langflow/frontend/assets/{use-post-add-user-CvtuazTg.js → use-post-add-user-C0MdTpQ5.js} +1 -1
  164. langflow/frontend/index.html +2 -2
  165. langflow/graph/graph/base.py +1 -1
  166. langflow/initial_setup/starter_projects/Basic Prompt Chaining.json +26 -0
  167. langflow/initial_setup/starter_projects/Basic Prompting.json +26 -0
  168. langflow/initial_setup/starter_projects/Blog Writer.json +56 -0
  169. langflow/initial_setup/starter_projects/Custom Component Generator.json +35 -0
  170. langflow/initial_setup/starter_projects/Document Q&A.json +26 -0
  171. langflow/initial_setup/starter_projects/Financial Report Parser.json +43 -0
  172. langflow/initial_setup/starter_projects/Hybrid Search RAG.json +83 -1
  173. langflow/initial_setup/starter_projects/Image Sentiment Analysis.json +43 -0
  174. langflow/initial_setup/starter_projects/Instagram Copywriter.json +49 -1
  175. langflow/initial_setup/starter_projects/Invoice Summarizer.json +40 -1
  176. langflow/initial_setup/starter_projects/Knowledge Ingestion.json +71 -0
  177. langflow/initial_setup/starter_projects/Knowledge Retrieval.json +63 -0
  178. langflow/initial_setup/starter_projects/Market Research.json +57 -1
  179. langflow/initial_setup/starter_projects/Meeting Summary.json +95 -0
  180. langflow/initial_setup/starter_projects/Memory Chatbot.json +35 -0
  181. langflow/initial_setup/starter_projects/News Aggregator.json +61 -1
  182. langflow/initial_setup/starter_projects/Nvidia Remix.json +67 -2
  183. langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +48 -1
  184. langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json +43 -0
  185. langflow/initial_setup/starter_projects/Price Deal Finder.json +53 -1
  186. langflow/initial_setup/starter_projects/Research Agent.json +40 -1
  187. langflow/initial_setup/starter_projects/Research Translation Loop.json +66 -0
  188. langflow/initial_setup/starter_projects/SEO Keyword Generator.json +17 -0
  189. langflow/initial_setup/starter_projects/SaaS Pricing.json +27 -1
  190. langflow/initial_setup/starter_projects/Search agent.json +40 -1
  191. langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +72 -3
  192. langflow/initial_setup/starter_projects/Simple Agent.json +57 -1
  193. langflow/initial_setup/starter_projects/Social Media Agent.json +77 -1
  194. langflow/initial_setup/starter_projects/Text Sentiment Analysis.json +34 -0
  195. langflow/initial_setup/starter_projects/Travel Planning Agents.json +51 -3
  196. langflow/initial_setup/starter_projects/Twitter Thread Generator.json +80 -0
  197. langflow/initial_setup/starter_projects/Vector Store RAG.json +109 -2
  198. langflow/initial_setup/starter_projects/Youtube Analysis.json +82 -1
  199. langflow/initial_setup/starter_projects/vector_store_rag.py +1 -1
  200. langflow/processing/process.py +3 -0
  201. langflow/services/auth/mcp_encryption.py +104 -0
  202. langflow/services/settings/feature_flags.py +1 -1
  203. {langflow_base_nightly-0.5.0.dev38.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/METADATA +1 -1
  204. {langflow_base_nightly-0.5.0.dev38.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/RECORD +229 -211
  205. langflow/components/vectorstores/redis.py +0 -89
  206. langflow/frontend/assets/index-BWgIWfv2.js +0 -1
  207. langflow/frontend/assets/index-CqS7zir1.css +0 -1
  208. langflow/frontend/assets/lazyIconImports-DTNgvPE-.js +0 -2
  209. /langflow/components/{vectorstores → FAISS}/faiss.py +0 -0
  210. /langflow/components/{vectorstores → cassandra}/cassandra.py +0 -0
