kumoai 2.8.0.dev202508221830__cp312-cp312-win_amd64.whl → 2.13.0.dev202512041141__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of kumoai might be problematic. Click here for more details.
- kumoai/__init__.py +22 -11
- kumoai/_version.py +1 -1
- kumoai/client/client.py +17 -16
- kumoai/client/endpoints.py +1 -0
- kumoai/client/rfm.py +37 -8
- kumoai/connector/file_upload_connector.py +94 -85
- kumoai/connector/utils.py +1399 -210
- kumoai/experimental/rfm/__init__.py +164 -46
- kumoai/experimental/rfm/authenticate.py +8 -5
- kumoai/experimental/rfm/backend/__init__.py +0 -0
- kumoai/experimental/rfm/backend/local/__init__.py +38 -0
- kumoai/experimental/rfm/backend/local/table.py +109 -0
- kumoai/experimental/rfm/backend/snow/__init__.py +35 -0
- kumoai/experimental/rfm/backend/snow/table.py +117 -0
- kumoai/experimental/rfm/backend/sqlite/__init__.py +30 -0
- kumoai/experimental/rfm/backend/sqlite/table.py +101 -0
- kumoai/experimental/rfm/base/__init__.py +10 -0
- kumoai/experimental/rfm/base/column.py +66 -0
- kumoai/experimental/rfm/base/source.py +18 -0
- kumoai/experimental/rfm/base/table.py +545 -0
- kumoai/experimental/rfm/{local_graph.py → graph.py} +413 -144
- kumoai/experimental/rfm/infer/__init__.py +6 -0
- kumoai/experimental/rfm/infer/dtype.py +79 -0
- kumoai/experimental/rfm/infer/pkey.py +126 -0
- kumoai/experimental/rfm/infer/time_col.py +62 -0
- kumoai/experimental/rfm/infer/timestamp.py +7 -4
- kumoai/experimental/rfm/local_graph_sampler.py +58 -11
- kumoai/experimental/rfm/local_graph_store.py +45 -37
- kumoai/experimental/rfm/local_pquery_driver.py +342 -46
- kumoai/experimental/rfm/pquery/__init__.py +4 -4
- kumoai/experimental/rfm/pquery/{backend.py → executor.py} +28 -58
- kumoai/experimental/rfm/pquery/pandas_executor.py +532 -0
- kumoai/experimental/rfm/rfm.py +559 -148
- kumoai/experimental/rfm/sagemaker.py +138 -0
- kumoai/jobs.py +27 -1
- kumoai/kumolib.cp312-win_amd64.pyd +0 -0
- kumoai/pquery/prediction_table.py +5 -3
- kumoai/pquery/training_table.py +5 -3
- kumoai/spcs.py +1 -3
- kumoai/testing/decorators.py +1 -1
- kumoai/trainer/job.py +9 -30
- kumoai/trainer/trainer.py +19 -10
- kumoai/utils/__init__.py +2 -1
- kumoai/utils/progress_logger.py +96 -16
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/METADATA +14 -5
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/RECORD +49 -36
- kumoai/experimental/rfm/local_table.py +0 -448
- kumoai/experimental/rfm/pquery/pandas_backend.py +0 -437
- kumoai/experimental/rfm/utils.py +0 -347
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/WHEEL +0 -0
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.8.0.dev202508221830.dist-info → kumoai-2.13.0.dev202512041141.dist-info}/top_level.txt +0 -0
|
@@ -1,43 +1,123 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
except Exception as e:
|
|
4
|
-
import platform
|
|
5
|
-
|
|
6
|
-
_msg = f"""RFM is not supported in your environment.
