kumoai 2.8.0.dev202508221830__cp312-cp312-win_amd64.whl → 2.13.0.dev202512041141__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kumoai might be problematic. Click here for more details.
- kumoai/__init__.py +22 -11
- kumoai/_version.py +1 -1
- kumoai/client/client.py +17 -16
- kumoai/client/endpoints.py +1 -0
- kumoai/client/rfm.py +37 -8
- kumoai/connector/file_upload_connector.py +94 -85
- kumoai/connector/utils.py +1399 -210
- kumoai/experimental/rfm/__init__.py +164 -46
- kumoai/experimental/rfm/authenticate.py +8 -5
- kumoai/experimental/rfm/backend/__init__.py +0 -0
- kumoai/experimental/rfm/backend/local/__init__.py +38 -0
- kumoai/experimental/rfm/backend/local/table.py +109 -0
- kumoai/experimental/rfm/backend/snow/__init__.py +35 -0
- kumoai/experimental/rfm/backend/snow/table.py +117 -0
- kumoai/experimental/rfm/backend/sqlite/__init__.py +30 -0
- kumoai/experimental/rfm/backend/sqlite/table.py +101 -0
- kumoai/experimental/rfm/base/__init__.py +10 -0
- kumoai/experimental/rfm/base/column.py +66 -0
- kumoai/experimental/rfm/base/source.py +18 -0
- kumoai/experimental/rfm/base/table.py +545 -0
- kumoai/experimental/rfm/{local_graph.py → graph.py} +413 -144
- kumoai/experimental/rfm/infer/__init__.py +6 -0
- kumoai/experimental/rfm/infer/dtype.py +79 -0
- kumoai/experimental/rfm/infer/pkey.py +126 -0
- kumoai/experimental/rfm/infer/time_col.py +62 -0
- kumoai/experimental/rfm/infer/timestamp.py +7 -4
- kumoai/experimental/rfm/local_graph_sampler.py +58 -11
- kumoai/experimental/rfm/local_graph_store.py +45 -37
- kumoai/experimental/rfm/local_pquery_driver.py +342 -46
- kumoai/experimental/rfm/pquery/__init__.py +4 -4
- kumoai/experimental/rfm/pquery/{backend.py → executor.py} +28 -58
- kumoai/experimental/rfm/pquery/pandas_executor.py +532 -0
- kumoai/experimental/rfm/rfm.py +559 -148
- kumoai/experimental/rfm/sagemaker.py +138 -0
- kumoai/jobs.py +27 -1
- kumoai/kumolib.cp312-win_amd64.pyd +0 -0
- kumoai/pquery/prediction_table.py +5 -3
- kumoai/pquery/training_table.py +5 -3
- kumoai/spcs.py +1 -3
- kumoai/testing/decorators.py +1 -1
- kumoai/trainer/job.py +9 -30
- kumoai/trainer/trainer.py +19 -10
- kumoai/utils/__init__.py +2 -1
- kumoai/utils/progress_logger.py +96 -16
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/METADATA +14 -5
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/RECORD +49 -36
- kumoai/experimental/rfm/local_table.py +0 -448
- kumoai/experimental/rfm/pquery/pandas_backend.py +0 -437
- kumoai/experimental/rfm/utils.py +0 -347
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/WHEEL +0 -0
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from typing import Any
|
|
3
|
+
|
|
4
|
+
from kumoapi.typing import Dtype, Stype
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@dataclass(init=False, repr=False, eq=False)
|
|
8
|
+
class Column:
|
|
9
|
+
stype: Stype
|
|
10
|
+
|
|
11
|
+
def __init__(
|
|
12
|
+
self,
|
|
13
|
+
name: str,
|
|
14
|
+
dtype: Dtype,
|
|
15
|
+
stype: Stype,
|
|
16
|
+
is_primary_key: bool = False,
|
|
17
|
+
is_time_column: bool = False,
|
|
18
|
+
is_end_time_column: bool = False,
|
|
19
|
+
) -> None:
|
|
20
|
+
self._name = name
|
|
21
|
+
self._dtype = Dtype(dtype)
|
|
22
|
+
self._is_primary_key = is_primary_key
|
|
23
|
+
self._is_time_column = is_time_column
|
|
24
|
+
self._is_end_time_column = is_end_time_column
|
|
25
|
+