  211. /langflow/components/{datastax/cassandra.py → cassandra/cassandra_chat.py} +0 -0
  212. /langflow/components/{vectorstores → cassandra}/cassandra_graph.py +0 -0
  213. /langflow/components/{vectorstores → chroma}/chroma.py +0 -0
  214. /langflow/components/{vectorstores → clickhouse}/clickhouse.py +0 -0
  215. /langflow/components/{vectorstores → couchbase}/couchbase.py +0 -0
  216. /langflow/components/{vectorstores → datastax}/astradb.py +0 -0
  217. /langflow/components/{vectorstores → datastax}/astradb_graph.py +0 -0
  218. /langflow/components/{vectorstores → datastax}/graph_rag.py +0 -0
  219. /langflow/components/{vectorstores → datastax}/hcd.py +0 -0
  220. /langflow/components/{vectorstores → elastic}/elasticsearch.py +0 -0
  221. /langflow/components/{vectorstores → elastic}/opensearch.py +0 -0
  222. /langflow/components/{vectorstores → milvus}/milvus.py +0 -0
  223. /langflow/components/{vectorstores → mongodb}/mongodb_atlas.py +0 -0
  224. /langflow/components/{vectorstores → pgvector}/pgvector.py +0 -0
  225. /langflow/components/{vectorstores → pinecone}/pinecone.py +0 -0
  226. /langflow/components/{vectorstores → qdrant}/qdrant.py +0 -0
  227. /langflow/components/{vectorstores → supabase}/supabase.py +0 -0
  228. /langflow/components/{vectorstores → upstash}/upstash.py +0 -0
  229. /langflow/components/{vectorstores → vectara}/vectara.py +0 -0
  230. /langflow/components/{vectorstores → vectara}/vectara_rag.py +0 -0
  231. /langflow/components/{vectorstores → weaviate}/weaviate.py +0 -0
  232. {langflow_base_nightly-0.5.0.dev38.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/WHEEL +0 -0
  233. {langflow_base_nightly-0.5.0.dev38.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/entry_points.txt +0 -0
@@ -321,6 +321,15 @@
321
321
  "lf_version": "1.2.0",
322
322
  "metadata": {
323
323
  "code_hash": "192913db3453",
324
+ "dependencies": {
325
+ "dependencies": [
326
+ {
327
+ "name": "langflow",
328
+ "version": null
329
+ }
330
+ ],
331
+ "total_dependencies": 1
332
+ },
324
333
  "module": "langflow.components.input_output.chat.ChatInput"
325
334
  },
326
335
  "output_types": [],
@@ -795,6 +804,19 @@
795
804
  "lf_version": "1.1.1",
796
805
  "metadata": {
797
806
  "code_hash": "dbf2e9d2319d",
807
+ "dependencies": {
808
+ "dependencies": [
809
+ {
810
+ "name": "langchain_text_splitters",
811
+ "version": "0.3.8"
812
+ },
813
+ {
814
+ "name": "langflow",
815
+ "version": null
816
+ }
817
+ ],
818
+ "total_dependencies": 2
819
+ },
798
820
  "module": "langflow.components.processing.split_text.SplitTextComponent"
799
821
  },
800
822
  "output_types": [],
@@ -1084,6 +1106,23 @@
1084
1106
  "lf_version": "1.1.1",
1085
1107
  "metadata": {
1086
1108
  "code_hash": "6f74e04e39d5",
1109
+ "dependencies": {
1110
+ "dependencies": [
1111
+ {
1112
+ "name": "orjson",
1113
+ "version": "3.10.15"
1114
+ },
1115
+ {
1116
+ "name": "fastapi",
1117
+ "version": "0.115.13"
1118
+ },
1119
+ {
1120
+ "name": "langflow",
1121
+ "version": null
1122
+ }
1123
+ ],
1124
+ "total_dependencies": 3
1125
+ },
1087
1126
  "module": "langflow.components.input_output.chat_output.ChatOutput"
1088
1127
  },
1089
1128
  "output_types": [],
@@ -1401,6 +1440,19 @@
1401
1440
  "lf_version": "1.2.0",
1402
1441
  "metadata": {
1403
1442
  "code_hash": "2691dee277c9",
1443
+ "dependencies": {
1444
+ "dependencies": [
1445
+ {
1446
+ "name": "langchain_openai",
1447
+ "version": "0.3.23"
1448
+ },
1449
+ {
1450
+ "name": "langflow",
1451
+ "version": null
1452
+ }
1453
+ ],
1454
