langflow-base-nightly 0.5.0.dev38__py3-none-any.whl → 0.5.0.dev39__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (233) hide show
  1. langflow/alembic/versions/0882f9657f22_encrypt_existing_mcp_auth_settings_.py +122 -0
  2. langflow/api/v1/mcp_projects.py +373 -52
  3. langflow/api/v1/schemas.py +1 -2
  4. langflow/components/FAISS/__init__.py +34 -0
  5. langflow/components/agents/agent.py +246 -52
  6. langflow/components/cassandra/__init__.py +40 -0
  7. langflow/components/chroma/__init__.py +34 -0
  8. langflow/components/clickhouse/__init__.py +34 -0
  9. langflow/components/couchbase/__init__.py +34 -0
  10. langflow/components/datastax/__init__.py +3 -3
  11. langflow/components/elastic/__init__.py +37 -0
  12. langflow/components/milvus/__init__.py +34 -0
  13. langflow/components/mongodb/__init__.py +34 -0
  14. langflow/components/ollama/ollama.py +1 -0
  15. langflow/components/perplexity/perplexity.py +3 -13
  16. langflow/components/pgvector/__init__.py +34 -0
  17. langflow/components/pinecone/__init__.py +34 -0
  18. langflow/components/qdrant/__init__.py +34 -0
  19. langflow/components/redis/__init__.py +36 -2
  20. langflow/components/redis/redis.py +75 -29
  21. langflow/components/redis/redis_chat.py +43 -0
  22. langflow/components/supabase/__init__.py +37 -0
  23. langflow/components/upstash/__init__.py +34 -0
  24. langflow/components/vectara/__init__.py +37 -0
  25. langflow/components/vectorstores/__init__.py +0 -69
  26. langflow/components/vectorstores/local_db.py +1 -0
  27. langflow/components/weaviate/__init__.py +34 -0
  28. langflow/custom/dependency_analyzer.py +165 -0
  29. langflow/custom/utils.py +34 -16
  30. langflow/frontend/assets/{SlackIcon-BhW6H3JR.js → SlackIcon-Cr3Q15Px.js} +1 -1
  31. langflow/frontend/assets/{Wikipedia-Dx5jbiy3.js → Wikipedia-GxM5sPdM.js} +1 -1
  32. langflow/frontend/assets/{Wolfram-CIyonzwo.js → Wolfram-BN3-VOCA.js} +1 -1
  33. langflow/frontend/assets/{index-DOEvKC2X.js → index-28oOcafk.js} +1 -1
  34. langflow/frontend/assets/{index-Bhv79Zso.js → index-2wSXqBtB.js} +1 -1
  35. langflow/frontend/assets/{index-BRmSeoWR.js → index-3wW7BClE.js} +1 -1
  36. langflow/frontend/assets/{index-eUkS6iJM.js → index-6pyH3ZJB.js} +1 -1
  37. langflow/frontend/assets/{index-Cr5v2ave.js → index-AWCSdofD.js} +1 -1
  38. langflow/frontend/assets/{index-C27Jj_26.js → index-B2Zgv_xv.js} +1 -1
  39. langflow/frontend/assets/{index-BKKrUElc.js → index-B2ptVQGM.js} +1 -1
  40. langflow/frontend/assets/{index-BnAFhkSN.js → index-B3TANVes.js} +1 -1
  41. langflow/frontend/assets/{index-hZUcL0MZ.js → index-B4yCvZKV.js} +1 -1
  42. langflow/frontend/assets/{index-BPR2mEFC.js → index-BC65VuWx.js} +1 -1
  43. langflow/frontend/assets/{index-CgU7KF4I.js → index-BCDSei1q.js} +1 -1
  44. langflow/frontend/assets/{index-CzHzeZuA.js → index-BJy50PvP.js} +1 -1
  45. langflow/frontend/assets/{index-DkGhPNeA.js → index-BKseQQ2I.js} +1 -1
  46. langflow/frontend/assets/{index-BVFaF7HW.js → index-BLTxEeTi.js} +1 -1
  47. langflow/frontend/assets/{index-cEXY6V06.js → index-BRg1f4Mu.js} +1 -1
  48. langflow/frontend/assets/{index-C2eQmQsn.js → index-BS8Vo8nc.js} +1 -1
  49. langflow/frontend/assets/{index-gdb7XMS8.js → index-BTKOU4xC.js} +1 -1
  50. langflow/frontend/assets/{index-U9GWm1eH.js → index-BVwJDmw-.js} +1 -1
  51. langflow/frontend/assets/{index-BWt5xGeA.js → index-BWYuQ2Sj.js} +1 -1
  52. langflow/frontend/assets/{index-Dx-Z87KT.js → index-BWdLILDG.js} +1 -1
  53. langflow/frontend/assets/{index-paQEWYGT.js → index-BZcw4827.js} +1 -1
  54. langflow/frontend/assets/{index-BDQrd7Tj.js → index-Bbi87Ve4.js} +1 -1
  55. langflow/frontend/assets/{index-vJOO5U8M.js → index-Bf0IYKLd.js} +1 -1