self.stype = Stype(stype)
|
|
26
|
+
|
|
27
|
+
@property
|
|
28
|
+
def name(self) -> str:
|
|
29
|
+
return self._name
|
|
30
|
+
|
|
31
|
+
@property
|
|
32
|
+
def dtype(self) -> Dtype:
|
|
33
|
+
return self._dtype
|
|
34
|
+
|
|
35
|
+
def __setattr__(self, key: str, val: Any) -> None:
|
|
36
|
+
if key == 'stype':
|
|
37
|
+
if isinstance(val, str):
|
|
38
|
+
val = Stype(val)
|
|
39
|
+
assert isinstance(val, Stype)
|
|
40
|
+
if not val.supports_dtype(self.dtype):
|
|
41
|
+
raise ValueError(f"Column '{self.name}' received an "
|
|
42
|
+
f"incompatible semantic type (got "
|
|
43
|
+
f"dtype='{self.dtype}' and stype='{val}')")
|
|
44
|
+
if self._is_primary_key and val != Stype.ID:
|
|
45
|
+
raise ValueError(f"Primary key '{self.name}' must have 'ID' "
|
|
46
|
+
f"semantic type (got '{val}')")
|
|
47
|
+
if self._is_time_column and val != Stype.timestamp:
|
|
48
|
+
raise ValueError(f"Time column '{self.name}' must have "
|
|
49
|
+
f"'timestamp' semantic type (got '{val}')")
|
|
50
|
+
if self._is_end_time_column and val != Stype.timestamp:
|
|
51
|
+
raise ValueError(f"End time column '{self.name}' must have "
|
|
52
|
+
f"'timestamp' semantic type (got '{val}')")
|
|
53
|
+
|
|
54
|
+
super().__setattr__(key, val)
|
|
55
|
+
|
|
56
|
+
def __hash__(self) -> int:
|
|
57
|
+
return hash((self.name, self.stype, self.dtype))
|
|
58
|
+
|
|
59
|
+
def __eq__(self, other: Any) -> bool:
|
|
60
|
+
if not isinstance(other, Column):
|
|
61
|
+
return False
|
|
62
|
+
return hash(self) == hash(other)
|
|
63
|
+
|
|
64
|
+
def __repr__(self) -> str:
|
|
65
|
+
return (f'{self.__class__.__name__}(name={self.name}, '
|
|
66
|
+
f'stype={self.stype}, dtype={self.dtype})')
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
|
|
3
|
+
from kumoapi.typing import Dtype
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@dataclass
|
|
7
|
+
class SourceColumn:
|
|
8
|
+
name: str
|
|
9
|
+
dtype: Dtype
|
|
10
|
+
is_primary_key: bool
|
|
11
|
+
is_unique_key: bool
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@dataclass
|
|
15
|
+
class SourceForeignKey:
|
|
16
|
+
name: str
|
|
17
|
+
dst_table: str
|
|
18
|
+
primary_key: str
|
|
@@ -0,0 +1,545 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from collections import defaultdict
|
|
3
|
+
from functools import cached_property
|
|
4
|
+
from typing import Dict, List, Optional, Sequence, Set
|
|
5
|
+
|
|
6
|
+
import pandas as pd
|
|
7
|
+
from kumoapi.source_table import UnavailableSourceTable
|
|
8
|
+
from kumoapi.table import Column as ColumnDefinition
|
|
9
|
+
from kumoapi.table import TableDefinition
|
|
10
|
+
from kumoapi.typing import Stype
|
|
11
|
+
from typing_extensions import Self
|
|
12
|
+
|
|
13
|
+
from kumoai import in_notebook, in_snowflake_notebook
|
|
14
|
+
from kumoai.experimental.rfm.base import Column, SourceColumn, SourceForeignKey
|
|
15
|
+
from kumoai.experimental.rfm.infer import (
|
|
16
|
+
contains_categorical,
|
|
17
|
+
contains_id,
|
|
18
|
+
contains_multicategorical,
|
|
19
|
+
contains_timestamp,
|
|
20
|
+
infer_primary_key,
|
|
21
|
+
infer_time_column,
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class Table(ABC):
|
|
26
|
+
r"""A :class:`Table` fully specifies the relevant metadata of a single
|
|
27
|
+
table, *i.e.* its selected columns, data types, semantic types, primary
|
|
28
|
+
keys and time columns.