+ "total_dependencies": 2
1455
+ },
1404
1456
  "module": "langflow.components.openai.openai.OpenAIEmbeddingsComponent"
1405
1457
  },
1406
1458
  "output_types": [],
@@ -1937,6 +1989,19 @@
1937
1989
  "lf_version": "1.1.1",
1938
1990
  "metadata": {
1939
1991
  "code_hash": "2691dee277c9",
1992
+ "dependencies": {
1993
+ "dependencies": [
1994
+ {
1995
+ "name": "langchain_openai",
1996
+ "version": "0.3.23"
1997
+ },
1998
+ {
1999
+ "name": "langflow",
2000
+ "version": null
2001
+ }
2002
+ ],
2003
+ "total_dependencies": 2
2004
+ },
1940
2005
  "module": "langflow.components.openai.openai.OpenAIEmbeddingsComponent"
1941
2006
  },
1942
2007
  "output_types": [],
@@ -2710,7 +2775,28 @@
2710
2775
  "legacy": false,
2711
2776
  "metadata": {
2712
2777
  "code_hash": "23fbe9daca09",
2713
- "module": "langflow.components.vectorstores.astradb.AstraDBVectorStoreComponent"
2778
+ "dependencies": {
2779
+ "dependencies": [
2780
+ {
2781
+ "name": "astrapy",
2782
+ "version": "2.0.1"
2783
+ },
2784
+ {
2785
+ "name": "langchain_astradb",
2786
+ "version": "0.6.0"
2787
+ },
2788
+ {
2789
+ "name": "langchain_core",
2790
+ "version": "0.3.72"
2791
+ },
2792
+ {
2793
+ "name": "langflow",
2794
+ "version": null
2795
+ }
2796
+ ],
2797
+ "total_dependencies": 4
2798
+ },
2799
+ "module": "langflow.components.datastax.astradb.AstraDBVectorStoreComponent"
2714
2800
  },
2715
2801
  "minimized": false,
2716
2802
  "output_types": [],
@@ -3486,7 +3572,28 @@
3486
3572
  "legacy": false,
3487
3573
  "metadata": {
3488
3574
  "code_hash": "23fbe9daca09",
3489
- "module": "langflow.components.vectorstores.astradb.AstraDBVectorStoreComponent"
3575
+ "dependencies": {
3576
+ "dependencies": [
3577
+ {
3578
+ "name": "astrapy",
3579
+ "version": "2.0.1"
3580
+ },
3581
+ {
3582
+ "name": "langchain_astradb",
3583
+ "version": "0.6.0"
3584
+ },
3585
+ {
3586
+ "name": "langchain_core",
3587
+ "version": "0.3.72"
3588
+ },
3589
+ {
3590
+ "name": "langflow",
3591
+ "version": null
3592
+ }
3593
+ ],
3594
+ "total_dependencies": 4
3595
+ },
3596
+ "module": "langflow.components.datastax.astradb.AstraDBVectorStoreComponent"
3490
3597
  },
3491
3598
  "minimized": false,
3492
3599
  "output_types": [],
@@ -286,6 +286,23 @@
286
286
  "lf_version": "1.4.3",
287
287
  "metadata": {
288
288
  "code_hash": "ee50d5005321",
289
+ "dependencies": {
290
+ "dependencies": [
291
+ {
292
+ "name": "toml",
293
+ "version": "0.10.2"
294
+ },
295
+ {
296
+ "name": "langflow",
297
+ "version": null
298
+ },
299
+ {
300
+ "name": "langchain_core",
301
+ "version": "0.3.72"
302
+ }
303
+ ],
304
+ "total_dependencies": 3
305
+ },
289
306
  "module": "langflow.components.processing.batch_run.BatchRunComponent"
290
307
  },
291
308
  "minimized": false,
@@ -504,6 +521,23 @@
504
521
  "lf_version": "1.4.3",
505
522
  "metadata": {
506
523
  "code_hash": "aeda2975f4aa",
524
+ "dependencies": {
525
+ "dependencies": [
526
+ {
527
+ "name": "pandas",
528
+ "version": "2.2.3"
529
+ },
530
+ {
531
+ "name": "googleapiclient",
532
+ "version": "2.154.0"
533
+ },
534
+ {
535
+ "name": "langflow",
536
+ "version": null
537
+ }
538
+ ],
539
+ "total_dependencies": 3
540
+ },
507
541
  "module": "langflow.components.youtube.comments.YouTubeCommentsComponent"
508
542
  },
509
543
  "minimized": false,
@@ -871,7 +905,7 @@
871
905
  "show": true,
872
906
  "title_case": false,
873
907
  "type": "code",
874
- "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
908
+ "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
875
909
  },
876
910
  "handle_parsing_errors": {
