langchain 1.0.0a12__py3-none-any.whl → 1.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. langchain/__init__.py +1 -1
  2. langchain/agents/__init__.py +7 -1
  3. langchain/agents/factory.py +722 -226
  4. langchain/agents/middleware/__init__.py +36 -9
  5. langchain/agents/middleware/_execution.py +388 -0
  6. langchain/agents/middleware/_redaction.py +350 -0
  7. langchain/agents/middleware/context_editing.py +46 -17
  8. langchain/agents/middleware/file_search.py +382 -0
  9. langchain/agents/middleware/human_in_the_loop.py +220 -173
  10. langchain/agents/middleware/model_call_limit.py +43 -10
  11. langchain/agents/middleware/model_fallback.py +79 -36
  12. langchain/agents/middleware/pii.py +68 -504
  13. langchain/agents/middleware/shell_tool.py +718 -0
  14. langchain/agents/middleware/summarization.py +2 -2
  15. langchain/agents/middleware/{planning.py → todo.py} +35 -16
  16. langchain/agents/middleware/tool_call_limit.py +308 -114
  17. langchain/agents/middleware/tool_emulator.py +200 -0
  18. langchain/agents/middleware/tool_retry.py +384 -0
  19. langchain/agents/middleware/tool_selection.py +25 -21
  20. langchain/agents/middleware/types.py +714 -257
  21. langchain/agents/structured_output.py +37 -27
  22. langchain/chat_models/__init__.py +7 -1
  23. langchain/chat_models/base.py +192 -190
  24. langchain/embeddings/__init__.py +13 -3
  25. langchain/embeddings/base.py +49 -29
  26. langchain/messages/__init__.py +50 -1
  27. langchain/tools/__init__.py +9 -7
  28. langchain/tools/tool_node.py +16 -1174
  29. langchain-1.0.4.dist-info/METADATA +92 -0
  30. langchain-1.0.4.dist-info/RECORD +34 -0
  31. langchain/_internal/__init__.py +0 -0
  32. langchain/_internal/_documents.py +0 -35
  33. langchain/_internal/_lazy_import.py +0 -35
  34. langchain/_internal/_prompts.py +0 -158
  35. langchain/_internal/_typing.py +0 -70
  36. langchain/_internal/_utils.py +0 -7
  37. langchain/agents/_internal/__init__.py +0 -1
  38. langchain/agents/_internal/_typing.py +0 -13
  39. langchain/agents/middleware/prompt_caching.py +0 -86
  40. langchain/documents/__init__.py +0 -7
  41. langchain/embeddings/cache.py +0 -361
  42. langchain/storage/__init__.py +0 -22
  43. langchain/storage/encoder_backed.py +0 -123
  44. langchain/storage/exceptions.py +0 -5
  45. langchain/storage/in_memory.py +0 -13
  46. langchain-1.0.0a12.dist-info/METADATA +0 -122
  47. langchain-1.0.0a12.dist-info/RECORD +0 -43
  48. {langchain-1.0.0a12.dist-info → langchain-1.0.4.dist-info}/WHEEL +0 -0
  49. {langchain-1.0.0a12.dist-info → langchain-1.0.4.dist-info}/licenses/LICENSE +0 -0
@@ -1,1178 +1,20 @@
1
- """Tool execution node for LangGraph workflows.
1
+ """Utils file included for backwards compat imports."""
2
2
 
3
- This module provides prebuilt functionality for executing tools in LangGraph.
4
-
5
- Tools are functions that models can call to interact with external systems,
6
- APIs, databases, or perform computations.
7
-
8
- The module implements several key design patterns:
9
- - Parallel execution of multiple tool calls for efficiency
10
- - Robust error handling with customizable error messages
11
- - State injection for tools that need access to graph state
12
- - Store injection for tools that need persistent storage
13
- - Command-based state updates for advanced control flow
14
-
15
- Key Components:
16
- ToolNode: Main class for executing tools in LangGraph workflows
17
- InjectedState: Annotation for injecting graph state into tools
18
- InjectedStore: Annotation for injecting persistent store into tools
19
- tools_condition: Utility function for conditional routing based on tool calls
20
-
21
- Typical Usage:
22
- ```python
23
- from langchain_core.tools import tool
24
- from langchain.tools import ToolNode
25
-
26
-
27
- @tool
28
- def my_tool(x: int) -> str:
29
- return f"Result: {x}"
30
-
31
-
32
- tool_node = ToolNode([my_tool])
33
- ```
34
- """
35
-
36
- from __future__ import annotations
37
-
38
- import asyncio
39
- import inspect
40
- import json
41
- from copy import copy, deepcopy
42
- from dataclasses import replace
43
- from types import UnionType
44
- from typing import (
45
- TYPE_CHECKING,
46
- Annotated,
47
- Any,
48
- Literal,
49
- Optional,
50
- Union,
51
- cast,
52
- get_args,
53
- get_origin,
54
- get_type_hints,
55
- )
56
-
57
- from langchain_core.messages import (
58
- AIMessage,
59
- AnyMessage,
60
- RemoveMessage,
61
- ToolCall,
62
- ToolMessage,
63
- convert_to_messages,
3
+ from langgraph.prebuilt import InjectedState, InjectedStore, ToolRuntime
4
+ from langgraph.prebuilt.tool_node import (
5
+ ToolCallRequest,
6
+ ToolCallWithContext,
7
+ ToolCallWrapper,
64
8
  )
65
- from langchain_core.runnables.config import (
66
- get_config_list,
67
- get_executor_for_config,
9
+ from langgraph.prebuilt.tool_node import (
10
+ ToolNode as _ToolNode, # noqa: F401
68
11
  )
69
- from langchain_core.tools import BaseTool, InjectedToolArg
70
- from langchain_core.tools import tool as create_tool
71
- from langchain_core.tools.base import (
72
- TOOL_MESSAGE_BLOCK_TYPES,
73
- get_all_basemodel_annotations,
74
- )
75
- from langgraph._internal._runnable import RunnableCallable
76
- from langgraph.errors import GraphBubbleUp
77
- from langgraph.graph.message import REMOVE_ALL_MESSAGES
78
- from langgraph.types import Command, Send
79
- from pydantic import BaseModel, ValidationError
80
-
81
- if TYPE_CHECKING:
82
- from collections.abc import Callable, Sequence
83
-
84
- from langchain_core.runnables import RunnableConfig
85
- from langgraph.store.base import BaseStore
86
-
87
- INVALID_TOOL_NAME_ERROR_TEMPLATE = (
88
- "Error: {requested_tool} is not a valid tool, try one of [{available_tools}]."