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
name: The name of this table.
|
|
32
|
+
columns: The selected columns of this table.
|
|
33
|
+
primary_key: The name of the primary key of this table, if it exists.
|
|
34
|
+
time_column: The name of the time column of this table, if it exists.
|
|
35
|
+
end_time_column: The name of the end time column of this table, if it
|
|
36
|
+
exists.
|
|
37
|
+
"""
|
|
38
|
+
def __init__(
|
|
39
|
+
self,
|
|
40
|
+
name: str,
|
|
41
|
+
columns: Optional[Sequence[str]] = None,
|
|
42
|
+
primary_key: Optional[str] = None,
|
|
43
|
+
time_column: Optional[str] = None,
|
|
44
|
+
end_time_column: Optional[str] = None,
|
|
45
|
+
) -> None:
|
|
46
|
+
|
|
47
|
+
self._name = name
|
|
48
|
+
self._primary_key: Optional[str] = None
|
|
49
|
+
self._time_column: Optional[str] = None
|
|
50
|
+
self._end_time_column: Optional[str] = None
|
|
51
|
+
|
|
52
|
+
if len(self._source_column_dict) == 0:
|
|
53
|
+
raise ValueError(f"Table '{name}' does not hold any column with "
|
|
54
|
+
f"a supported data type")
|
|
55
|
+
|
|
56
|
+
primary_keys = [
|
|
57
|
+
column.name for column in self._source_column_dict.values()
|
|
58
|
+
if column.is_primary_key
|
|
59
|
+
]
|
|
60
|
+
if len(primary_keys) == 1: # NOTE No composite keys yet.
|
|
61
|
+
if primary_key is not None and primary_key != primary_keys[0]:
|
|
62
|
+
raise ValueError(f"Found duplicate primary key "
|
|
63
|
+
f"definition '{primary_key}' and "
|
|
64
|
+
f"'{primary_keys[0]}' in table '{name}'")
|
|
65
|
+
primary_key = primary_keys[0]
|
|
66
|
+
|
|
67
|
+
unique_keys = [
|
|
68
|
+
column.name for column in self._source_column_dict.values()
|
|
69
|
+
if column.is_unique_key
|
|
70
|
+
]
|
|
71
|
+
if primary_key is None and len(unique_keys) == 1:
|
|
72
|
+
primary_key = unique_keys[0]
|
|
73
|
+
|
|
74
|
+
self._columns: Dict[str, Column] = {}
|
|
75
|
+
for column_name in columns or list(self._source_column_dict.keys()):
|
|
76
|
+
self.add_column(column_name)
|
|
77
|
+
|
|
78
|
+
if primary_key is not None:
|
|
79
|
+
if primary_key not in self:
|
|
80
|
+
self.add_column(primary_key)
|
|
81
|
+
self.primary_key = primary_key
|
|
82
|
+
|
|
83
|
+
if time_column is not None:
|
|
84
|
+
if time_column not in self:
|
|
85
|
+
self.add_column(time_column)
|
|
86
|
+
self.time_column = time_column
|
|
87
|
+
|
|
88
|
+
if end_time_column is not None:
|
|
89
|
+
if end_time_column not in self:
|
|
90
|
+
self.add_column(end_time_column)
|
|
91
|
+
self.end_time_column = end_time_column
|
|
92
|
+
|
|
93
|
+
@property
|
|
94
|
+
def name(self) -> str:
|
|
95
|
+
r"""The name of this table."""
|
|
96
|
+
return self._name
|
|
97
|
+
|
|
98
|
+
# Data column #############################################################
|
|
99
|
+
|
|
100
|
+
def has_column(self, name: str) -> bool:
|
|
101
|
+
r"""Returns ``True`` if this table holds a column with name ``name``;
|
|
102
|
+
``False`` otherwise.
|
|
103
|
+
"""
|
|
104
|
+
return name in self._columns
|
|
105
|
+
|
|
106
|
+
def column(self, name: str) -> Column:
|
|
107
|
+
r"""Returns the data column named with name ``name`` in this table.
|
|
108
|
+
|
|
109
|
+
Args:
|
|
110
|
+
name: The name of the column.
|
|
111
|
+
|
|
112
|
+
Raises:
|
|
113
|
+
KeyError: If ``name`` is not present in this table.
|
|
114
|
+
"""
|
|
115
|
+
if not self.has_column(name):
|
|
116
|
+
raise KeyError(f"Column '{name}' not found in table '{self.name}'")
|
|
117
|
+
return self._columns[name]
|
|
118
|
+
|
|
119
|
+
@property
|
|
120
|
+
def columns(self) -> List[Column]:
|
|
121
|
+
r"""Returns a list of :class:`Column` objects that represent the
|
|
122
|
+
columns in this table.