  56. langflow/frontend/assets/{index-1Q3VBqKn.js → index-Bg5nrMRh.js} +1 -1
  57. langflow/frontend/assets/{index-BFQ8KFK0.js → index-BiC280Nx.js} +1 -1
  58. langflow/frontend/assets/{index-CFNTYfFK.js → index-BiKKN6FR.js} +1 -1
  59. langflow/frontend/assets/{index-BPfdqCc_.js → index-Bief6eyJ.js} +1 -1
  60. langflow/frontend/assets/{index-Cxy9sEpy.js → index-BkXec1Yf.js} +1 -1
  61. langflow/frontend/assets/{index-D4tjMhfY.js → index-Bnl6QHtP.js} +1 -1
  62. langflow/frontend/assets/{index-BD7Io1hL.js → index-BpxbUiZD.js} +1978 -1978
  63. langflow/frontend/assets/{index-Ch5r0oW6.js → index-BrJV8psX.js} +1 -1
  64. langflow/frontend/assets/{index-DOQDkSoK.js → index-BwLWcUXL.js} +1 -1
  65. langflow/frontend/assets/{index-CMHpjHZl.js → index-Bx7dBY26.js} +1 -1
  66. langflow/frontend/assets/{index-CbnWRlYY.js → index-C-EdnFdA.js} +1 -1
  67. langflow/frontend/assets/{index-DljpLeCW.js → index-C-Xfg4cD.js} +1 -1
  68. langflow/frontend/assets/{index-Bwi4flFg.js → index-C1f2wMat.js} +1 -1
  69. langflow/frontend/assets/index-C1xroOlH.css +1 -0
  70. langflow/frontend/assets/{index-D6CSIrp1.js → index-C3KequvP.js} +1 -1
  71. langflow/frontend/assets/{index-BYjw7Gk3.js → index-C3ZjKdCD.js} +1 -1
  72. langflow/frontend/assets/{index-DIKUsGLF.js → index-C3l0zYn0.js} +1 -1
  73. langflow/frontend/assets/{index-CfPBgkqg.js → index-C3yvArUT.js} +1 -1
  74. langflow/frontend/assets/{index-CsLQiWNf.js → index-C9Cxnkl8.js} +1 -1
  75. langflow/frontend/assets/{index-mzl9ULw5.js → index-CBc8fEAE.js} +1 -1
  76. langflow/frontend/assets/{index-CEJNWPhA.js → index-CBvrGgID.js} +1 -1
  77. langflow/frontend/assets/{index-DwfHWnX7.js → index-CD-PqGCY.js} +1 -1
  78. langflow/frontend/assets/{index-dyXKnkMi.js → index-CGO1CiUr.js} +1 -1
  79. langflow/frontend/assets/{index-Dka_Rk4-.js → index-CH5UVA9b.js} +1 -1
  80. langflow/frontend/assets/{index-uiKla4UR.js → index-CLJeJYjH.js} +1 -1
  81. langflow/frontend/assets/{index-D9kwEzPB.js → index-CMZ79X-Y.js} +1 -1
  82. langflow/frontend/assets/{index-BrVhdPZb.js → index-CMzfJKiW.js} +1 -1
  83. langflow/frontend/assets/{index-Bct1s6__.js → index-CNw1H-Wc.js} +1 -1
  84. langflow/frontend/assets/{index-B7uEuOPK.js → index-CPHEscq9.js} +1 -1
  85. langflow/frontend/assets/{index-ekfMOqrF.js → index-CRPKJZw9.js} +1 -1
  86. langflow/frontend/assets/{index-G4ro0MjT.js → index-CRPyCfYy.js} +1 -1
  87. langflow/frontend/assets/{index-CSu8KHOi.js → index-CRcMqCIj.js} +1 -1
  88. langflow/frontend/assets/{index-DsoX2o1S.js → index-CUVDws8F.js} +1 -1
  89. langflow/frontend/assets/{index-r_8gs4nL.js → index-CVWQfRYZ.js} +1 -1
  90. langflow/frontend/assets/{index-7hzXChQz.js → index-CVl6MbaM.js} +1 -1
  91. langflow/frontend/assets/{index-B8UR8v-Q.js → index-CVwWoX99.js} +1 -1
  92. langflow/frontend/assets/{index-Dda2u_yz.js → index-CWPzZtSx.js} +1 -1
  93. langflow/frontend/assets/{index-BKeZt2hQ.js → index-CZqRL9DE.js} +1 -1
  94. langflow/frontend/assets/{index-DHngW1k8.js → index-CdIf07Rw.js} +1 -1
  95. langflow/frontend/assets/{index-C--IDAyc.js → index-Cewy7JZE.js} +1 -1
  96. langflow/frontend/assets/{index-DZP_SaHb.js → index-CfwLpbMM.js} +1 -1
  97. langflow/frontend/assets/{index-CuCM7Wu7.js → index-CiR1dxI4.js} +1 -1
  98. langflow/frontend/assets/{index-Xi4TplbI.js → index-CiixOzDG.js} +1 -1
  99. langflow/frontend/assets/{index-BLYw9MK2.js → index-ClsuDmR6.js} +1 -1
  100. langflow/frontend/assets/{index-DMCWDJOl.js → index-CmEYYRN1.js} +1 -1
  101. langflow/frontend/assets/{index-CrAF-31Y.js → index-Co20d-eQ.js} +1 -1
  102. langflow/frontend/assets/{index-DXAfIEvs.js → index-CpzXS6md.js} +1 -1
  103. langflow/frontend/assets/{index-BmYJJ5YS.js → index-Cqpzl1J4.js} +1 -1