89
- )
90
- TOOL_CALL_ERROR_TEMPLATE = "Error: {error}\n Please fix your mistakes."
91
- TOOL_EXECUTION_ERROR_TEMPLATE = (
92
- "Error executing tool '{tool_name}' with kwargs {tool_kwargs} with error:\n"
93
- " {error}\n"
94
- " Please fix the error and try again."
95
- )
96
- TOOL_INVOCATION_ERROR_TEMPLATE = (
97
- "Error invoking tool '{tool_name}' with kwargs {tool_kwargs} with error:\n"
98
- " {error}\n"
99
- " Please fix the error and try again."
100
- )
101
-
102
-
103
- def msg_content_output(output: Any) -> str | list[dict]:
104
- """Convert tool output to valid message content format.
105
-
106
- LangChain ToolMessages accept either string content or a list of content blocks.
107
- This function ensures tool outputs are properly formatted for message consumption
108
- by attempting to preserve structured data when possible, falling back to JSON
109
- serialization or string conversion.
110
-
111
- Args:
112
- output: The raw output from a tool execution. Can be any type.
113
-
114
- Returns:
115
- Either a string representation of the output or a list of content blocks
116
- if the output is already in the correct format for structured content.
117
-
118
- Note:
119
- This function prioritizes backward compatibility by defaulting to JSON
120
- serialization rather than supporting all possible message content formats.
121
- """
122
- if isinstance(output, str) or (
123
- isinstance(output, list)
124
- and all(isinstance(x, dict) and x.get("type") in TOOL_MESSAGE_BLOCK_TYPES for x in output)
125
- ):
126
- return output
127
- # Technically a list of strings is also valid message content, but it's
128
- # not currently well tested that all chat models support this.
129
- # And for backwards compatibility we want to make sure we don't break
130
- # any existing ToolNode usage.
131
- try:
132
- return json.dumps(output, ensure_ascii=False)
133
- except Exception: # noqa: BLE001
134
- return str(output)
135
-
136
-
137
- class ToolInvocationError(Exception):
138
- """Exception raised when a tool invocation fails due to invalid arguments."""
139
-
140
- def __init__(
141
- self, tool_name: str, source: ValidationError, tool_kwargs: dict[str, Any]
142
- ) -> None:
143
- """Initialize the ToolInvocationError.
144
-
145
- Args:
146
- tool_name: The name of the tool that failed.
147
- source: The exception that occurred.
148
- tool_kwargs: The keyword arguments that were passed to the tool.
149
- """
150
- self.message = TOOL_INVOCATION_ERROR_TEMPLATE.format(
151
- tool_name=tool_name, tool_kwargs=tool_kwargs, error=source
152
- )
153
- self.tool_name = tool_name
154
- self.tool_kwargs = tool_kwargs
155
- self.source = source
156
- super().__init__(self.message)
157
-
158
-
159
- def _default_handle_tool_errors(e: Exception) -> str:
160
- """Default error handler for tool errors.
161
-
162
- If the tool is a tool invocation error, return its message.
163
- Otherwise, raise the error.
164
- """
165
- if isinstance(e, ToolInvocationError):
166
- return e.message
167
- raise e
168
-
169
-
170
- def _handle_tool_error(
171
- e: Exception,
172
- *,
173
- flag: bool | str | Callable[..., str] | type[Exception] | tuple[type[Exception], ...],
174
- ) -> str:
175
- """Generate error message content based on exception handling configuration.
176
-
177
- This function centralizes error message generation logic, supporting different
178
- error handling strategies configured via the ToolNode's handle_tool_errors
179
- parameter.
180
-
181
- Args:
182
- e: The exception that occurred during tool execution.
183
- flag: Configuration for how to handle the error. Can be:
184
- - bool: If True, use default error template
185
- - str: Use this string as the error message
186
- - Callable: Call this function with the exception to get error message
187
- - tuple: Not used in this context (handled by caller)
188
-
189
- Returns:
190
- A string containing the error message to include in the ToolMessage.
191
-
192
- Raises:
193
- ValueError: If flag is not one of the supported types.
194
-
195
- Note:
196
- The tuple case is handled by the caller through exception type checking,
197
- not by this function directly.
198
- """
199
- if isinstance(flag, (bool, tuple)) or (isinstance(flag, type) and issubclass(flag, Exception)):
200
- content = TOOL_CALL_ERROR_TEMPLATE.format(error=repr(e))
201
- elif isinstance(flag, str):
202
- content = flag
203
- elif callable(flag):
204
- content = flag(e) # type: ignore [assignment, call-arg]
205
- else:
206
- msg = (
207
- f"Got unexpected type of `handle_tool_error`. Expected bool, str "
208
- f"or callable. Received: {flag}"
209
- )
210
- raise ValueError(msg)
211
- return content
212
-
213
-
214
- def _infer_handled_types(handler: Callable[..., str]) -> tuple[type[Exception], ...]:
215
- """Infer exception types handled by a custom error handler function.
216
-
217
- This function analyzes the type annotations of a custom error handler to determine
218
- which exception types it's designed to handle. This enables type-safe error handling
219
- where only specific exceptions are caught and processed by the handler.
220
-
221
- Args:
222
- handler: A callable that takes an exception and returns an error message string.
223
- The first parameter (after self/cls if present) should be type-annotated
224
- with the exception type(s) to handle.
225
-
226
- Returns:
227
- A tuple of exception types that the handler can process. Returns (Exception,)
228
- if no specific type information is available for backward compatibility.
229
-
230
- Raises:
231
- ValueError: If the handler's annotation contains non-Exception types or
232
- if Union types contain non-Exception types.
233
-
234
- Note:
235
- This function supports both single exception types and Union types for
236
- handlers that need to handle multiple exception types differently.
