langchain 1.0.0a12__py3-none-any.whl → 1.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. langchain/__init__.py +1 -1
  2. langchain/agents/__init__.py +7 -1
  3. langchain/agents/factory.py +722 -226
  4. langchain/agents/middleware/__init__.py +36 -9
  5. langchain/agents/middleware/_execution.py +388 -0
  6. langchain/agents/middleware/_redaction.py +350 -0
  7. langchain/agents/middleware/context_editing.py +46 -17
  8. langchain/agents/middleware/file_search.py +382 -0
  9. langchain/agents/middleware/human_in_the_loop.py +220 -173
  10. langchain/agents/middleware/model_call_limit.py +43 -10
  11. langchain/agents/middleware/model_fallback.py +79 -36
  12. langchain/agents/middleware/pii.py +68 -504
  13. langchain/agents/middleware/shell_tool.py +718 -0
  14. langchain/agents/middleware/summarization.py +2 -2
  15. langchain/agents/middleware/{planning.py → todo.py} +35 -16
  16. langchain/agents/middleware/tool_call_limit.py +308 -114
  17. langchain/agents/middleware/tool_emulator.py +200 -0
  18. langchain/agents/middleware/tool_retry.py +384 -0
  19. langchain/agents/middleware/tool_selection.py +25 -21
  20. langchain/agents/middleware/types.py +714 -257
  21. langchain/agents/structured_output.py +37 -27
  22. langchain/chat_models/__init__.py +7 -1
  23. langchain/chat_models/base.py +192 -190
  24. langchain/embeddings/__init__.py +13 -3
  25. langchain/embeddings/base.py +49 -29
  26. langchain/messages/__init__.py +50 -1
  27. langchain/tools/__init__.py +9 -7
  28. langchain/tools/tool_node.py +16 -1174
  29. langchain-1.0.4.dist-info/METADATA +92 -0
  30. langchain-1.0.4.dist-info/RECORD +34 -0
  31. langchain/_internal/__init__.py +0 -0
  32. langchain/_internal/_documents.py +0 -35
  33. langchain/_internal/_lazy_import.py +0 -35
  34. langchain/_internal/_prompts.py +0 -158
  35. langchain/_internal/_typing.py +0 -70
  36. langchain/_internal/_utils.py +0 -7
  37. langchain/agents/_internal/__init__.py +0 -1
  38. langchain/agents/_internal/_typing.py +0 -13
  39. langchain/agents/middleware/prompt_caching.py +0 -86
  40. langchain/documents/__init__.py +0 -7
  41. langchain/embeddings/cache.py +0 -361
  42. langchain/storage/__init__.py +0 -22
  43. langchain/storage/encoder_backed.py +0 -123
  44. langchain/storage/exceptions.py +0 -5
  45. langchain/storage/in_memory.py +0 -13
  46. langchain-1.0.0a12.dist-info/METADATA +0 -122
  47. langchain-1.0.0a12.dist-info/RECORD +0 -43
  48. {langchain-1.0.0a12.dist-info → langchain-1.0.4.dist-info}/WHEEL +0 -0
  49. {langchain-1.0.0a12.dist-info → langchain-1.0.4.dist-info}/licenses/LICENSE +0 -0
@@ -1,361 +0,0 @@
1
- """Module contains code for a cache backed embedder.
2
-
3
- The cache backed embedder is a wrapper around an embedder that caches
4
- embeddings in a key-value store. The cache is used to avoid recomputing
5
- embeddings for the same text.
6
-
7
- The text is hashed and the hash is used as the key in the cache.
8
- """
9
-
10
- from __future__ import annotations
11
-
12
- import hashlib
13
- import json
14
- import uuid
15
- import warnings
16
- from typing import TYPE_CHECKING, Literal, cast
17
-
18
- from langchain_core.embeddings import Embeddings
19
- from langchain_core.utils.iter import batch_iterate
20
-
21
- from langchain.storage.encoder_backed import EncoderBackedStore
22
-
23
- if TYPE_CHECKING:
24
- from collections.abc import Callable, Sequence
25
-
26
- from langchain_core.stores import BaseStore, ByteStore
27
-
28
- NAMESPACE_UUID = uuid.UUID(int=1985)
29
-
30
-
31
- def _sha1_hash_to_uuid(text: str) -> uuid.UUID:
32
- """Return a UUID derived from *text* using SHA-1 (deterministic).