  104. langflow/frontend/assets/{index-KWY77KfV.js → index-CtVIONP2.js} +1 -1
  105. langflow/frontend/assets/{index-B3KCdQ91.js → index-CuFXdTx4.js} +1 -1
  106. langflow/frontend/assets/{index-p2kStSPe.js → index-Cyd2HtHK.js} +1 -1
  107. langflow/frontend/assets/{index-CkjwSTSM.js → index-D-1tA8Dt.js} +1 -1
  108. langflow/frontend/assets/{index-BFf0HTFI.js → index-D-KY3kkq.js} +1 -1
  109. langflow/frontend/assets/{index-BYhcGLTV.js → index-D-_B1a8v.js} +1 -1
  110. langflow/frontend/assets/{index-Dr6pVDPI.js → index-D14EWPyZ.js} +1 -1
  111. langflow/frontend/assets/{index-BDuk0d7P.js → index-D2N3l-cw.js} +1 -1
  112. langflow/frontend/assets/{index-BvGQfVBD.js → index-D5ETnvJa.js} +1 -1
  113. langflow/frontend/assets/{index-D1oynC8a.js → index-D7kquVv2.js} +1 -1
  114. langflow/frontend/assets/{index-B1XqWJhG.js → index-DA6-bvgN.js} +1 -1
  115. langflow/frontend/assets/{index-DzIv3RyR.js → index-DDWBeudF.js} +1 -1
  116. langflow/frontend/assets/{index-BKlQbl-6.js → index-DDcMAaG4.js} +1 -1
  117. langflow/frontend/assets/{index-CkK25zZO.js → index-DHgomBdh.js} +1 -1
  118. langflow/frontend/assets/{index-Bj3lSwvZ.js → index-DJP-ss47.js} +1 -1
  119. langflow/frontend/assets/{index-DDXsm8tz.js → index-DQ7VYqQc.js} +1 -1
  120. langflow/frontend/assets/{index-BNQIbda3.js → index-DTqbvGC0.js} +1 -1
  121. langflow/frontend/assets/{index-BzoRPtTY.js → index-DUpri6zF.js} +1 -1
  122. langflow/frontend/assets/{index-35sspuLu.js → index-DV3utZDZ.js} +1 -1
  123. langflow/frontend/assets/{index-BpmqDOeZ.js → index-DXRfN4HV.js} +1 -1
  124. langflow/frontend/assets/{index-C0E3_MIK.js → index-Db9dYSzy.js} +1 -1
  125. langflow/frontend/assets/{index-C8K0r39B.js → index-DdtMEn6I.js} +1 -1
  126. langflow/frontend/assets/{index-BLsVo9iW.js → index-DfDhMHgQ.js} +1 -1
  127. langflow/frontend/assets/{index-BZFljdMa.js → index-Dfe7qfvf.js} +1 -1
  128. langflow/frontend/assets/{index-CyP3py8K.js → index-DhtZ5hx8.js} +1 -1
  129. langflow/frontend/assets/{index-w72fDjpG.js → index-DiB3CTo8.js} +1 -1
  130. langflow/frontend/assets/{index-CY7_TBTC.js → index-DiGWASY5.js} +1 -1
  131. langflow/frontend/assets/{index-CmSFKgiD.js → index-Dl5amdBz.js} +1 -1
  132. langflow/frontend/assets/{index-B0m53xKd.js → index-DlD4dXlZ.js} +1 -1
  133. langflow/frontend/assets/{index-DnVYJtVO.js → index-DmeiHnfl.js} +1 -1
  134. langflow/frontend/assets/index-Dmu-X5-4.js +1 -0
  135. langflow/frontend/assets/{index-CWYiSeWV.js → index-DpVWih90.js} +1 -1
  136. langflow/frontend/assets/{index-CjsommIr.js → index-DrDrcajG.js} +1 -1
  137. langflow/frontend/assets/{index-Un9pWxnP.js → index-Du-pc0KE.js} +1 -1
  138. langflow/frontend/assets/{index-oxHBZk2v.js → index-DwPkMTaY.js} +1 -1
  139. langflow/frontend/assets/{index-CgwykVGh.js → index-DwQEZe3C.js} +1 -1
  140. langflow/frontend/assets/{index-BmIx1cws.js → index-DyJFTK24.js} +1 -1
  141. langflow/frontend/assets/{index-0XQqYgdG.js → index-J38wh62w.js} +1 -1
  142. langflow/frontend/assets/{index-H7J7w7fa.js → index-Kwdl-e29.js} +1 -1
  143. langflow/frontend/assets/{index-CUKmGsI6.js → index-OwPvCmpW.js} +1 -1
  144. langflow/frontend/assets/{index-zV82kQ6k.js → index-Tw3Os-DN.js} +1 -1
  145. langflow/frontend/assets/{index-8cuhogZP.js → index-X0guhYF8.js} +1 -1
  146. langflow/frontend/assets/{index-BUse-kxM.js → index-dJWNxIRH.js} +1 -1
  147. langflow/frontend/assets/{index-DyqITq51.js → index-dcJ8-agu.js} +1 -1
  148. langflow/frontend/assets/{index-Cg53lrYh.js → index-eo2mAtL-.js} +1 -1
  149. langflow/frontend/assets/{index-DqbzUcI5.js → index-hG24k5xJ.js} +1 -1
  150. langflow/frontend/assets/{index-BQrVDjR1.js → index-h_aSZHf3.js} +1 -1
  151. langflow/frontend/assets/{index-kkA-qHB_.js → index-hbndqB9B.js} +1 -1