237
- """
238
- sig = inspect.signature(handler)
239
- params = list(sig.parameters.values())
240
- if params:
241
- # If it's a method, the first argument is typically 'self' or 'cls'
242
- if params[0].name in ["self", "cls"] and len(params) == 2:
243
- first_param = params[1]
244
- else:
245
- first_param = params[0]
246
-
247
- type_hints = get_type_hints(handler)
248
- if first_param.name in type_hints:
249
- origin = get_origin(first_param.annotation)
250
- if origin in [Union, UnionType]:
251
- args = get_args(first_param.annotation)
252
- if all(issubclass(arg, Exception) for arg in args):
253
- return tuple(args)
254
- msg = (
255
- "All types in the error handler error annotation must be "
256
- "Exception types. For example, "
257
- "`def custom_handler(e: Union[ValueError, TypeError])`. "
258
- f"Got '{first_param.annotation}' instead."
259
- )
260
- raise ValueError(msg)
261
-
262
- exception_type = type_hints[first_param.name]
263
- if Exception in exception_type.__mro__:
264
- return (exception_type,)
265
- msg = (
266
- f"Arbitrary types are not supported in the error handler "
267
- f"signature. Please annotate the error with either a "
268
- f"specific Exception type or a union of Exception types. "
269
- "For example, `def custom_handler(e: ValueError)` or "
270
- "`def custom_handler(e: Union[ValueError, TypeError])`. "
271
- f"Got '{exception_type}' instead."
272
- )
273
- raise ValueError(msg)
274
-
275
- # If no type information is available, return (Exception,)
276
- # for backwards compatibility.
277
- return (Exception,)
278
-
279
-
280
- class ToolNode(RunnableCallable):
281
- """A node for executing tools in LangGraph workflows.
282
-
283
- Handles tool execution patterns including function calls, state injection,
284
- persistent storage, and control flow. Manages parallel execution,
285
- error handling.
286
-
287
- Input Formats:
288
- 1. Graph state with `messages` key that has a list of messages:
289
- - Common representation for agentic workflows
290
- - Supports custom messages key via ``messages_key`` parameter
291
-
292
- 2. **Message List**: ``[AIMessage(..., tool_calls=[...])]``
293
- - List of messages with tool calls in the last AIMessage
294
-
295
- 3. **Direct Tool Calls**: ``[{"name": "tool", "args": {...}, "id": "1", "type": "tool_call"}]``
296
- - Bypasses message parsing for direct tool execution
297
- - For programmatic tool invocation and testing
298
-
299
- Output Formats:
300
- Output format depends on input type and tool behavior:
301
-
302
- **For Regular tools**:
303
- - Dict input → ``{"messages": [ToolMessage(...)]}``
304
- - List input → ``[ToolMessage(...)]``
305
-
306
- **For Command tools**:
307
- - Returns ``[Command(...)]`` or mixed list with regular tool outputs
308
- - Commands can update state, trigger navigation, or send messages
309
-
310
- Args:
311
- tools: A sequence of tools that can be invoked by this node. Supports:
312
- - **BaseTool instances**: Tools with schemas and metadata
313
- - **Plain functions**: Automatically converted to tools with inferred schemas
314
- name: The name identifier for this node in the graph. Used for debugging
315
- and visualization. Defaults to "tools".
316
- tags: Optional metadata tags to associate with the node for filtering
317
- and organization. Defaults to None.
318
- handle_tool_errors: Configuration for error handling during tool execution.
319
- Supports multiple strategies:
320
-
321
- - **True**: Catch all errors and return a ToolMessage with the default
322
- error template containing the exception details.
323
- - **str**: Catch all errors and return a ToolMessage with this custom
324
- error message string.
325
- - **type[Exception]**: Only catch exceptions with the specified type and
326
- return the default error message for it.
327
- - **tuple[type[Exception], ...]**: Only catch exceptions with the specified
328
- types and return default error messages for them.
329
- - **Callable[..., str]**: Catch exceptions matching the callable's signature
330
- and return the string result of calling it with the exception.
331
- - **False**: Disable error handling entirely, allowing exceptions to
332
- propagate.
333
-
334
- Defaults to a callable that:
335
- - catches tool invocation errors (due to invalid arguments provided by the model) and returns a descriptive error message
336
- - ignores tool execution errors (they will be re-raised)
337
-
338
- messages_key: The key in the state dictionary that contains the message list.
339
- This same key will be used for the output ToolMessages.
340
- Defaults to "messages".
341
- Allows custom state schemas with different message field names.
342
-
343
- Examples:
344
- Basic usage:
345
-
346
- ```python
347
- from langchain.tools import ToolNode
348
- from langchain_core.tools import tool
349
-
350
- @tool
351
- def calculator(a: int, b: int) -> int:
352
- \"\"\"Add two numbers.\"\"\"
353
- return a + b
354
-
355
- tool_node = ToolNode([calculator])
356
- ```
357
-
358
- State injection:
359
-
360
- ```python
361
- from typing_extensions import Annotated
362
- from langchain.tools import InjectedState
363
-
364
- @tool
365
- def context_tool(query: str, state: Annotated[dict, InjectedState]) -> str:
366
- \"\"\"Some tool that uses state.\"\"\"
367
- return f"Query: {query}, Messages: {len(state['messages'])}"
368
-
369
- tool_node = ToolNode([context_tool])
370
- ```
371
-
372
- Error handling:
373
-
374
- ```python
375
- def handle_errors(e: ValueError) -> str:
376
- return "Invalid input provided"
377
-
378
-
379
- tool_node = ToolNode([my_tool], handle_tool_errors=handle_errors)
380
- ```
381
- """ # noqa: E501
382
-
383
- name: str = "tools"
384
-
385
- def __init__(
386
- self,
387
- tools: Sequence[BaseTool | Callable],
388
- *,
389
- name: str = "tools",
390
- tags: list[str] | None = None,
391
- handle_tool_errors: bool
392
- | str
393
- | Callable[..., str]
394
- | type[Exception]
395
- | tuple[type[Exception], ...] = _default_handle_tool_errors,
396
- messages_key: str = "messages",
397
- ) -> None:
398
- """Initialize the ToolNode with the provided tools and configuration.
399
-
400
- Args:
401
- tools: Sequence of tools to make available for execution.
402
- name: Node name for graph identification.