33
-
34
- Deterministic and fast, **but not collision-resistant**.
35
-
36
- A malicious attacker could try to create two different texts that hash to the same
37
- UUID. This may not necessarily be an issue in the context of caching embeddings,
38
- but new applications should swap this out for a stronger hash function like
39
- xxHash, BLAKE2 or SHA-256, which are collision-resistant.
40
- """
41
- sha1_hex = hashlib.sha1(text.encode("utf-8"), usedforsecurity=False).hexdigest()
42
- # Embed the hex string in `uuid5` to obtain a valid UUID.
43
- return uuid.uuid5(NAMESPACE_UUID, sha1_hex)
44
-
45
-
46
- def _make_default_key_encoder(namespace: str, algorithm: str) -> Callable[[str], str]:
47
- """Create a default key encoder function.
48
-
49
- Args:
50
- namespace: Prefix that segregates keys from different embedding models.
51
- algorithm:
52
- * ``'sha1'`` - fast but not collision-resistant
53
- * ``'blake2b'`` - cryptographically strong, faster than SHA-1
54
- * ``'sha256'`` - cryptographically strong, slower than SHA-1
55
- * ``'sha512'`` - cryptographically strong, slower than SHA-1
56
-
57
- Returns:
58
- A function that encodes a key using the specified algorithm.
59
- """
60
- if algorithm == "sha1":
61
- _warn_about_sha1_encoder()
62
-
63
- def _key_encoder(key: str) -> str:
64
- """Encode a key using the specified algorithm."""
65
- if algorithm == "sha1":
66
- return f"{namespace}{_sha1_hash_to_uuid(key)}"
67
- if algorithm == "blake2b":
68
- return f"{namespace}{hashlib.blake2b(key.encode('utf-8')).hexdigest()}"
69
- if algorithm == "sha256":
70
- return f"{namespace}{hashlib.sha256(key.encode('utf-8')).hexdigest()}"
71
- if algorithm == "sha512":
72
- return f"{namespace}{hashlib.sha512(key.encode('utf-8')).hexdigest()}"
73
- msg = f"Unsupported algorithm: {algorithm}"
74
- raise ValueError(msg)
75
-
76
- return _key_encoder
77
-
78
-
79
- def _value_serializer(value: Sequence[float]) -> bytes:
80
- """Serialize a value."""
81
- return json.dumps(value).encode()
82
-
83
-
84
- def _value_deserializer(serialized_value: bytes) -> list[float]:
85
- """Deserialize a value."""
86
- return cast("list[float]", json.loads(serialized_value.decode()))
87
-
88
-
89
- # The warning is global; track emission, so it appears only once.
90
- _warned_about_sha1: bool = False
91
-
92
-
93
- def _warn_about_sha1_encoder() -> None:
94
- """Emit a one-time warning about SHA-1 collision weaknesses."""
95
- global _warned_about_sha1 # noqa: PLW0603
96
- if not _warned_about_sha1:
97
- warnings.warn(
98
- "Using default key encoder: SHA-1 is *not* collision-resistant. "
99
- "While acceptable for most cache scenarios, a motivated attacker "
100
- "can craft two different payloads that map to the same cache key. "
101
- "If that risk matters in your environment, supply a stronger "
102
- "encoder (e.g. SHA-256 or BLAKE2) via the `key_encoder` argument. "
103
- "If you change the key encoder, consider also creating a new cache, "
104
- "to avoid (the potential for) collisions with existing keys.",
105
- category=UserWarning,
106
- stacklevel=2,
107
- )
108
- _warned_about_sha1 = True
109
-
110
-
111
- class CacheBackedEmbeddings(Embeddings):
112
- """Interface for caching results from embedding models.
113
-
114
- The interface allows works with any store that implements
115
- the abstract store interface accepting keys of type str and values of list of
116
- floats.