  152. langflow/frontend/assets/{index-DZxUIhWh.js → index-iJngutFo.js} +1 -1
  153. langflow/frontend/assets/{index-Dg8N3NSO.js → index-lTpteg8t.js} +1 -1
  154. langflow/frontend/assets/{index-DDhJVVel.js → index-lZX9AvZW.js} +1 -1
  155. langflow/frontend/assets/{index-BHhnpSkW.js → index-m8QA6VNM.js} +1 -1
  156. langflow/frontend/assets/{index-Bk4mTwnI.js → index-o0D2S7xW.js} +1 -1
  157. langflow/frontend/assets/{index-DJESSNJi.js → index-ovFJ_0J6.js} +1 -1
  158. langflow/frontend/assets/{index-DH6o91_s.js → index-pYJJOcma.js} +1 -1
  159. langflow/frontend/assets/{index-Bo-ww0Bb.js → index-sI75DsdM.js} +1 -1
  160. langflow/frontend/assets/{index-BcAgItH4.js → index-xvFOmxx4.js} +1 -1
  161. langflow/frontend/assets/{index-_cbGmjF4.js → index-z3SRY-mX.js} +1 -1
  162. langflow/frontend/assets/lazyIconImports-D97HEZkE.js +2 -0
  163. langflow/frontend/assets/{use-post-add-user-CvtuazTg.js → use-post-add-user-C0MdTpQ5.js} +1 -1
  164. langflow/frontend/index.html +2 -2
  165. langflow/graph/graph/base.py +1 -1
  166. langflow/initial_setup/starter_projects/Basic Prompt Chaining.json +26 -0
  167. langflow/initial_setup/starter_projects/Basic Prompting.json +26 -0
  168. langflow/initial_setup/starter_projects/Blog Writer.json +56 -0
  169. langflow/initial_setup/starter_projects/Custom Component Generator.json +35 -0
  170. langflow/initial_setup/starter_projects/Document Q&A.json +26 -0
  171. langflow/initial_setup/starter_projects/Financial Report Parser.json +43 -0
  172. langflow/initial_setup/starter_projects/Hybrid Search RAG.json +83 -1
  173. langflow/initial_setup/starter_projects/Image Sentiment Analysis.json +43 -0
  174. langflow/initial_setup/starter_projects/Instagram Copywriter.json +49 -1
  175. langflow/initial_setup/starter_projects/Invoice Summarizer.json +40 -1
  176. langflow/initial_setup/starter_projects/Knowledge Ingestion.json +71 -0
  177. langflow/initial_setup/starter_projects/Knowledge Retrieval.json +63 -0
  178. langflow/initial_setup/starter_projects/Market Research.json +57 -1
  179. langflow/initial_setup/starter_projects/Meeting Summary.json +95 -0
  180. langflow/initial_setup/starter_projects/Memory Chatbot.json +35 -0
  181. langflow/initial_setup/starter_projects/News Aggregator.json +61 -1
  182. langflow/initial_setup/starter_projects/Nvidia Remix.json +67 -2
  183. langflow/initial_setup/starter_projects/Pok/303/251dex Agent.json" +48 -1
  184. langflow/initial_setup/starter_projects/Portfolio Website Code Generator.json +43 -0
  185. langflow/initial_setup/starter_projects/Price Deal Finder.json +53 -1
  186. langflow/initial_setup/starter_projects/Research Agent.json +40 -1
  187. langflow/initial_setup/starter_projects/Research Translation Loop.json +66 -0
  188. langflow/initial_setup/starter_projects/SEO Keyword Generator.json +17 -0
  189. langflow/initial_setup/starter_projects/SaaS Pricing.json +27 -1
  190. langflow/initial_setup/starter_projects/Search agent.json +40 -1
  191. langflow/initial_setup/starter_projects/Sequential Tasks Agents.json +72 -3
  192. langflow/initial_setup/starter_projects/Simple Agent.json +57 -1
  193. langflow/initial_setup/starter_projects/Social Media Agent.json +77 -1
  194. langflow/initial_setup/starter_projects/Text Sentiment Analysis.json +34 -0
  195. langflow/initial_setup/starter_projects/Travel Planning Agents.json +51 -3
  196. langflow/initial_setup/starter_projects/Twitter Thread Generator.json +80 -0
  197. langflow/initial_setup/starter_projects/Vector Store RAG.json +109 -2
  198. langflow/initial_setup/starter_projects/Youtube Analysis.json +82 -1
  199. langflow/initial_setup/starter_projects/vector_store_rag.py +1 -1