|
|
123
|
+
"""
|
|
124
|
+
return list(self._columns.values())
|
|
125
|
+
|
|
126
|
+
def add_column(self, name: str) -> Column:
|
|
127
|
+
r"""Adds a column to this table.
|
|
128
|
+
|
|
129
|
+
Args:
|
|
130
|
+
name: The name of the column.
|
|
131
|
+
|
|
132
|
+
Raises:
|
|
133
|
+
KeyError: If ``name`` is already present in this table.
|
|
134
|
+
"""
|
|
135
|
+
if name in self:
|
|
136
|
+
raise KeyError(f"Column '{name}' already exists in table "
|
|
137
|
+
f"'{self.name}'")
|
|
138
|
+
|
|
139
|
+
if name not in self._source_column_dict:
|
|
140
|
+
raise KeyError(f"Column '{name}' does not exist in the underlying "
|
|
141
|
+
f"source table")
|
|
142
|
+
|
|
143
|
+
try:
|
|
144
|
+
dtype = self._source_column_dict[name].dtype
|
|
145
|
+
except Exception as e:
|
|
146
|
+
raise RuntimeError(f"Could not obtain data type for column "
|
|
147
|
+
f"'{name}' in table '{self.name}'. Change "
|
|
148
|
+
f"the data type of the column in the source "
|
|
149
|
+
f"table or remove it from the table.") from e
|
|
150
|
+
|
|
151
|
+
try:
|
|
152
|
+
ser = self._sample_df[name]
|
|
153
|
+
if contains_id(ser, name, dtype):
|
|
154
|
+
stype = Stype.ID
|
|
155
|
+
elif contains_timestamp(ser, name, dtype):
|
|
156
|
+
stype = Stype.timestamp
|
|
157
|
+
elif contains_multicategorical(ser, name, dtype):
|
|
158
|
+
stype = Stype.multicategorical
|
|
159
|
+
elif contains_categorical(ser, name, dtype):
|
|
160
|
+
stype = Stype.categorical
|
|
161
|
+
else:
|
|
162
|
+
stype = dtype.default_stype
|
|
163
|
+
except Exception as e:
|
|
164
|
+
raise RuntimeError(f"Could not obtain semantic type for column "
|
|
165
|
+
f"'{name}' in table '{self.name}'. Change "
|
|
166
|
+
f"the data type of the column in the source "
|
|
167
|
+
f"table or remove it from the table.") from e
|
|
168
|
+
|
|
169
|
+
self._columns[name] = Column(
|
|
170
|
+
name=name,
|
|
171
|
+
dtype=dtype,
|
|
172
|
+
stype=stype,
|
|
173
|
+
)
|
|
174
|
+
|
|
175
|
+
return self._columns[name]
|
|
176
|
+
|
|
177
|
+
def remove_column(self, name: str) -> Self:
|
|
178
|
+
r"""Removes a column from this table.
|
|
179
|
+
|
|
180
|
+
Args:
|
|
181
|
+
name: The name of the column.
|
|
182
|
+
|
|
183
|
+
Raises:
|
|
184
|
+
KeyError: If ``name`` is not present in this table.
|
|
185
|
+
"""
|
|
186
|
+
if name not in self:
|
|
187
|
+
raise KeyError(f"Column '{name}' not found in table '{self.name}'")
|
|
188
|
+
|
|
189
|
+
if self._primary_key == name:
|
|
190
|
+
self.primary_key = None
|
|
191
|
+
if self._time_column == name:
|
|
192
|
+
self.time_column = None
|
|
193
|
+
if self._end_time_column == name:
|
|
194
|
+
self.end_time_column = None
|
|
195
|
+
del self._columns[name]
|
|
196
|
+
|
|
197
|
+
return self
|
|
198
|
+
|
|
199
|
+
# Primary key #############################################################
|
|
200
|
+
|
|
201
|
+
def has_primary_key(self) -> bool:
|
|
202
|
+
r"""Returns ``True``` if this table has a primary key; ``False``
|
|
203
|
+
otherwise.
|
|
204
|
+
"""
|
|
205
|
+
return self._primary_key is not None
|
|
206
|
+
|
|
207
|
+
@property
|
|
208
|
+
def primary_key(self) -> Optional[Column]:
|
|
209
|
+
r"""The primary key column of this table.