117
-
118
- If need be, the interface can be extended to accept other implementations
119
- of the value serializer and deserializer, as well as the key encoder.
120
-
121
- Note that by default only document embeddings are cached. To cache query
122
- embeddings too, pass in a query_embedding_store to constructor.
123
-
124
- Examples:
125
- .. code-block: python
126
-
127
- from langchain.embeddings import CacheBackedEmbeddings
128
- from langchain.storage import LocalFileStore
129
- from langchain_community.embeddings import OpenAIEmbeddings
130
-
131
- store = LocalFileStore('./my_cache')
132
-
133
- underlying_embedder = OpenAIEmbeddings()
134
- embedder = CacheBackedEmbeddings.from_bytes_store(
135
- underlying_embedder, store, namespace=underlying_embedder.model
136
- )
137
-
138
- # Embedding is computed and cached
139
- embeddings = embedder.embed_documents(["hello", "goodbye"])
140
-
141
- # Embeddings are retrieved from the cache, no computation is done
142
- embeddings = embedder.embed_documents(["hello", "goodbye"])
143
- """
144
-
145
- def __init__(
146
- self,
147
- underlying_embeddings: Embeddings,
148
- document_embedding_store: BaseStore[str, list[float]],
149
- *,
150
- batch_size: int | None = None,
151
- query_embedding_store: BaseStore[str, list[float]] | None = None,
152
- ) -> None:
153
- """Initialize the embedder.
154
-
155
- Args:
156
- underlying_embeddings: the embedder to use for computing embeddings.
157
- document_embedding_store: The store to use for caching document embeddings.
158
- batch_size: The number of documents to embed between store updates.
159
- query_embedding_store: The store to use for caching query embeddings.
160
- If ``None``, query embeddings are not cached.
161
- """
162
- super().__init__()
163
- self.document_embedding_store = document_embedding_store
164
- self.query_embedding_store = query_embedding_store
165
- self.underlying_embeddings = underlying_embeddings
166
- self.batch_size = batch_size
167
-
168
- def embed_documents(self, texts: list[str]) -> list[list[float]]:
169
- """Embed a list of texts.
170
-
171
- The method first checks the cache for the embeddings.
172
- If the embeddings are not found, the method uses the underlying embedder
173
- to embed the documents and stores the results in the cache.
174
-
175
- Args:
176
- texts: A list of texts to embed.
177
-
178
- Returns:
179
- A list of embeddings for the given texts.
180
- """
181
- vectors: list[list[float] | None] = self.document_embedding_store.mget(
182
- texts,
183
- )
184
- all_missing_indices: list[int] = [i for i, vector in enumerate(vectors) if vector is None]
185
-
186
- for missing_indices in batch_iterate(self.batch_size, all_missing_indices):
187
- missing_texts = [texts[i] for i in missing_indices]
188
- missing_vectors = self.underlying_embeddings.embed_documents(missing_texts)
189
- self.document_embedding_store.mset(
190
- list(zip(missing_texts, missing_vectors, strict=False)),
191
- )
192
- for index, updated_vector in zip(missing_indices, missing_vectors, strict=False):
193
- vectors[index] = updated_vector
194
-
195
- return cast(
196
- "list[list[float]]",
197
- vectors,
198
- ) # Nones should have been resolved by now
199
-
200
- async def aembed_documents(self, texts: list[str]) -> list[list[float]]:
201
- """Embed a list of texts.
202
-
203
- The method first checks the cache for the embeddings.
204
- If the embeddings are not found, the method uses the underlying embedder
205
- to embed the documents and stores the results in the cache.
206
-
207
- Args:
208
- texts: A list of texts to embed.
209
-
210
- Returns:
211
- A list of embeddings for the given texts.
212
- """
213
- vectors: list[list[float] | None] = await self.document_embedding_store.amget(texts)
214
- all_missing_indices: list[int] = [i for i, vector in enumerate(vectors) if vector is None]
215
-
216
- # batch_iterate supports None batch_size which returns all elements at once
217
- # as a single batch.