  200. langflow/processing/process.py +3 -0
  201. langflow/services/auth/mcp_encryption.py +104 -0
  202. langflow/services/settings/feature_flags.py +1 -1
  203. {langflow_base_nightly-0.5.0.dev38.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/METADATA +1 -1
  204. {langflow_base_nightly-0.5.0.dev38.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/RECORD +229 -211
  205. langflow/components/vectorstores/redis.py +0 -89
  206. langflow/frontend/assets/index-BWgIWfv2.js +0 -1
  207. langflow/frontend/assets/index-CqS7zir1.css +0 -1
  208. langflow/frontend/assets/lazyIconImports-DTNgvPE-.js +0 -2
  209. /langflow/components/{vectorstores → FAISS}/faiss.py +0 -0
  210. /langflow/components/{vectorstores → cassandra}/cassandra.py +0 -0
  211. /langflow/components/{datastax/cassandra.py → cassandra/cassandra_chat.py} +0 -0
  212. /langflow/components/{vectorstores → cassandra}/cassandra_graph.py +0 -0
  213. /langflow/components/{vectorstores → chroma}/chroma.py +0 -0
  214. /langflow/components/{vectorstores → clickhouse}/clickhouse.py +0 -0
  215. /langflow/components/{vectorstores → couchbase}/couchbase.py +0 -0
  216. /langflow/components/{vectorstores → datastax}/astradb.py +0 -0
  217. /langflow/components/{vectorstores → datastax}/astradb_graph.py +0 -0
  218. /langflow/components/{vectorstores → datastax}/graph_rag.py +0 -0
  219. /langflow/components/{vectorstores → datastax}/hcd.py +0 -0
  220. /langflow/components/{vectorstores → elastic}/elasticsearch.py +0 -0
  221. /langflow/components/{vectorstores → elastic}/opensearch.py +0 -0
  222. /langflow/components/{vectorstores → milvus}/milvus.py +0 -0
  223. /langflow/components/{vectorstores → mongodb}/mongodb_atlas.py +0 -0
  224. /langflow/components/{vectorstores → pgvector}/pgvector.py +0 -0
  225. /langflow/components/{vectorstores → pinecone}/pinecone.py +0 -0
  226. /langflow/components/{vectorstores → qdrant}/qdrant.py +0 -0
  227. /langflow/components/{vectorstores → supabase}/supabase.py +0 -0
  228. /langflow/components/{vectorstores → upstash}/upstash.py +0 -0
  229. /langflow/components/{vectorstores → vectara}/vectara.py +0 -0
  230. /langflow/components/{vectorstores → vectara}/vectara_rag.py +0 -0
  231. /langflow/components/{vectorstores → weaviate}/weaviate.py +0 -0
  232. {langflow_base_nightly-0.5.0.dev38.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/WHEEL +0 -0
  233. {langflow_base_nightly-0.5.0.dev38.dist-info → langflow_base_nightly-0.5.0.dev39.dist-info}/entry_points.txt +0 -0
@@ -89,6 +89,19 @@
89
89
  "lf_version": "1.5.0.post1",
90
90
  "metadata": {
91
91
  "code_hash": "dbf2e9d2319d",
92
+ "dependencies": {
93
+ "dependencies": [
94
+ {
95
+ "name": "langchain_text_splitters",
96
+ "version": "0.3.8"
97
+ },
98
+ {
99
+ "name": "langflow",
100
+ "version": null
101
+ }
102
+ ],
103
+ "total_dependencies": 2
104
+ },
92
105
  "module": "langflow.components.processing.split_text.SplitTextComponent"
93
106
  },
94
107
  "minimized": false,
@@ -340,6 +353,27 @@
340
353
  "lf_version": "1.5.0.post1",
341
354
  "metadata": {
342
355
  "code_hash": "252132357639",
356
+ "dependencies": {
357
+ "dependencies": [
358
+ {
359
+ "name": "requests",
360
+ "version": "2.32.4"
361
+ },
362
+ {
363
+ "name": "bs4",
364
+ "version": "4.12.3"
365
+ },
366
+ {
367
+ "name": "langchain_community",
368
+ "version": "0.3.21"
369
+ },
370
+ {
371
+ "name": "langflow",
372
+ "version": null
373
+ }
374
+ ],
375
+ "total_dependencies": 4
376
+ },
343
377
  "module": "langflow.components.data.url.URLComponent"
344
378
  },
345
379
  "minimized": false,
@@ -703,6 +737,43 @@
703
737
  "legacy": false,
704
738
  "metadata": {
705
739