|
|
210
|
+
|
|
211
|
+
The getter returns the primary key column of this table, or ``None`` if
|
|
212
|
+
no such primary key is present.
|
|
213
|
+
|
|
214
|
+
The setter sets a column as a primary key on this table, and raises a
|
|
215
|
+
:class:`ValueError` if the primary key has a non-ID semantic type or
|
|
216
|
+
if the column name does not match a column in the data frame.
|
|
217
|
+
"""
|
|
218
|
+
if self._primary_key is None:
|
|
219
|
+
return None
|
|
220
|
+
return self[self._primary_key]
|
|
221
|
+
|
|
222
|
+
@primary_key.setter
|
|
223
|
+
def primary_key(self, name: Optional[str]) -> None:
|
|
224
|
+
if name is not None and name == self._time_column:
|
|
225
|
+
raise ValueError(f"Cannot specify column '{name}' as a primary "
|
|
226
|
+
f"key since it is already defined to be a time "
|
|
227
|
+
f"column")
|
|
228
|
+
if name is not None and name == self._end_time_column:
|
|
229
|
+
raise ValueError(f"Cannot specify column '{name}' as a primary "
|
|
230
|
+
f"key since it is already defined to be an end "
|
|
231
|
+
f"time column")
|
|
232
|
+
|
|
233
|
+
if self.primary_key is not None:
|
|
234
|
+
self.primary_key._is_primary_key = False
|
|
235
|
+
|
|
236
|
+
if name is None:
|
|
237
|
+
self._primary_key = None
|
|
238
|
+
return
|
|
239
|
+
|
|
240
|
+
self[name].stype = Stype.ID
|
|
241
|
+
self[name]._is_primary_key = True
|
|
242
|
+
self._primary_key = name
|
|
243
|
+
|
|
244
|
+
# Time column #############################################################
|
|
245
|
+
|
|
246
|
+
def has_time_column(self) -> bool:
|
|
247
|
+
r"""Returns ``True`` if this table has a time column; ``False``
|
|
248
|
+
otherwise.
|
|
249
|
+
"""
|
|
250
|
+
return self._time_column is not None
|
|
251
|
+
|
|
252
|
+
@property
|
|
253
|
+
def time_column(self) -> Optional[Column]:
|
|
254
|
+
r"""The time column of this table.
|
|
255
|
+
|
|
256
|
+
The getter returns the time column of this table, or ``None`` if no
|
|
257
|
+
such time column is present.
|
|
258
|
+
|
|
259
|
+
The setter sets a column as a time column on this table, and raises a
|
|
260
|
+
:class:`ValueError` if the time column has a non-timestamp semantic
|
|
261
|
+
type or if the column name does not match a column in the data frame.
|
|
262
|
+
"""
|
|
263
|
+
if self._time_column is None:
|
|
264
|
+
return None
|
|
265
|
+
return self[self._time_column]
|
|
266
|
+
|
|
267
|
+
@time_column.setter
|
|
268
|
+
def time_column(self, name: Optional[str]) -> None:
|
|
269
|
+
if name is not None and name == self._primary_key:
|
|
270
|
+
raise ValueError(f"Cannot specify column '{name}' as a time "
|
|
271
|
+
f"column since it is already defined to be a "
|
|
272
|
+
f"primary key")
|
|
273
|
+
if name is not None and name == self._end_time_column:
|
|
274
|
+
raise ValueError(f"Cannot specify column '{name}' as a time "
|
|
275
|
+
f"column since it is already defined to be an "
|
|
276
|
+
f"end time column")
|
|
277
|
+
|
|
278
|
+
if self.time_column is not None:
|
|
279
|
+
self.time_column._is_time_column = False
|
|
280
|
+
|
|
281
|
+
if name is None:
|
|
282
|
+
self._time_column = None
|
|
283
|
+
return
|
|
284
|
+
|
|
285
|
+
self[name].stype = Stype.timestamp
|
|
286
|
+
self[name]._is_time_column = True
|
|
287
|
+
self._time_column = name
|
|
288
|
+
|
|
289
|
+
# End Time column #########################################################
|
|
290
|
+
|
|
291
|
+
def has_end_time_column(self) -> bool:
|
|
292
|
+
r"""Returns ``True`` if this table has an end time column; ``False``
|
|
293
|
+
otherwise.