218
- for missing_indices in batch_iterate(self.batch_size, all_missing_indices):
219
- missing_texts = [texts[i] for i in missing_indices]
220
- missing_vectors = await self.underlying_embeddings.aembed_documents(
221
- missing_texts,
222
- )
223
- await self.document_embedding_store.amset(
224
- list(zip(missing_texts, missing_vectors, strict=False)),
225
- )
226
- for index, updated_vector in zip(missing_indices, missing_vectors, strict=False):
227
- vectors[index] = updated_vector
228
-
229
- return cast(
230
- "list[list[float]]",
231
- vectors,
232
- ) # Nones should have been resolved by now
233
-
234
- def embed_query(self, text: str) -> list[float]:
235
- """Embed query text.
236
-
237
- By default, this method does not cache queries. To enable caching, set the
238
- ``cache_query`` parameter to ``True`` when initializing the embedder.
239
-
240
- Args:
241
- text: The text to embed.
242
-
243
- Returns:
244
- The embedding for the given text.
245
- """
246
- if not self.query_embedding_store:
247
- return self.underlying_embeddings.embed_query(text)
248
-
249
- (cached,) = self.query_embedding_store.mget([text])
250
- if cached is not None:
251
- return cached
252
-
253
- vector = self.underlying_embeddings.embed_query(text)
254
- self.query_embedding_store.mset([(text, vector)])
255
- return vector
256
-
257
- async def aembed_query(self, text: str) -> list[float]:
258
- """Embed query text.
259
-
260
- By default, this method does not cache queries. To enable caching, set the
261
- ``cache_query`` parameter to ``True`` when initializing the embedder.
262
-
263
- Args:
264
- text: The text to embed.
265
-
266
- Returns:
267
- The embedding for the given text.
268
- """
269
- if not self.query_embedding_store:
270
- return await self.underlying_embeddings.aembed_query(text)
271
-
272
- (cached,) = await self.query_embedding_store.amget([text])
273
- if cached is not None:
274
- return cached
275
-
276
- vector = await self.underlying_embeddings.aembed_query(text)
277
- await self.query_embedding_store.amset([(text, vector)])
278
- return vector
279
-
280
- @classmethod
281
- def from_bytes_store(
282
- cls,
283
- underlying_embeddings: Embeddings,
284
- document_embedding_cache: ByteStore,
285
- *,
286
- namespace: str = "",
287
- batch_size: int | None = None,
288
- query_embedding_cache: bool | ByteStore = False,
289
- key_encoder: Callable[[str], str] | Literal["sha1", "blake2b", "sha256", "sha512"] = "sha1",
290
- ) -> CacheBackedEmbeddings:
291
- """On-ramp that adds the necessary serialization and encoding to the store.
292
-
293
- Args:
294
- underlying_embeddings: The embedder to use for embedding.
295
- document_embedding_cache: The cache to use for storing document embeddings.
296
- namespace: The namespace to use for document cache.
297
- This namespace is used to avoid collisions with other caches.
298
- For example, set it to the name of the embedding model used.
299
- batch_size: The number of documents to embed between store updates.
300
- query_embedding_cache: The cache to use for storing query embeddings.
301
- True to use the same cache as document embeddings.
302
- False to not cache query embeddings.
303
- key_encoder: Optional callable to encode keys. If not provided,
304
- a default encoder using SHA-1 will be used. SHA-1 is not
305
- collision-resistant, and a motivated attacker could craft two
306
- different texts that hash to the same cache key.
307
-
308
- New applications should use one of the alternative encoders
309
- or provide a custom and strong key encoder function to avoid this risk.
310
-
311
- If you change a key encoder in an existing cache, consider
312
- just creating a new cache, to avoid (the potential for)
313
- collisions with existing keys or having duplicate keys
314
- for the same text in the cache.
315
-
316
- Returns:
317
- An instance of CacheBackedEmbeddings that uses the provided cache.
318
- """
319
- if isinstance(key_encoder, str):
320
- key_encoder = _make_default_key_encoder(namespace, key_encoder)
321
- elif callable(key_encoder):
322
- # If a custom key encoder is provided, it should not be used with a
323
- # namespace.