  "code_hash": "6c62063f2c09",
740
+ "dependencies": {
741
+ "dependencies": [
742
+ {
743
+ "name": "pandas",
744
+ "version": "2.2.3"
745
+ },
746
+ {
747
+ "name": "cryptography",
748
+ "version": "43.0.3"
749
+ },
750
+ {
751
+ "name": "langchain_chroma",
752
+ "version": "0.1.4"
753
+ },
754
+ {
755
+ "name": "loguru",
756
+ "version": "0.7.3"
757
+ },
758
+ {
759
+ "name": "langflow",
760
+ "version": null
761
+ },
762
+ {
763
+ "name": "langchain_openai",
764
+ "version": "0.3.23"
765
+ },
766
+ {
767
+ "name": "langchain_huggingface",
768
+ "version": "0.3.1"
769
+ },
770
+ {
771
+ "name": "langchain_cohere",
772
+ "version": "0.3.3"
773
+ }
774
+ ],
775
+ "total_dependencies": 8
776
+ },
706
777
  "module": "langflow.components.data.kb_ingest.KBIngestionComponent"
707
778
  },
708
779
  "minimized": false,
@@ -109,6 +109,15 @@
109
109
  "lf_version": "1.5.0.post1",
110
110
  "metadata": {
111
111
  "code_hash": "efdcba3771af",
112
+ "dependencies": {
113
+ "dependencies": [
114
+ {
115
+ "name": "langflow",
116
+ "version": null
117
+ }
118
+ ],
119
+ "total_dependencies": 1
120
+ },
112
121
  "module": "langflow.components.input_output.text.TextInputComponent"
113
122
  },
114
123
  "minimized": false,
@@ -226,6 +235,23 @@
226
235
  "lf_version": "1.5.0.post1",
227
236
  "metadata": {
228
237
  "code_hash": "6f74e04e39d5",
238
+ "dependencies": {
239
+ "dependencies": [
240
+ {
241
+ "name": "orjson",
242
+ "version": "3.10.15"
243
+ },
244
+ {
245
+ "name": "fastapi",
246
+ "version": "0.115.13"
247
+ },
248
+ {
249
+ "name": "langflow",
250
+ "version": null
251
+ }
252
+ ],
253
+ "total_dependencies": 3
254
+ },
229
255
  "module": "langflow.components.input_output.chat_output.ChatOutput"
230
256
  },
231
257
  "minimized": true,
@@ -533,6 +559,43 @@
533
559
  "legacy": false,
534
560
  "metadata": {
535
561
  "code_hash": "6fcf86be1aca",
562
+ "dependencies": {
563
+ "dependencies": [
564
+ {
565
+ "name": "cryptography",
566
+ "version": "43.0.3"
567
+ },
568
+ {
569
+ "name": "langchain_chroma",
570
+ "version": "0.1.4"
571
+ },
572
+ {
573
+ "name": "loguru",
574
+ "version": "0.7.3"
575
+ },
576
+ {
577
+ "name": "pydantic",
578
+ "version": "2.10.6"
579
+ },
580
+ {
581
+ "name": "langflow",
582
+ "version": null
583
+ },
584
+ {
585
+ "name": "langchain_openai",
586
+ "version": "0.3.23"
587
+ },
588
+ {
589
+ "name": "langchain_huggingface",
590
+ "version": "0.3.1"
591
+ },
592
+ {
593
+ "name": "langchain_cohere",
594
+ "version": "0.3.3"
595
+ }
596
+ ],
597
+ "total_dependencies": 8
598
+ },
536
599
  "module": "langflow.components.data.kb_retrieval.KBRetrievalComponent"
537
600
  },
538
601
  "minimized": false,
@@ -197,6 +197,15 @@
197
197
  "lf_version": "1.2.0",
198
198
  "metadata": {
199
199
  "code_hash": "192913db3453",
200
+ "dependencies": {
201
+ "dependencies": [
202
+ {
203
+ "name": "langflow",
204
+ "version": null
205
+ }
206
+ ],
207
+ "total_dependencies": 1
208
+ },
200
209
  "module": "langflow.components.input_output.chat.ChatInput"
201
210
  },
202
211
  "output_types": [],
@@ -498,6 +507,23 @@
498
507
  "lf_version": "1.2.0",
499
508
  "metadata": {
500
509
  "code_hash": "6f74e04e39d5",
510
+ "dependencies": {
511
+ "dependencies": [
512
+ {
513
+ "name": "orjson",
514
+ "version": "3.10.15"
515
+ },
516
+ {
517
+ "name": "fastapi",
518
+ "version": "0.115.13"
519
+ },
520
+ {
521
+ "name": "langflow",
522
+ "version": null
523
+ }
524
+ ],
525
+ "total_dependencies": 3
526
+ },
501
527
  "module": "langflow.components.input_output.chat_output.ChatOutput"
502
528
  },
503
529
  "output_types": [],
@@ -840,6 +866,23 @@
840
866
  "lf_version": "1.2.0",
841
867
  "metadata": {
842
868