403
- tags: Optional metadata tags.
404
- handle_tool_errors: Error handling configuration.
405
- messages_key: State key containing messages.
406
- """
407
- super().__init__(self._func, self._afunc, name=name, tags=tags, trace=False)
408
- self._tools_by_name: dict[str, BaseTool] = {}
409
- self._tool_to_state_args: dict[str, dict[str, str | None]] = {}
410
- self._tool_to_store_arg: dict[str, str | None] = {}
411
- self._handle_tool_errors = handle_tool_errors
412
- self._messages_key = messages_key
413
- for tool in tools:
414
- if not isinstance(tool, BaseTool):
415
- tool_ = create_tool(cast("type[BaseTool]", tool))
416
- else:
417
- tool_ = tool
418
- self._tools_by_name[tool_.name] = tool_
419
- self._tool_to_state_args[tool_.name] = _get_state_args(tool_)
420
- self._tool_to_store_arg[tool_.name] = _get_store_arg(tool_)
421
-
422
- @property
423
- def tools_by_name(self) -> dict[str, BaseTool]:
424
- """Mapping from tool name to BaseTool instance."""
425
- return self._tools_by_name
426
-
427
- def _func(
428
- self,
429
- input: list[AnyMessage] | dict[str, Any] | BaseModel,
430
- config: RunnableConfig,
431
- *,
432
- store: Optional[BaseStore], # noqa: UP045
433
- ) -> Any:
434
- tool_calls, input_type = self._parse_input(input, store)
435
- config_list = get_config_list(config, len(tool_calls))
436
- input_types = [input_type] * len(tool_calls)
437
- with get_executor_for_config(config) as executor:
438
- outputs = [*executor.map(self._run_one, tool_calls, input_types, config_list)]
439
-
440
- return self._combine_tool_outputs(outputs, input_type)
441
-
442
- async def _afunc(
443
- self,
444
- input: list[AnyMessage] | dict[str, Any] | BaseModel,
445
- config: RunnableConfig,
446
- *,
447
- store: Optional[BaseStore], # noqa: UP045
448
- ) -> Any:
449
- tool_calls, input_type = self._parse_input(input, store)
450
- outputs = await asyncio.gather(
451
- *(self._arun_one(call, input_type, config) for call in tool_calls)
452
- )
453
-
454
- return self._combine_tool_outputs(outputs, input_type)
455
-
456
- def _combine_tool_outputs(
457
- self,
458
- outputs: list[ToolMessage | Command],
459
- input_type: Literal["list", "dict", "tool_calls"],
460
- ) -> list[Command | list[ToolMessage] | dict[str, list[ToolMessage]]]:
461
- # preserve existing behavior for non-command tool outputs for backwards
462
- # compatibility
463
- if not any(isinstance(output, Command) for output in outputs):
464
- # TypedDict, pydantic, dataclass, etc. should all be able to load from dict
465
- return outputs if input_type == "list" else {self._messages_key: outputs} # type: ignore[return-value, return-value]
466
-
467
- # LangGraph will automatically handle list of Command and non-command node
468
- # updates
469
- combined_outputs: list[Command | list[ToolMessage] | dict[str, list[ToolMessage]]] = []
470
-
471
- # combine all parent commands with goto into a single parent command
472
- parent_command: Command | None = None
473
- for output in outputs:
474
- if isinstance(output, Command):
475
- if (
476
- output.graph is Command.PARENT
477
- and isinstance(output.goto, list)
478
- and all(isinstance(send, Send) for send in output.goto)
479
- ):
480
- if parent_command:
481
- parent_command = replace(
482
- parent_command,
483
- goto=cast("list[Send]", parent_command.goto) + output.goto,
484
- )
485
- else:
486
- parent_command = Command(graph=Command.PARENT, goto=output.goto)
487
- else:
488
- combined_outputs.append(output)
489
- else:
490
- combined_outputs.append(
491
- [output] if input_type == "list" else {self._messages_key: [output]}
492
- )
493
-
494
- if parent_command:
495
- combined_outputs.append(parent_command)
496
- return combined_outputs
497
-
498
- def _run_one(
499
- self,
500
- call: ToolCall,
501
- input_type: Literal["list", "dict", "tool_calls"],
502
- config: RunnableConfig,
503
- ) -> ToolMessage | Command:
504
- """Run a single tool call synchronously."""
505
- if invalid_tool_message := self._validate_tool_call(call):
506
- return invalid_tool_message
507
-
508
- try:
509
- call_args = {**call, "type": "tool_call"}
510
- tool = self.tools_by_name[call["name"]]
511
-
512
- try:
513
- response = tool.invoke(call_args, config)
514
- except ValidationError as exc:
515
- raise ToolInvocationError(call["name"], exc, call["args"]) from exc
516
-
517
- # GraphInterrupt is a special exception that will always be raised.
518
- # It can be triggered in the following scenarios,
519
- # Where GraphInterrupt(GraphBubbleUp) is raised from an `interrupt` invocation
520
- # most commonly:
521
- # (1) a GraphInterrupt is raised inside a tool
522
- # (2) a GraphInterrupt is raised inside a graph node for a graph called as a tool
523
- # (3) a GraphInterrupt is raised when a subgraph is interrupted inside a graph
524
- # called as a tool
525
- # (2 and 3 can happen in a "supervisor w/ tools" multi-agent architecture)
526
- except GraphBubbleUp:
527
- raise
528
- except Exception as e:
529
- handled_types: tuple[type[Exception], ...]