324
- # A user can handle namespacing in directly their custom key encoder.
325
- if namespace:
326
- msg = (
327
- "Do not supply `namespace` when using a custom key_encoder; "
328
- "add any prefixing inside the encoder itself."
329
- )
330
- raise ValueError(msg)
331
- else:
332
- msg = (
333
- "key_encoder must be either 'blake2b', 'sha1', 'sha256', 'sha512' "
334
- "or a callable that encodes keys."
335
- )
336
- raise ValueError(msg) # noqa: TRY004
337
-
338
- document_embedding_store = EncoderBackedStore[str, list[float]](
339
- document_embedding_cache,
340
- key_encoder,
341
- _value_serializer,
342
- _value_deserializer,
343
- )
344
- if query_embedding_cache is True:
345
- query_embedding_store = document_embedding_store
346
- elif query_embedding_cache is False:
347
- query_embedding_store = None
348
- else:
349
- query_embedding_store = EncoderBackedStore[str, list[float]](
350
- query_embedding_cache,
351
- key_encoder,
352
- _value_serializer,
353
- _value_deserializer,
354
- )
355
-
356
- return cls(
357
- underlying_embeddings,
358
- document_embedding_store,
359
- batch_size=batch_size,
360
- query_embedding_store=query_embedding_store,
361
- )
@@ -1,22 +0,0 @@
1
- """Implementations of key-value stores and storage helpers.
2
-
3
- Module provides implementations of various key-value stores that conform
4
- to a simple key-value interface.
5
-
6
- The primary goal of these storages is to support implementation of caching.
7
- """
8
-
9
- from langchain_core.stores import (
10
- InMemoryByteStore,
11
- InMemoryStore,
12
- InvalidKeyException,
13
- )
14
-
15
- from langchain.storage.encoder_backed import EncoderBackedStore
16
-
17
- __all__ = [
18
- "EncoderBackedStore",
19
- "InMemoryByteStore",
20
- "InMemoryStore",
21
- "InvalidKeyException",
22
- ]
@@ -1,123 +0,0 @@
1
- """Encoder-backed store implementation."""
2
-
3
- from collections.abc import AsyncIterator, Callable, Iterator, Sequence
4
- from typing import (
5
- Any,
6
- TypeVar,
7
- )
8
-
9
- from langchain_core.stores import BaseStore
10
-
11
- K = TypeVar("K")
12
- V = TypeVar("V")
13
-
14
-
15
- class EncoderBackedStore(BaseStore[K, V]):
16
- """Wraps a store with key and value encoders/decoders.
17
-
18
- Examples that uses JSON for encoding/decoding:
19
-
20
- .. code-block:: python
21
-
22
- import json
23
-
24
-
25
- def key_encoder(key: int) -> str:
26
- return json.dumps(key)
27
-
28
-
29
- def value_serializer(value: float) -> str:
30
- return json.dumps(value)
31
-
32
-
33
- def value_deserializer(serialized_value: str) -> float:
34
- return json.loads(serialized_value)
35
-
36
-
37
- # Create an instance of the abstract store
38
- abstract_store = MyCustomStore()
39
-
40
- # Create an instance of the encoder-backed store
41
- store = EncoderBackedStore(
42
- store=abstract_store,
43
- key_encoder=key_encoder,
44
- value_serializer=value_serializer,
45
- value_deserializer=value_deserializer,
46
- )
47
-
48
- # Use the encoder-backed store methods
49
- store.mset([(1, 3.14), (2, 2.718)])
50
- values = store.mget([1, 2]) # Retrieves [3.14, 2.718]
51
- store.mdelete([1, 2]) # Deletes the keys 1 and 2
52
-
53
- """
54
-
55
- def __init__(
56
- self,
57
- store: BaseStore[str, Any],
58
- key_encoder: Callable[[K], str],
59
- value_serializer: Callable[[V], bytes],
60
- value_deserializer: Callable[[Any], V],
61
- ) -> None:
62
- """Initialize an EncodedStore."""