|
|
294
|
+
"""
|
|
295
|
+
return self._end_time_column is not None
|
|
296
|
+
|
|
297
|
+
@property
|
|
298
|
+
def end_time_column(self) -> Optional[Column]:
|
|
299
|
+
r"""The end time column of this table.
|
|
300
|
+
|
|
301
|
+
The getter returns the end time column of this table, or ``None`` if no
|
|
302
|
+
such end time column is present.
|
|
303
|
+
|
|
304
|
+
The setter sets a column as an end time column on this table, and
|
|
305
|
+
raises a :class:`ValueError` if the end time column has a non-timestamp
|
|
306
|
+
semantic type or if the column name does not match a column in the data
|
|
307
|
+
frame.
|
|
308
|
+
"""
|
|
309
|
+
if self._end_time_column is None:
|
|
310
|
+
return None
|
|
311
|
+
return self[self._end_time_column]
|
|
312
|
+
|
|
313
|
+
@end_time_column.setter
|
|
314
|
+
def end_time_column(self, name: Optional[str]) -> None:
|
|
315
|
+
if name is not None and name == self._primary_key:
|
|
316
|
+
raise ValueError(f"Cannot specify column '{name}' as an end time "
|
|
317
|
+
f"column since it is already defined to be a "
|
|
318
|
+
f"primary key")
|
|
319
|
+
if name is not None and name == self._time_column:
|
|
320
|
+
raise ValueError(f"Cannot specify column '{name}' as an end time "
|
|
321
|
+
f"column since it is already defined to be a "
|
|
322
|
+
f"time column")
|
|
323
|
+
|
|
324
|
+
if self.end_time_column is not None:
|
|
325
|
+
self.end_time_column._is_end_time_column = False
|
|
326
|
+
|
|
327
|
+
if name is None:
|
|
328
|
+
self._end_time_column = None
|
|
329
|
+
return
|
|
330
|
+
|
|
331
|
+
self[name].stype = Stype.timestamp
|
|
332
|
+
self[name]._is_end_time_column = True
|
|
333
|
+
self._end_time_column = name
|
|
334
|
+
|
|
335
|
+
# Metadata ################################################################
|
|
336
|
+
|
|
337
|
+
@property
|
|
338
|
+
def metadata(self) -> pd.DataFrame:
|
|
339
|
+
r"""Returns a :class:`pandas.DataFrame` object containing metadata
|
|
340
|
+
information about the columns in this table.
|
|
341
|
+
|
|
342
|
+
The returned dataframe has columns ``name``, ``dtype``, ``stype``,
|
|
343
|
+
``is_primary_key``, ``is_time_column`` and ``is_end_time_column``,
|
|
344
|
+
which provide an aggregate view of the properties of the columns of
|
|
345
|
+
this table.
|
|
346
|
+
|
|
347
|
+
Example:
|
|
348
|
+
>>> # doctest: +SKIP
|
|
349
|
+
>>> import kumoai.experimental.rfm as rfm
|
|
350
|
+
>>> table = rfm.LocalTable(df=..., name=...).infer_metadata()
|
|
351
|
+
>>> table.metadata
|
|
352
|
+
name dtype stype is_primary_key is_time_column is_end_time_column
|
|
353
|
+
0 CustomerID float64 ID True False False
|
|
354
|
+
""" # noqa: E501
|
|
355
|
+
cols = self.columns
|
|
356
|
+
|
|
357
|
+
return pd.DataFrame({
|
|
358
|
+
'name':
|
|
359
|
+
pd.Series(dtype=str, data=[c.name for c in cols]),
|
|
360
|
+
'dtype':
|
|
361
|
+
pd.Series(dtype=str, data=[c.dtype for c in cols]),
|
|
362
|
+
'stype':
|
|
363
|
+
pd.Series(dtype=str, data=[c.stype for c in cols]),
|
|
364
|
+
'is_primary_key':
|
|
365
|
+
pd.Series(
|
|
366
|
+
dtype=bool,
|
|
367
|
+
data=[self._primary_key == c.name for c in cols],
|
|
368
|
+
),
|
|
369
|
+
'is_time_column':
|
|
370
|
+
pd.Series(
|
|
371
|
+
dtype=bool,
|
|
372
|
+
data=[self._time_column == c.name for c in cols],
|
|
373
|
+
),
|
|
374
|
+
'is_end_time_column':
|
|
375
|
+
pd.Series(
|
|
376
|
+
dtype=bool,
|
|
377
|
+
data=[self._end_time_column == c.name for c in cols],
|
|
378
|
+
),
|
|
379
|
+
})
|
|
380
|
+
|
|
381
|
+
def print_metadata(self) -> None:
|
|
382
|
+
r"""Prints the :meth:`~metadata` of this table."""