  "code_hash": "ad2a6f4552c0",
869
+ "dependencies": {
870
+ "dependencies": [
871
+ {
872
+ "name": "pydantic",
873
+ "version": "2.10.6"
874
+ },
875
+ {
876
+ "name": "trustcall",
877
+ "version": "0.0.39"
878
+ },
879
+ {
880
+ "name": "langflow",
881
+ "version": null
882
+ }
883
+ ],
884
+ "total_dependencies": 3
885
+ },
843
886
  "module": "langflow.components.processing.structured_output.StructuredOutputComponent"
844
887
  },
845
888
  "minimized": false,
@@ -1191,6 +1234,19 @@
1191
1234
  "lf_version": "1.2.0",
1192
1235
  "metadata": {
1193
1236
  "code_hash": "4c76fb76d395",
1237
+ "dependencies": {
1238
+ "dependencies": [
1239
+ {
1240
+ "name": "httpx",
1241
+ "version": "0.27.2"
1242
+ },
1243
+ {
1244
+ "name": "langflow",
1245
+ "version": null
1246
+ }
1247
+ ],
1248
+ "total_dependencies": 2
1249
+ },
1194
1250
  "module": "langflow.components.tavily.tavily_search.TavilySearchComponent"
1195
1251
  },
1196
1252
  "minimized": false,
@@ -2213,7 +2269,7 @@
2213
2269
  "show": true,
2214
2270
  "title_case": false,
2215
2271
  "type": "code",
2216
- "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def message_response(self) -> Message:\n try:\n # Get LLM model and validate\n llm_model, display_name = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n # note the tools are not required to run the agent, hence the validation removed.\n\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n # return result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output.\"\"\"\n # Run the regular message response first to get the result\n if not hasattr(self, \"_agent_result\"):\n await self.message_response()\n\n result = self._agent_result\n\n # Extract content from result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n # Try to parse as JSON\n try:\n json_data = json.loads(content)\n return Data(data=json_data)\n except json.JSONDecodeError:\n # If it's not valid JSON, try to extract JSON from the content\n json_match = re.search(r\"\\{.*\\}\", content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n return Data(data=json_data)\n except json.JSONDecodeError:\n pass\n\n # If we can't extract JSON, return the raw content as data\n return Data(data={\"content\": content, \"error\": \"Could not parse as JSON\"})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except Exception as e:\n logger.error(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
2272
+ "value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
2217
2273
  },
2218
2274
  "handle_parsing_errors": {
2219
2275
  "_input_type": "BoolInput",
@@ -315,6 +315,19 @@
315
315
  "lf_version": "1.1.5",
316
316
  "metadata": {
317
317
  "code_hash": "3e67a5940263",
318
+ "dependencies": {
319
+ "dependencies": [
320
+ {
321
+ "name": "assemblyai",
322
+ "version": "0.35.1"
323
+ },
324
+ {
325
+ "name": "langflow",
326
+ "version": null
327
+ }
328
+ ],
329
+ "total_dependencies": 2
330
+ },
318
331
  "module": "langflow.components.assemblyai.assemblyai_poll_transcript.AssemblyAITranscriptionJobPoller"
319
332
  },
320
333
  "minimized": false,
@@ -627,6 +640,23 @@
627
640
  "lf_version": "1.1.5",
628
641
  "metadata": {
629
642
  "code_hash": "6f74e04e39d5",
643
+ "dependencies": {
644
+ "dependencies": [
645
+ {
646
+ "name": "orjson",
647
+ "version": "3.10.15"
648
+ },
649
+ {
650
+ "name": "fastapi",
651
+ "version": "0.115.13"
652
+ },
653
+ {
654
+ "name": "langflow",
655
+ "version": null
656
+ }
657
+ ],
658
+ "total_dependencies": 3
659
+ },
630
660
  "module": "langflow.components.input_output.chat_output.ChatOutput"
631
661
  },
632
662
  "minimized": true,
@@ -932,6 +962,23 @@
932
962
  "lf_version": "1.1.1",
933
963
  "metadata": {