63
- self.store = store
64
- self.key_encoder = key_encoder
65
- self.value_serializer = value_serializer
66
- self.value_deserializer = value_deserializer
67
-
68
- def mget(self, keys: Sequence[K]) -> list[V | None]:
69
- """Get the values associated with the given keys."""
70
- encoded_keys: list[str] = [self.key_encoder(key) for key in keys]
71
- values = self.store.mget(encoded_keys)
72
- return [self.value_deserializer(value) if value is not None else value for value in values]
73
-
74
- async def amget(self, keys: Sequence[K]) -> list[V | None]:
75
- """Get the values associated with the given keys."""
76
- encoded_keys: list[str] = [self.key_encoder(key) for key in keys]
77
- values = await self.store.amget(encoded_keys)
78
- return [self.value_deserializer(value) if value is not None else value for value in values]
79
-
80
- def mset(self, key_value_pairs: Sequence[tuple[K, V]]) -> None:
81
- """Set the values for the given keys."""
82
- encoded_pairs = [
83
- (self.key_encoder(key), self.value_serializer(value)) for key, value in key_value_pairs
84
- ]
85
- self.store.mset(encoded_pairs)
86
-
87
- async def amset(self, key_value_pairs: Sequence[tuple[K, V]]) -> None:
88
- """Set the values for the given keys."""
89
- encoded_pairs = [
90
- (self.key_encoder(key), self.value_serializer(value)) for key, value in key_value_pairs
91
- ]
92
- await self.store.amset(encoded_pairs)
93
-
94
- def mdelete(self, keys: Sequence[K]) -> None:
95
- """Delete the given keys and their associated values."""
96
- encoded_keys = [self.key_encoder(key) for key in keys]
97
- self.store.mdelete(encoded_keys)
98
-
99
- async def amdelete(self, keys: Sequence[K]) -> None:
100
- """Delete the given keys and their associated values."""
101
- encoded_keys = [self.key_encoder(key) for key in keys]
102
- await self.store.amdelete(encoded_keys)
103
-
104
- def yield_keys(
105
- self,
106
- *,
107
- prefix: str | None = None,
108
- ) -> Iterator[K] | Iterator[str]:
109
- """Get an iterator over keys that match the given prefix."""
110
- # For the time being this does not return K, but str
111
- # it's for debugging purposes. Should fix this.
112
- yield from self.store.yield_keys(prefix=prefix)
113
-
114
- async def ayield_keys(
115
- self,
116
- *,
117
- prefix: str | None = None,
118
- ) -> AsyncIterator[K] | AsyncIterator[str]:
119
- """Get an iterator over keys that match the given prefix."""
120
- # For the time being this does not return K, but str
121
- # it's for debugging purposes. Should fix this.
122
- async for key in self.store.ayield_keys(prefix=prefix):
123
- yield key
@@ -1,5 +0,0 @@
1
- """Store exceptions."""
2
-
3
- from langchain_core.stores import InvalidKeyException
4
-
5
- __all__ = ["InvalidKeyException"]
@@ -1,13 +0,0 @@
1
- """In memory store that is not thread safe and has no eviction policy.
2
-
3
- This is a simple implementation of the BaseStore using a dictionary that is useful
4
- primarily for unit testing purposes.