530
- if isinstance(self._handle_tool_errors, type) and issubclass(
531
- self._handle_tool_errors, Exception
532
- ):
533
- handled_types = (self._handle_tool_errors,)
534
- elif isinstance(self._handle_tool_errors, tuple):
535
- handled_types = self._handle_tool_errors
536
- elif callable(self._handle_tool_errors) and not isinstance(
537
- self._handle_tool_errors, type
538
- ):
539
- handled_types = _infer_handled_types(self._handle_tool_errors)
540
- else:
541
- # default behavior is catching all exceptions
542
- handled_types = (Exception,)
543
-
544
- # Unhandled
545
- if not self._handle_tool_errors or not isinstance(e, handled_types):
546
- raise
547
- # Handled
548
- content = _handle_tool_error(e, flag=self._handle_tool_errors)
549
- return ToolMessage(
550
- content=content,
551
- name=call["name"],
552
- tool_call_id=call["id"],
553
- status="error",
554
- )
555
-
556
- if isinstance(response, Command):
557
- return self._validate_tool_command(response, call, input_type)
558
- if isinstance(response, ToolMessage):
559
- response.content = cast("str | list", msg_content_output(response.content))
560
- return response
561
- msg = f"Tool {call['name']} returned unexpected type: {type(response)}"
562
- raise TypeError(msg)
563
-
564
- async def _arun_one(
565
- self,
566
- call: ToolCall,
567
- input_type: Literal["list", "dict", "tool_calls"],
568
- config: RunnableConfig,
569
- ) -> ToolMessage | Command:
570
- """Run a single tool call asynchronously."""
571
- if invalid_tool_message := self._validate_tool_call(call):
572
- return invalid_tool_message
573
-
574
- try:
575
- call_args = {**call, "type": "tool_call"}
576
- tool = self.tools_by_name[call["name"]]
577
-
578
- try:
579
- response = await tool.ainvoke(call_args, config)
580
- except ValidationError as exc:
581
- raise ToolInvocationError(call["name"], exc, call["args"]) from exc
582
-
583
- # GraphInterrupt is a special exception that will always be raised.
584
- # It can be triggered in the following scenarios,
585
- # Where GraphInterrupt(GraphBubbleUp) is raised from an `interrupt` invocation
586
- # most commonly:
587
- # (1) a GraphInterrupt is raised inside a tool
588
- # (2) a GraphInterrupt is raised inside a graph node for a graph called as a tool
589
- # (3) a GraphInterrupt is raised when a subgraph is interrupted inside a graph
590
- # called as a tool
591
- # (2 and 3 can happen in a "supervisor w/ tools" multi-agent architecture)
592
- except GraphBubbleUp:
593
- raise
594
- except Exception as e:
595
- handled_types: tuple[type[Exception], ...]
596
- if isinstance(self._handle_tool_errors, type) and issubclass(
597
- self._handle_tool_errors, Exception
598
- ):
599
- handled_types = (self._handle_tool_errors,)
600
- elif isinstance(self._handle_tool_errors, tuple):
601
- handled_types = self._handle_tool_errors
602
- elif callable(self._handle_tool_errors) and not isinstance(
603
- self._handle_tool_errors, type
604
- ):
605
- handled_types = _infer_handled_types(self._handle_tool_errors)
606
- else:
607
- # default behavior is catching all exceptions
608
- handled_types = (Exception,)
609
-
610
- # Unhandled
611
- if not self._handle_tool_errors or not isinstance(e, handled_types):
612
- raise
613
- # Handled
614
- content = _handle_tool_error(e, flag=self._handle_tool_errors)
615
-
616
- return ToolMessage(
617
- content=content,
618
- name=call["name"],
619
- tool_call_id=call["id"],
620
- status="error",
621
- )
622
-
623
- if isinstance(response, Command):
624
- return self._validate_tool_command(response, call, input_type)
625
- if isinstance(response, ToolMessage):
626
- response.content = cast("str | list", msg_content_output(response.content))
627
- return response
628
- msg = f"Tool {call['name']} returned unexpected type: {type(response)}"
629
- raise TypeError(msg)
630
-
631
- def _parse_input(
632
- self,
633
- input: list[AnyMessage] | dict[str, Any] | BaseModel,
634
- store: BaseStore | None,
635
- ) -> tuple[list[ToolCall], Literal["list", "dict", "tool_calls"]]:
636
- input_type: Literal["list", "dict", "tool_calls"]
637
- if isinstance(input, list):
638
- if isinstance(input[-1], dict) and input[-1].get("type") == "tool_call":
639
- input_type = "tool_calls"
640
- tool_calls = cast("list[ToolCall]", input)
641
- return tool_calls, input_type
642
- input_type = "list"
643
- messages = input
644
- elif isinstance(input, dict) and (messages := input.get(self._messages_key, [])):
645
- input_type = "dict"
646
- elif messages := getattr(input, self._messages_key, []):
647
- # Assume dataclass-like state that can coerce from dict
648
- input_type = "dict"
649
- else:
650
- msg = "No message found in input"
651
- raise ValueError(msg)
652
-
653
- try:
654
- latest_ai_message = next(m for m in reversed(messages) if isinstance(m, AIMessage))
655
- except StopIteration:
656
- msg = "No AIMessage found in input"
657
- raise ValueError(msg)
658
-
659
- tool_calls = [
660
- self.inject_tool_args(call, input, store) for call in latest_ai_message.tool_calls
661
- ]
662
- return tool_calls, input_type
663
-
664
- def _validate_tool_call(self, call: ToolCall) -> ToolMessage | None:
665
- requested_tool = call["name"]
666
- if requested_tool not in self.tools_by_name:
667
- all_tool_names = list(self.tools_by_name.keys())
668
- content = INVALID_TOOL_NAME_ERROR_TEMPLATE.format(
669
- requested_tool=requested_tool,
670
- available_tools=", ".join(all_tool_names),
671
- )
672
- return ToolMessage(
673
- content, name=requested_tool, tool_call_id=call["id"], status="error"
674
- )
675
- return None
676
-
677
- def _inject_state(
678
- self,
679
- tool_call: ToolCall,
680
- input: list[AnyMessage] | dict[str, Any] | BaseModel,
681
- ) -> ToolCall:
682
- state_args = self._tool_to_state_args[tool_call["name"]]
683
- if state_args and isinstance(input, list):
684
- required_fields = list(state_args.values())
685
- if (
686
- len(required_fields) == 1 and required_fields[0] == self._messages_key
687
- ) or required_fields[0] is None:
688
- input = {self._messages_key: input}
689
- else:
690
- err_msg = (
691
- f"Invalid input to ToolNode. Tool {tool_call['name']} requires "
692
- f"graph state dict as input."
693
- )
694
- if any(state_field for state_field in state_args.values()):
695
- required_fields_str = ", ".join(f for f in required_fields if f)
696
- err_msg += f" State should contain fields {required_fields_str}."