877
911
  "_input_type": "BoolInput",
@@ -1440,6 +1474,23 @@
1440
1474
  "lf_version": "1.4.3",
1441
1475
  "metadata": {
1442
1476
  "code_hash": "6f74e04e39d5",
1477
+ "dependencies": {
1478
+ "dependencies": [
1479
+ {
1480
+ "name": "orjson",
1481
+ "version": "3.10.15"
1482
+ },
1483
+ {
1484
+ "name": "fastapi",
1485
+ "version": "0.115.13"
1486
+ },
1487
+ {
1488
+ "name": "langflow",
1489
+ "version": null
1490
+ }
1491
+ ],
1492
+ "total_dependencies": 3
1493
+ },
1443
1494
  "module": "langflow.components.input_output.chat_output.ChatOutput"
1444
1495
  },
1445
1496
  "minimized": true,
@@ -1751,6 +1802,27 @@
1751
1802
  "lf_version": "1.4.3",
1752
1803
  "metadata": {
1753
1804
  "code_hash": "c9f0262ff0b6",
1805
+ "dependencies": {
1806
+ "dependencies": [
1807
+ {
1808
+ "name": "pandas",
1809
+ "version": "2.2.3"
1810
+ },
1811
+ {
1812
+ "name": "youtube_transcript_api",
1813
+ "version": "0.6.3"
1814
+ },
1815
+ {
1816
+ "name": "langchain_community",
1817
+ "version": "0.3.21"
1818
+ },
1819
+ {
1820
+ "name": "langflow",
1821
+ "version": null
1822
+ }
1823
+ ],
1824
+ "total_dependencies": 4
1825
+ },
1754
1826
  "module": "langflow.components.youtube.youtube_transcripts.YouTubeTranscriptsComponent"
1755
1827
  },
1756
1828
  "minimized": false,
@@ -2501,6 +2573,15 @@
2501
2573
  "lf_version": "1.4.3",
2502
2574
  "metadata": {
2503
2575
  "code_hash": "192913db3453",
2576
+ "dependencies": {
2577
+ "dependencies": [
2578
+ {
2579
+ "name": "langflow",
2580
+ "version": null
2581
+ }
2582
+ ],
2583
+ "total_dependencies": 1
2584
+ },
2504
2585
  "module": "langflow.components.input_output.chat.ChatInput"
2505
2586
  },
2506
2587
  "minimized": true,
@@ -1,12 +1,12 @@
1
1
  from textwrap import dedent
2
2
 
3
3
  from langflow.components.data import FileComponent
4
+ from langflow.components.datastax import AstraDBVectorStoreComponent
4
5
  from langflow.components.input_output import ChatInput, ChatOutput
5
6
  from langflow.components.models import LanguageModelComponent
6
7
  from langflow.components.openai.openai import OpenAIEmbeddingsComponent
7
8
  from langflow.components.processing import ParserComponent, PromptComponent
8
9
  from langflow.components.processing.split_text import SplitTextComponent
9
- from langflow.components.vectorstores import AstraDBVectorStoreComponent
10
10
  from langflow.graph import Graph
11
11
 
12
12
 
@@ -147,6 +147,9 @@ def apply_tweaks(node: dict[str, Any], node_tweaks: dict[str, Any]) -> None:
147
147
  for tweak_name, tweak_value in node_tweaks.items():
148
148
  if tweak_name not in template_data:
149
149
  continue
150
+ if tweak_name == "code":
151
+ logger.warning("Security: Code field cannot be overridden via tweaks.")
152
+ continue
150
153
  if tweak_name in template_data:
151
154
  if template_data[tweak_name]["type"] == "NestedDict":
152
155
  value = validate_and_repair_json(tweak_value)
@@ -0,0 +1,104 @@
1
+ """MCP Authentication encryption utilities for secure credential storage."""
2
+
3
+ from typing import Any
4
+
5
+ from cryptography.fernet import InvalidToken
6
+ from loguru import logger
7
+
8
+ from langflow.services.auth import utils as auth_utils
9
+ from langflow.services.deps import get_settings_service
10
+
11
+ # Fields that should be encrypted when stored
12
+ SENSITIVE_FIELDS = [
13
+ "oauth_client_secret",
14
+ "api_key",
15
+ ]
16
+
17
+
18
+ def encrypt_auth_settings(auth_settings: dict[str, Any] | None) -> dict[str, Any] | None:
19
+ """Encrypt sensitive fields in auth_settings dictionary.