934
964
  "code_hash": "6f74e04e39d5",
965
+ "dependencies": {
966
+ "dependencies": [
967
+ {
968
+ "name": "orjson",
969
+ "version": "3.10.15"
970
+ },
971
+ {
972
+ "name": "fastapi",
973
+ "version": "0.115.13"
974
+ },
975
+ {
976
+ "name": "langflow",
977
+ "version": null
978
+ }
979
+ ],
980
+ "total_dependencies": 3
981
+ },
935
982
  "module": "langflow.components.input_output.chat_output.ChatOutput"
936
983
  },
937
984
  "minimized": true,
@@ -1237,6 +1284,23 @@
1237
1284
  "lf_version": "1.1.5",
1238
1285
  "metadata": {
1239
1286
  "code_hash": "6f74e04e39d5",
1287
+ "dependencies": {
1288
+ "dependencies": [
1289
+ {
1290
+ "name": "orjson",
1291
+ "version": "3.10.15"
1292
+ },
1293
+ {
1294
+ "name": "fastapi",
1295
+ "version": "0.115.13"
1296
+ },
1297
+ {
1298
+ "name": "langflow",
1299
+ "version": null
1300
+ }
1301
+ ],
1302
+ "total_dependencies": 3
1303
+ },
1240
1304
  "module": "langflow.components.input_output.chat_output.ChatOutput"
1241
1305
  },
1242
1306
  "minimized": true,
@@ -1719,6 +1783,15 @@
1719
1783
  "lf_version": "1.1.5",
1720
1784
  "metadata": {
1721
1785
  "code_hash": "464cc8b8fdd2",
1786
+ "dependencies": {
1787
+ "dependencies": [
1788
+ {
1789
+ "name": "langflow",
1790
+ "version": null
1791
+ }
1792
+ ],
1793
+ "total_dependencies": 1
1794
+ },
1722
1795
  "module": "langflow.components.helpers.memory.MemoryComponent"
1723
1796
  },
1724
1797
  "minimized": false,
@@ -2049,6 +2122,15 @@
2049
2122
  "lf_version": "1.1.5",
2050
2123
  "metadata": {
2051
2124
  "code_hash": "192913db3453",
2125
+ "dependencies": {
2126
+ "dependencies": [
2127
+ {
2128
+ "name": "langflow",
2129
+ "version": null
2130
+ }
2131
+ ],
2132
+ "total_dependencies": 1
2133
+ },
2052
2134
  "module": "langflow.components.input_output.chat.ChatInput"
2053
2135
  },
2054
2136
  "minimized": true,
@@ -2467,6 +2549,19 @@
2467
2549
  "legacy": false,
2468
2550
  "metadata": {
2469
2551
  "code_hash": "03d20eaf49f4",
2552
+ "dependencies": {
2553
+ "dependencies": [
2554
+ {
2555
+ "name": "assemblyai",
2556
+ "version": "0.35.1"
2557
+ },
2558
+ {
2559
+ "name": "langflow",
2560
+ "version": null
2561
+ }
2562
+ ],
2563
+ "total_dependencies": 2
2564
+ },
2470
2565
  "module": "langflow.components.assemblyai.assemblyai_start_transcript.AssemblyAITranscriptionJobCreator"
2471
2566
  },
2472
2567
  "minimized": false,
@@ -149,6 +149,15 @@
149
149
  "lf_version": "1.4.3",
150
150
  "metadata": {
151
151
  "code_hash": "192913db3453",
152
+ "dependencies": {
153
+ "dependencies": [
154
+ {
155
+ "name": "langflow",
156
+ "version": null
157
+ }
158
+ ],
159
+ "total_dependencies": 1
160
+ },
152
161
  "module": "langflow.components.input_output.chat.ChatInput"
153
162
  },
154
163
  "output_types": [],
@@ -458,6 +467,23 @@
458
467
  "lf_version": "1.4.3",
459
468
  "metadata": {
460
469
  "code_hash": "6f74e04e39d5",
470
+ "dependencies": {
471
+ "dependencies": [
472
+ {
473
+ "name": "orjson",
474
+ "version": "3.10.15"
475
+ },
476
+ {
477
+ "name": "fastapi",
478
+ "version": "0.115.13"
479
+ },
480
+ {
481
+ "name": "langflow",
482
+ "version": null
483
+ }
484
+ ],
485
+ "total_dependencies": 3
486
+ },
461
487
  "module": "langflow.components.input_output.chat_output.ChatOutput"
462
488
  },
463
489
  "output_types": [],
@@ -960,6 +986,15 @@
960
986
  "lf_version": "1.4.3",
961
987
  "metadata": {
962
988
  "code_hash": "464cc8b8fdd2",
989
+ "dependencies": {
990
+ "dependencies": [
991
+ {
992
+ "name": "langflow",
993
+ "version": null
994
+ }
995
+ ],
996
+ "total_dependencies": 1
997
+ },
963
998
  "module": "langflow.components.helpers.memory.MemoryComponent"
964
999
  },
965
1000
  "minimized": false,