|
|
383
|
+
num_rows_repr = ''
|
|
384
|
+
if self._num_rows is not None:
|
|
385
|
+
num_rows_repr = ' ({self._num_rows:,} rows)'
|
|
386
|
+
|
|
387
|
+
if in_snowflake_notebook():
|
|
388
|
+
import streamlit as st
|
|
389
|
+
md_repr = f"### 🏷️ Metadata of Table `{self.name}`{num_rows_repr}"
|
|
390
|
+
st.markdown(md_repr)
|
|
391
|
+
st.dataframe(self.metadata, hide_index=True)
|
|
392
|
+
elif in_notebook():
|
|
393
|
+
from IPython.display import Markdown, display
|
|
394
|
+
md_repr = f"### 🏷️ Metadata of Table `{self.name}`{num_rows_repr}"
|
|
395
|
+
display(Markdown(md_repr))
|
|
396
|
+
df = self.metadata
|
|
397
|
+
try:
|
|
398
|
+
if hasattr(df.style, 'hide'):
|
|
399
|
+
display(df.style.hide(axis='index')) # pandas=2
|
|
400
|
+
else:
|
|
401
|
+
display(df.style.hide_index()) # pandas<1.3
|
|
402
|
+
except ImportError:
|
|
403
|
+
print(df.to_string(index=False)) # missing jinja2
|
|
404
|
+
else:
|
|
405
|
+
print(f"🏷️ Metadata of Table '{self.name}'{num_rows_repr}")
|
|
406
|
+
print(self.metadata.to_string(index=False))
|
|
407
|
+
|
|
408
|
+
def infer_metadata(self, verbose: bool = True) -> Self:
|
|
409
|
+
r"""Infers metadata, *i.e.*, primary keys and time columns, in the
|
|
410
|
+
table.
|
|
411
|
+
|
|
412
|
+
Args:
|
|
413
|
+
verbose: Whether to print verbose output.
|
|
414
|
+
"""
|
|
415
|
+
logs = []
|
|
416
|
+
|
|
417
|
+
# Try to detect primary key if not set:
|
|
418
|
+
if not self.has_primary_key():
|
|
419
|
+
|
|
420
|
+
def is_candidate(column: Column) -> bool:
|
|
421
|
+
if column.stype == Stype.ID:
|
|
422
|
+
return True
|
|
423
|
+
if all(column.stype != Stype.ID for column in self.columns):
|
|
424
|
+
if self.name == column.name:
|
|
425
|
+
return True
|
|
426
|
+
if (self.name.endswith('s')
|
|
427
|
+
and self.name[:-1] == column.name):
|
|
428
|
+
return True
|
|
429
|
+
return False
|
|
430
|
+
|
|
431
|
+
candidates = [
|
|
432
|
+
column.name for column in self.columns if is_candidate(column)
|
|
433
|
+
]
|
|
434
|
+
|
|
435
|
+
if primary_key := infer_primary_key(
|
|
436
|
+
table_name=self.name,
|
|
437
|
+
df=self._sample_df,
|
|
438
|
+
candidates=candidates,
|
|
439
|
+
):
|
|
440
|
+
self.primary_key = primary_key
|
|
441
|
+
logs.append(f"primary key '{primary_key}'")
|
|
442
|
+
|
|
443
|
+
# Try to detect time column if not set:
|
|
444
|
+
if not self.has_time_column():
|
|
445
|
+
candidates = [
|
|
446
|
+
column.name for column in self.columns
|
|
447
|
+
if column.stype == Stype.timestamp
|
|
448
|
+
and column.name != self._end_time_column
|
|
449
|
+
]
|
|
450
|
+
if time_column := infer_time_column(
|
|
451
|
+
df=self._sample_df,
|
|
452
|
+
candidates=candidates,
|
|
453
|
+
):
|
|
454
|
+
self.time_column = time_column
|
|
455
|
+
logs.append(f"time column '{time_column}'")
|
|
456
|
+
|
|
457
|
+
if verbose and len(logs) > 0:
|
|
458
|
+
print(f"Detected {' and '.join(logs)} in table '{self.name}'")
|
|
459
|
+
|
|
460
|
+
return self
|
|
461
|
+
|
|
462
|
+
# Helpers #################################################################
|
|
463
|
+
|
|
464
|