20
+
21
+ Args:
22
+ auth_settings: Dictionary containing authentication settings
23
+
24
+ Returns:
25
+ Dictionary with sensitive fields encrypted, or None if input is None
26
+ """
27
+ if auth_settings is None:
28
+ return None
29
+
30
+ settings_service = get_settings_service()
31
+ encrypted_settings = auth_settings.copy()
32
+
33
+ for field in SENSITIVE_FIELDS:
34
+ if encrypted_settings.get(field):
35
+ try:
36
+ # Only encrypt if the value is not already encrypted
37
+ # Try to decrypt first - if it fails, it's not encrypted
38
+ try:
39
+ auth_utils.decrypt_api_key(encrypted_settings[field], settings_service)
40
+ # If decrypt succeeds, it's already encrypted
41
+ logger.debug(f"Field {field} is already encrypted")
42
+ except (ValueError, TypeError, KeyError, InvalidToken):
43
+ # If decrypt fails, the value is plaintext and needs encryption
44
+ encrypted_value = auth_utils.encrypt_api_key(encrypted_settings[field], settings_service)
45
+ encrypted_settings[field] = encrypted_value
46
+ logger.debug(f"Encrypted field {field}")
47
+ except (ValueError, TypeError, KeyError) as e:
48
+ logger.error(f"Failed to encrypt field {field}: {e}")
49
+ raise
50
+
51
+ return encrypted_settings
52
+
53
+
54
+ def decrypt_auth_settings(auth_settings: dict[str, Any] | None) -> dict[str, Any] | None:
55
+ """Decrypt sensitive fields in auth_settings dictionary.
56
+
57
+ Args:
58
+ auth_settings: Dictionary containing encrypted authentication settings
59
+
60
+ Returns:
61
+ Dictionary with sensitive fields decrypted, or None if input is None
62
+ """
63
+ if auth_settings is None:
64
+ return None
65
+
66
+ settings_service = get_settings_service()
67
+ decrypted_settings = auth_settings.copy()
68
+
69
+ for field in SENSITIVE_FIELDS:
70
+ if decrypted_settings.get(field):
71
+ try:
72
+ decrypted_value = auth_utils.decrypt_api_key(decrypted_settings[field], settings_service)
73
+ decrypted_settings[field] = decrypted_value
74
+ logger.debug(f"Decrypted field {field}")
75
+ except (ValueError, TypeError, KeyError, InvalidToken) as e:
76
+ # If decryption fails, assume the value is already plaintext
77
+ # This handles backward compatibility with existing unencrypted data
78
+ logger.debug(f"Field {field} appears to be plaintext or decryption failed: {e}")
79
+ # Keep the original value
80
+
81
+ return decrypted_settings
82
+
83
+
84
+ def is_encrypted(value: str) -> bool:
85
+ """Check if a value appears to be encrypted.
86
+
87
+ Args:
88
+ value: String value to check
89
+
90
+ Returns:
91
+ True if the value appears to be encrypted (base64 Fernet token)
92
+ """
93
+ if not value:
94
+ return False
95
+
96
+ settings_service = get_settings_service()
97
+ try:
98
+ # Try to decrypt - if it succeeds, it's encrypted
99
+ auth_utils.decrypt_api_key(value, settings_service)
100
+ except (ValueError, TypeError, KeyError, InvalidToken):
101
+ # If decryption fails, it's not encrypted
102
+ return False
103
+ else:
104
+ return True
@@ -3,7 +3,7 @@ from pydantic_settings import BaseSettings
3
3
 
4
4
  class FeatureFlags(BaseSettings):
5
5
  mvp_components: bool = False
6
- mcp_composer: bool = False
6
+ mcp_composer: bool = True
7
7
 
8
8
  class Config:
9
9
  env_prefix = "LANGFLOW_FEATURE_"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: langflow-base-nightly
3
- Version: 0.5.0.dev38
3
+ Version: 0.5.0.dev39
4
4
  Summary: A Python package with a built-in web application
5
5
  Project-URL: Repository, https://github.com/langflow-ai/langflow
6
6
  Project-URL: Documentation, https://docs.langflow.org