697
- raise ValueError(err_msg)
698
-
699
- if isinstance(input, dict):
700
- tool_state_args = {
701
- tool_arg: input[state_field] if state_field else input
702
- for tool_arg, state_field in state_args.items()
703
- }
704
- else:
705
- tool_state_args = {
706
- tool_arg: getattr(input, state_field) if state_field else input
707
- for tool_arg, state_field in state_args.items()
708
- }
709
-
710
- tool_call["args"] = {
711
- **tool_call["args"],
712
- **tool_state_args,
713
- }
714
- return tool_call
715
-
716
- def _inject_store(self, tool_call: ToolCall, store: BaseStore | None) -> ToolCall:
717
- store_arg = self._tool_to_store_arg[tool_call["name"]]
718
- if not store_arg:
719
- return tool_call
720
-
721
- if store is None:
722
- msg = (
723
- "Cannot inject store into tools with InjectedStore annotations - "
724
- "please compile your graph with a store."
725
- )
726
- raise ValueError(msg)
727
-
728
- tool_call["args"] = {
729
- **tool_call["args"],
730
- store_arg: store,
731
- }
732
- return tool_call
733
-
734
- def inject_tool_args(
735
- self,
736
- tool_call: ToolCall,
737
- input: list[AnyMessage] | dict[str, Any] | BaseModel,
738
- store: BaseStore | None,
739
- ) -> ToolCall:
740
- """Inject graph state and store into tool call arguments.
741
-
742
- This method enables tools to access graph context that should not be controlled
743
- by the model. Tools can declare dependencies on graph state or persistent storage
744
- using InjectedState and InjectedStore annotations. This method automatically
745
- identifies these dependencies and injects the appropriate values.
746
-
747
- The injection process preserves the original tool call structure while adding
748
- the necessary context arguments. This allows tools to be both model-callable
749
- and context-aware without exposing internal state management to the model.
750
-
751
- Args:
752
- tool_call: The tool call dictionary to augment with injected arguments.
753
- Must contain 'name', 'args', 'id', and 'type' fields.
754
- input: The current graph state to inject into tools requiring state access.
755
- Can be a message list, state dictionary, or BaseModel instance.
756
- store: The persistent store instance to inject into tools requiring storage.
757
- Will be None if no store is configured for the graph.
758
-
759
- Returns:
760
- A new ToolCall dictionary with the same structure as the input but with
761
- additional arguments injected based on the tool's annotation requirements.
762
-
763
- Raises:
764
- ValueError: If a tool requires store injection but no store is provided,
765
- or if state injection requirements cannot be satisfied.
766
-
767
- Note:
768
- This method is automatically called during tool execution but can also
769
- be used manually when working with the Send API or custom routing logic.
770
- The injection is performed on a copy of the tool call to avoid mutating
771
- the original.
772
- """
773
- if tool_call["name"] not in self.tools_by_name:
774
- return tool_call
775
-
776
- tool_call_copy: ToolCall = copy(tool_call)
777
- tool_call_with_state = self._inject_state(tool_call_copy, input)
778
- return self._inject_store(tool_call_with_state, store)
779
-
780
- def _validate_tool_command(
781
- self,
782
- command: Command,
783
- call: ToolCall,
784
- input_type: Literal["list", "dict", "tool_calls"],
785
- ) -> Command:
786
- if isinstance(command.update, dict):
787
- # input type is dict when ToolNode is invoked with a dict input
788
- # (e.g. {"messages": [AIMessage(..., tool_calls=[...])]})
789
- if input_type not in ("dict", "tool_calls"):
790
- msg = (
791
- "Tools can provide a dict in Command.update only when using dict "
792
- f"with '{self._messages_key}' key as ToolNode input, "
793
- f"got: {command.update} for tool '{call['name']}'"
794
- )
795
- raise ValueError(msg)
796
-
797
- updated_command = deepcopy(command)
798
- state_update = cast("dict[str, Any]", updated_command.update) or {}
799
- messages_update = state_update.get(self._messages_key, [])
800
- elif isinstance(command.update, list):
801
- # Input type is list when ToolNode is invoked with a list input
802
- # (e.g. [AIMessage(..., tool_calls=[...])])
803
- if input_type != "list":
804
- msg = (
805
- "Tools can provide a list of messages in Command.update "
806
- "only when using list of messages as ToolNode input, "
807
- f"got: {command.update} for tool '{call['name']}'"
808
- )
809
- raise ValueError(msg)
810
-
811
- updated_command = deepcopy(command)
812
- messages_update = updated_command.update
813
- else:
814
- return command
815
-
816
- # convert to message objects if updates are in a dict format
817
- messages_update = convert_to_messages(messages_update)
818
-
819
- # no validation needed if all messages are being removed
820
- if messages_update == [RemoveMessage(id=REMOVE_ALL_MESSAGES)]:
821
- return updated_command
822
-
823
- has_matching_tool_message = False
824
- for message in messages_update:
825
- if not isinstance(message, ToolMessage):
826
- continue
827
-
828
- if message.tool_call_id == call["id"]:
829
- message.name = call["name"]
830
- has_matching_tool_message = True
831
-
832
- # validate that we always have a ToolMessage matching the tool call in
833
- # Command.update if command is sent to the CURRENT graph
834
- if updated_command.graph is None and not has_matching_tool_message:
835
- example_update = (
836
- '`Command(update={"messages": '
837
- '[ToolMessage("Success", tool_call_id=tool_call_id), ...]}, ...)`'
838
- if input_type == "dict"
839
- else "`Command(update="
840
- '[ToolMessage("Success", tool_call_id=tool_call_id), ...], ...)`'
841
- )
842
- msg = (
843
- "Expected to have a matching ToolMessage in Command.update "
844
- f"for tool '{call['name']}', got: {messages_update}. "
845
- "Every tool call (LLM requesting to call a tool) "
846
- "in the message history MUST have a corresponding ToolMessage. "
847
- f"You can fix it by modifying the tool to return {example_update}."
848
- )
849
- raise ValueError(msg)
850
- return updated_command
851
-
852
-
853
- def tools_condition(
854
- state: list[AnyMessage] | dict[str, Any] | BaseModel,
855
- messages_key: str = "messages",
856
- ) -> Literal["tools", "__end__"]:
857
- """Conditional routing function for tool-calling workflows.