+
def _to_api_table_definition(self) -> TableDefinition:
|
|
465
|
+
return TableDefinition(
|
|
466
|
+
cols=[
|
|
467
|
+
ColumnDefinition(col.name, col.stype, col.dtype)
|
|
468
|
+
for col in self.columns
|
|
469
|
+
],
|
|
470
|
+
source_table=UnavailableSourceTable(table=self.name),
|
|
471
|
+
pkey=self._primary_key,
|
|
472
|
+
time_col=self._time_column,
|
|
473
|
+
end_time_col=self._end_time_column,
|
|
474
|
+
)
|
|
475
|
+
|
|
476
|
+
# Python builtins #########################################################
|
|
477
|
+
|
|
478
|
+
def __hash__(self) -> int:
|
|
479
|
+
special_columns = [
|
|
480
|
+
self.primary_key,
|
|
481
|
+
self.time_column,
|
|
482
|
+
self.end_time_column,
|
|
483
|
+
]
|
|
484
|
+
return hash(tuple(self.columns + special_columns))
|
|
485
|
+
|
|
486
|
+
def __contains__(self, name: str) -> bool:
|
|
487
|
+
return self.has_column(name)
|
|
488
|
+
|
|
489
|
+
def __getitem__(self, name: str) -> Column:
|
|
490
|
+
return self.column(name)
|
|
491
|
+
|
|
492
|
+
def __delitem__(self, name: str) -> None:
|
|
493
|
+
self.remove_column(name)
|
|
494
|
+
|
|
495
|
+
def __repr__(self) -> str:
|
|
496
|
+
return (f'{self.__class__.__name__}(\n'
|
|
497
|
+
f' name={self.name},\n'
|
|
498
|
+
f' num_columns={len(self.columns)},\n'
|
|
499
|
+
f' primary_key={self._primary_key},\n'
|
|
500
|
+
f' time_column={self._time_column},\n'
|
|
501
|
+
f' end_time_column={self._end_time_column},\n'
|
|
502
|
+
f')')
|
|
503
|
+
|
|
504
|
+
# Abstract method #########################################################
|
|
505
|
+
|
|
506
|
+
@cached_property
|
|
507
|
+
def _source_column_dict(self) -> Dict[str, SourceColumn]:
|
|
508
|
+
return {col.name: col for col in self._get_source_columns()}
|
|
509
|
+
|
|
510
|
+
@abstractmethod
|
|
511
|
+
def _get_source_columns(self) -> List[SourceColumn]:
|
|
512
|
+
pass
|
|
513
|
+
|
|
514
|
+
@cached_property
|
|
515
|
+
def _source_foreign_key_dict(self) -> Dict[str, SourceForeignKey]:
|
|
516
|
+
fkeys = self._get_source_foreign_keys()
|
|
517
|
+
# NOTE Drop all keys that link to different primary keys in the same
|
|
518
|
+
# table since we don't support composite keys yet:
|
|
519
|
+
table_pkeys: Dict[str, Set[str]] = defaultdict(set)
|
|
520
|
+
for fkey in fkeys:
|
|
521
|
+
table_pkeys[fkey.dst_table].add(fkey.primary_key)
|
|
522
|
+
return {
|
|
523
|
+
fkey.name: fkey
|
|
524
|
+
for fkey in fkeys if len(table_pkeys[fkey.dst_table]) == 1
|
|
525
|
+
}
|
|
526
|
+
|
|
527
|
+
@abstractmethod
|
|
528
|
+
def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
|
|
529
|
+
pass
|
|
530
|
+
|
|
531
|
+
@cached_property
|
|
532
|
+
def _sample_df(self) -> pd.DataFrame:
|
|
533
|
+
return self._get_sample_df()
|
|
534
|
+
|
|
535
|
+
@abstractmethod
|
|
536
|
+
def _get_sample_df(self) -> pd.DataFrame:
|
|
537
|
+
pass
|
|
538
|
+
|
|
539
|
+
@cached_property
|
|
540
|
+
def _num_rows(self) -> Optional[int]:
|
|
541
|
+
return self._get_num_rows()
|
|
542
|
+
|
|
543
|
+
@abstractmethod
|
|
544
|
+
def _get_num_rows(self) -> Optional[int]:
|
|
545
|
+
pass
|