5
- """
6
-
7
- from langchain_core.stores import InMemoryBaseStore, InMemoryByteStore, InMemoryStore
8
-
9
- __all__ = [
10
- "InMemoryBaseStore",
11
- "InMemoryByteStore",
12
- "InMemoryStore",
13
- ]
@@ -1,122 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: langchain
3
- Version: 1.0.0a12
4
- Summary: Building applications with LLMs through composability
5
- Project-URL: Source Code, https://github.com/langchain-ai/langchain/tree/master/libs/langchain
6
- Project-URL: Release Notes, https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain%3D%3D0%22&expanded=true
7
- Project-URL: repository, https://github.com/langchain-ai/langchain
8
- License: MIT
9
- License-File: LICENSE
10
- Requires-Python: <4.0.0,>=3.10.0
11
- Requires-Dist: langchain-core<2.0.0,>=1.0.0a6
12
- Requires-Dist: langgraph<2.0.0,>=1.0.0a4
13
- Requires-Dist: pydantic<3.0.0,>=2.7.4
14
- Provides-Extra: anthropic
15
- Requires-Dist: langchain-anthropic; extra == 'anthropic'
16
- Provides-Extra: aws
17
- Requires-Dist: langchain-aws; extra == 'aws'
18
- Provides-Extra: community
19
- Requires-Dist: langchain-community; extra == 'community'
20
- Provides-Extra: deepseek
21
- Requires-Dist: langchain-deepseek; extra == 'deepseek'
22
- Provides-Extra: fireworks
23
- Requires-Dist: langchain-fireworks; extra == 'fireworks'
24
- Provides-Extra: google-genai
25
- Requires-Dist: langchain-google-genai; extra == 'google-genai'
26
- Provides-Extra: google-vertexai
27
- Requires-Dist: langchain-google-vertexai; extra == 'google-vertexai'
28
- Provides-Extra: groq
29
- Requires-Dist: langchain-groq; extra == 'groq'
30
- Provides-Extra: mistralai
31
- Requires-Dist: langchain-mistralai; extra == 'mistralai'
32
- Provides-Extra: ollama
33
- Requires-Dist: langchain-ollama; extra == 'ollama'
34
- Provides-Extra: openai
35
- Requires-Dist: langchain-openai; extra == 'openai'
36
- Provides-Extra: perplexity
37
- Requires-Dist: langchain-perplexity; extra == 'perplexity'
38
- Provides-Extra: together
39
- Requires-Dist: langchain-together; extra == 'together'
40
- Provides-Extra: xai
41
- Requires-Dist: langchain-xai; extra == 'xai'
42
- Description-Content-Type: text/markdown
43
-
44
- # 🦜️🔗 LangChain
45
-
46
- ⚡ Building applications with LLMs through composability ⚡
47
-
48
- [![PyPI - License](https://img.shields.io/pypi/l/langchain?style=flat-square)](https://opensource.org/licenses/MIT)
49
- [![PyPI - Downloads](https://img.shields.io/pepy/dt/langchain)](https://pypistats.org/packages/langchain)
50
- [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
51
-
52
- Looking for the JS/TS version? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
53
-
54
- To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
55
- [LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
56
-
57
- ## Quick Install
58
-
59
- `pip install langchain`
60
-
61
- ## 🤔 What is this?
62
-
63
- Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
64
-
65
- This library aims to assist in the development of those types of applications. Common examples of these applications include:
66
-
67
- **❓ Question answering with RAG**
68
-
69
- - [Documentation](https://python.langchain.com/docs/tutorials/rag/)
70
- - End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
71
-
72
- **🧱 Extracting structured output**
73
-
74
- - [Documentation](https://python.langchain.com/docs/tutorials/extraction/)
75
- - End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/)
76
-
77
- **🤖 Chatbots**
78
-
79
- - [Documentation](https://python.langchain.com/docs/tutorials/chatbot/)
80
- - End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
81
-
82
- ## 📖 Documentation
83
-
84
- Please see [our full documentation](https://python.langchain.com) on:
85
-
86
- - Getting started (installation, setting up the environment, simple examples)
87
- - How-To examples (demos, integrations, helper functions)
88
- - Reference (full API docs)
89
- - Resources (high-level explanation of core concepts)
90
-
91
- ## 🚀 What can this help with?
92
-
93
- There are five main areas that LangChain is designed to help with.
94
- These are, in increasing order of complexity:
95
-
96
- **🤖 Agents:**
97
-
98
- Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
99
-
100
- **📚 Retrieval Augmented Generation:**
101
-
102
- Retrieval Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
103
-
104
- **🧐 Evaluation:**
105
-
106
- Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
107
-
108
- **📃 Models and Prompts:**
109
-
110
- This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with chat models and LLMs.
111
-
112
- **🔗 Chains:**
113
-
114
- Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
115
-
116
- For more information on these concepts, please see our [full documentation](https://python.langchain.com).
117
-
118
- ## 💁 Contributing
119
-
120
- As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
121
-
122
- For detailed information on how to contribute, see the [Contributing Guide](https://python.langchain.com/docs/contributing/).