858
-
859
- This utility function implements the standard conditional logic for ReAct-style
860
- agents: if the last AI message contains tool calls, route to the tool execution
861
- node; otherwise, end the workflow. This pattern is fundamental to most tool-calling
862
- agent architectures.
863
-
864
- The function handles multiple state formats commonly used in LangGraph applications,
865
- making it flexible for different graph designs while maintaining consistent behavior.
866
-
867
- Args:
868
- state: The current graph state to examine for tool calls. Supported formats:
869
- - Dictionary containing a messages key (for StateGraph)
870
- - BaseModel instance with a messages attribute
871
- messages_key: The key or attribute name containing the message list in the state.
872
- This allows customization for graphs using different state schemas.
873
- Defaults to "messages".
874
-
875
- Returns:
876
- Either "tools" if tool calls are present in the last AI message, or "__end__"
877
- to terminate the workflow. These are the standard routing destinations for
878
- tool-calling conditional edges.
879
-
880
- Raises:
881
- ValueError: If no messages can be found in the provided state format.
882
-
883
- Example:
884
- Basic usage in a ReAct agent:
885
-
886
- ```python
887
- from langgraph.graph import StateGraph
888
- from langchain.tools import ToolNode
889
- from langchain.tools.tool_node import tools_condition
890
- from typing_extensions import TypedDict
891
-
892
-
893
- class State(TypedDict):
894
- messages: list
895
-
896
-
897
- graph = StateGraph(State)
898
- graph.add_node("llm", call_model)
899
- graph.add_node("tools", ToolNode([my_tool]))
900
- graph.add_conditional_edges(
901
- "llm",
902
- tools_condition, # Routes to "tools" or "__end__"
903
- {"tools": "tools", "__end__": "__end__"},
904
- )
905
- ```
906
-
907
- Custom messages key:
908
-
909
- ```python
910
- def custom_condition(state):
911
- return tools_condition(state, messages_key="chat_history")
912
- ```
913
-
914
- Note:
915
- This function is designed to work seamlessly with ToolNode and standard
916
- LangGraph patterns. It expects the last message to be an AIMessage when
917
- tool calls are present, which is the standard output format for tool-calling
918
- language models.
919
- """
920
- if isinstance(state, list):
921
- ai_message = state[-1]
922
- elif (isinstance(state, dict) and (messages := state.get(messages_key, []))) or (
923
- messages := getattr(state, messages_key, [])
924
- ):
925
- ai_message = messages[-1]
926
- else:
927
- msg = f"No messages found in input state to tool_edge: {state}"
928
- raise ValueError(msg)
929
- if hasattr(ai_message, "tool_calls") and len(ai_message.tool_calls) > 0:
930
- return "tools"
931
- return "__end__"
932
-
933
-
934
- class InjectedState(InjectedToolArg):
935
- """Annotation for injecting graph state into tool arguments.
936
-
937
- This annotation enables tools to access graph state without exposing state
938
- management details to the language model. Tools annotated with InjectedState
939
- receive state data automatically during execution while remaining invisible
940
- to the model's tool-calling interface.
941
-
942
- Args:
943
- field: Optional key to extract from the state dictionary. If None, the entire
944
- state is injected. If specified, only that field's value is injected.
945
- This allows tools to request specific state components rather than
946
- processing the full state structure.
947
-
948
- Example:
949
- ```python
950
- from typing import List
951
- from typing_extensions import Annotated, TypedDict
952
-
953
- from langchain_core.messages import BaseMessage, AIMessage
954
- from langchain.tools import InjectedState, ToolNode, tool
955
-
956
-
957
- class AgentState(TypedDict):
958
- messages: List[BaseMessage]
959
- foo: str
960
-
961
-
962
- @tool
963
- def state_tool(x: int, state: Annotated[dict, InjectedState]) -> str:
964
- '''Do something with state.'''
965
- if len(state["messages"]) > 2:
966
- return state["foo"] + str(x)
967
- else:
968
- return "not enough messages"
969
-
970
-
971
- @tool
972
- def foo_tool(x: int, foo: Annotated[str, InjectedState("foo")]) -> str:
973
- '''Do something else with state.'''
974
- return foo + str(x + 1)
975
-
976
-
977
- node = ToolNode([state_tool, foo_tool])
978
-
979
- tool_call1 = {"name": "state_tool", "args": {"x": 1}, "id": "1", "type": "tool_call"}
980
- tool_call2 = {"name": "foo_tool", "args": {"x": 1}, "id": "2", "type": "tool_call"}
981
- state = {
982
- "messages": [AIMessage("", tool_calls=[tool_call1, tool_call2])],
983
- "foo": "bar",
984
- }
985
- node.invoke(state)
986
- ```
987
-
988
- ```pycon
989
- [
990
- ToolMessage(content="not enough messages", name="state_tool", tool_call_id="1"),
991
- ToolMessage(content="bar2", name="foo_tool", tool_call_id="2"),
992
- ]
993
- ```
994
-
995
- Note:
996
- - InjectedState arguments are automatically excluded from tool schemas
997
- presented to language models
998
- - ToolNode handles the injection process during execution
999
- - Tools can mix regular arguments (controlled by the model) with injected
1000
- arguments (controlled by the system)
1001
- - State injection occurs after the model generates tool calls but before
1002
- tool execution
1003
- """
1004
-
1005
- def __init__(self, field: str | None = None) -> None:
1006
- """Initialize the InjectedState annotation."""
1007
- self.field = field
1008
-
1009
-
1010
- class InjectedStore(InjectedToolArg):
1011
- """Annotation for injecting persistent store into tool arguments.
1012
-
1013
- This annotation enables tools to access LangGraph's persistent storage system
1014
- without exposing storage details to the language model. Tools annotated with
1015
- InjectedStore receive the store instance automatically during execution while
1016
- remaining invisible to the model's tool-calling interface.
1017
-
1018
- The store provides persistent, cross-session data storage that tools can use
1019
- for maintaining context, user preferences, or any other data that needs to
1020
- persist beyond individual workflow executions.
1021
-
1022
- !!! warning
1023
- `InjectedStore` annotation requires `langchain-core >= 0.3.8`
1024
-
1025
- Example:
1026
- ```python
1027
- from typing_extensions import Annotated
1028
- from langgraph.store.memory import InMemoryStore
1029
- from langchain.tools import InjectedStore, ToolNode, tool
1030
-
1031
- @tool
1032
- def save_preference(
1033
- key: str,
1034
- value: str,
1035
- store: Annotated[Any, InjectedStore()]
1036
- ) -> str:
1037
- \"\"\"Save user preference to persistent storage.\"\"\"
1038
- store.put(("preferences",), key, value)
1039
- return f"Saved {key} = {value}"
1040
-
1041
- @tool
1042
- def get_preference(
1043
- key: str,
1044
- store: Annotated[Any, InjectedStore()]
1045
- ) -> str:
1046
- \"\"\"Retrieve user preference from persistent storage.\"\"\"
1047
- result = store.get(("preferences",), key)
1048
- return result.value if result else "Not found"
1049
- ```
1050
-
1051
- Usage with ToolNode and graph compilation:
1052
-
1053
- ```python
1054
- from langgraph.graph import StateGraph
1055
- from langgraph.store.memory import InMemoryStore
1056
-
1057
- store = InMemoryStore()
1058
- tool_node = ToolNode([save_preference, get_preference])
1059
-
1060
- graph = StateGraph(State)
1061
- graph.add_node("tools", tool_node)
1062
- compiled_graph = graph.compile(store=store) # Store is injected automatically
1063
- ```
1064
-
1065
- Cross-session persistence:
1066
-
1067
- ```python
1068
- # First session
1069
- result1 = graph.invoke({"messages": [HumanMessage("Save my favorite color as blue")]})
1070
-
1071
- # Later session - data persists
1072
- result2 = graph.invoke({"messages": [HumanMessage("What's my favorite color?")]})
1073
- ```
1074
-
1075
- Note:
1076
- - InjectedStore arguments are automatically excluded from tool schemas
1077
- presented to language models
1078
- - The store instance is automatically injected by ToolNode during execution
1079
- - Tools can access namespaced storage using the store's get/put methods
1080
- - Store injection requires the graph to be compiled with a store instance
1081
- - Multiple tools can share the same store instance for data consistency
1082
- """
1083
-
1084
-
1085
- def _is_injection(type_arg: Any, injection_type: type[InjectedState | InjectedStore]) -> bool:
1086
- """Check if a type argument represents an injection annotation.
1087
-
1088
- This utility function determines whether a type annotation indicates that
1089
- an argument should be injected with state or store data. It handles both
1090
- direct annotations and nested annotations within Union or Annotated types.
1091
-
1092
- Args:
1093
- type_arg: The type argument to check for injection annotations.
1094
- injection_type: The injection type to look for (InjectedState or InjectedStore).
1095
-
1096
- Returns:
1097
- True if the type argument contains the specified injection annotation.
1098
- """
1099
- if isinstance(type_arg, injection_type) or (
1100
- isinstance(type_arg, type) and issubclass(type_arg, injection_type)
1101
- ):
1102
- return True
1103
- origin_ = get_origin(type_arg)
1104
- if origin_ is Union or origin_ is Annotated:
1105
- return any(_is_injection(ta, injection_type) for ta in get_args(type_arg))
1106
- return False
1107
-
1108
-
1109
- def _get_state_args(tool: BaseTool) -> dict[str, str | None]:
1110
- """Extract state injection mappings from tool annotations.
1111
-
1112
- This function analyzes a tool's input schema to identify arguments that should
1113
- be injected with graph state. It processes InjectedState annotations to build
1114
- a mapping of tool argument names to state field names.
1115
-
1116
- Args:
1117
- tool: The tool to analyze for state injection requirements.
1118
-
1119
- Returns:
1120
- A dictionary mapping tool argument names to state field names. If a field
1121
- name is None, the entire state should be injected for that argument.
1122
- """
1123
- full_schema = tool.get_input_schema()
1124
- tool_args_to_state_fields: dict = {}
1125
-
1126
- for name, type_ in get_all_basemodel_annotations(full_schema).items():
1127
- injections = [
1128
- type_arg for type_arg in get_args(type_) if _is_injection(type_arg, InjectedState)
1129
- ]
1130
- if len(injections) > 1:
1131
- msg = (
1132
- "A tool argument should not be annotated with InjectedState more than "
1133
- f"once. Received arg {name} with annotations {injections}."
1134
- )
1135
- raise ValueError(msg)
1136
- if len(injections) == 1:
1137
- injection = injections[0]
1138
- if isinstance(injection, InjectedState) and injection.field:
1139
- tool_args_to_state_fields[name] = injection.field
1140
- else:
1141
- tool_args_to_state_fields[name] = None
1142
- else:
1143
- pass
1144
- return tool_args_to_state_fields
1145
-
1146
-
1147
- def _get_store_arg(tool: BaseTool) -> str | None:
1148
- """Extract store injection argument from tool annotations.
1149
-
1150
- This function analyzes a tool's input schema to identify the argument that
1151
- should be injected with the graph store. Only one store argument is supported
1152
- per tool.
1153
-
1154
- Args:
1155
- tool: The tool to analyze for store injection requirements.
1156
-
1157
- Returns:
1158
- The name of the argument that should receive the store injection, or None
1159
- if no store injection is required.
1160
-
1161
- Raises:
1162
- ValueError: If a tool argument has multiple InjectedStore annotations.
1163
- """
1164
- full_schema = tool.get_input_schema()
1165
- for name, type_ in get_all_basemodel_annotations(full_schema).items():
1166
- injections = [
1167
- type_arg for type_arg in get_args(type_) if _is_injection(type_arg, InjectedStore)
1168
- ]
1169
- if len(injections) > 1:
1170
- msg = (
1171
- "A tool argument should not be annotated with InjectedStore more than "
1172
- f"once. Received arg {name} with annotations {injections}."
1173
- )
1174
- raise ValueError(msg)
1175
- if len(injections) == 1:
1176
- return name
1177
12
 
1178
- return None
13
+ __all__ = [
14
+ "InjectedState",
15
+ "InjectedStore",
16
+ "ToolCallRequest",
17
+ "ToolCallWithContext",
18
+ "ToolCallWrapper",
19
+ "ToolRuntime",
20
+ ]