|
|
7
|
-
|
|
8
|
-
💻 Your Environment:
|
|
9
|
-
Python version: {platform.python_version()}
|
|
10
|
-
Operating system: {platform.system()}
|
|
11
|
-
CPU architecture: {platform.machine()}
|
|
12
|
-
glibc version: {platform.libc_ver()[1]}
|
|
13
|
-
|
|
14
|
-
✅ Supported Environments:
|
|
15
|
-
* Python versions: 3.9, 3.10, 3.11, 3.12, 3.13
|
|
16
|
-
* Operating systems and CPU architectures:
|
|
17
|
-
* Linux (x86_64)
|
|
18
|
-
* macOS (arm64)
|
|
19
|
-
* Windows (x86_64)
|
|
20
|
-
* glibc versions: >=2.28
|
|
21
|
-
|
|
22
|
-
❌ Unsupported Environments:
|
|
23
|
-
* Python versions: 3.8, 3.14
|
|
24
|
-
* Operating systems and CPU architectures:
|
|
25
|
-
* Linux (arm64)
|
|
26
|
-
* macOS (x86_64)
|
|
27
|
-
* Windows (arm64)
|
|
28
|
-
* glibc versions: <2.28
|
|
29
|
-
|
|
30
|
-
Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
|
|
31
|
-
|
|
32
|
-
raise RuntimeError(_msg) from e
|
|
33
|
-
|
|
34
|
-
from typing import Optional, Dict
|
|
1
|
+
import ipaddress
|
|
2
|
+
import logging
|
|
35
3
|
import os
|
|
4
|
+
import re
|
|
5
|
+
import socket
|
|
6
|
+
import threading
|
|
7
|
+
from dataclasses import dataclass
|
|
8
|
+
from enum import Enum
|
|
9
|
+
from typing import Dict, Optional, Tuple
|
|
10
|
+
from urllib.parse import urlparse
|
|
11
|
+
|
|
36
12
|
import kumoai
|
|
37
|
-
from .
|
|
38
|
-
|
|
39
|
-
from .rfm import KumoRFM
|
|
13
|
+
from kumoai.client.client import KumoClient
|
|
14
|
+
|
|
40
15
|
from .authenticate import authenticate
|
|
16
|
+
from .sagemaker import (
|
|
17
|
+
KumoClient_SageMakerAdapter,
|
|
18
|
+
KumoClient_SageMakerProxy_Local,
|
|
19
|
+
)
|
|
20
|
+
from .base import Table
|
|
21
|
+
from .backend.local import LocalTable
|
|
22
|
+
from .graph import Graph
|
|
23
|
+
from .rfm import ExplainConfig, Explanation, KumoRFM
|
|
24
|
+
|
|
25
|
+
logger = logging.getLogger('kumoai_rfm')
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def _is_local_address(host: str | None) -> bool:
|
|
29
|
+
"""Return True if the hostname/IP refers to the local machine."""
|
|
30
|
+
if not host:
|
|
31
|
+
return False
|
|
32
|
+
try:
|
|
33
|
+
infos = socket.getaddrinfo(host, None)
|
|
34
|
+
for _, _, _, _, sockaddr in infos:
|
|
35
|
+
ip = sockaddr[0]
|
|
36
|
+
ip_obj = ipaddress.ip_address(ip)
|
|
37
|
+
if ip_obj.is_loopback or ip_obj.is_unspecified:
|
|
38
|
+
return True
|
|
39
|
+
return False
|
|
40
|
+
except Exception:
|
|
41
|
+
return False
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class InferenceBackend(str, Enum):
|
|
45
|
+
REST = "REST"
|
|
46
|
+
LOCAL_SAGEMAKER = "LOCAL_SAGEMAKER"
|
|
47
|
+
AWS_SAGEMAKER = "AWS_SAGEMAKER"
|
|
48
|
+
UNKNOWN = "UNKNOWN"
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def _detect_backend(
|
|
52
|
+
url: str) -> Tuple[InferenceBackend, Optional[str], Optional[str]]:
|
|
53
|
+
parsed = urlparse(url)
|
|
54
|
+
|
|
55
|
+
# Remote SageMaker
|
|
56
|
+
if ("runtime.sagemaker" in parsed.netloc
|
|
57
|
+
and parsed.path.endswith("/invocations")):
|
|
58
|
+
# Example: https://runtime.sagemaker.us-west-2.amazonaws.com/
|
|
59
|
+
# endpoints/Name/invocations
|
|
60
|
+
match = re.search(r"runtime\.sagemaker\.([a-z0-9-]+)\.amazonaws\.com",
|
|
61
|
+
parsed.netloc)
|
|
62
|
+
region = match.group(1) if match else None
|
|
63
|
+
m = re.search(r"/endpoints/([^/]+)/invocations", parsed.path)
|
|
64
|
+
endpoint_name = m.group(1) if m else None
|
|
65
|
+
return InferenceBackend.AWS_SAGEMAKER, region, endpoint_name
|
|
66
|
+
|
|
67
|
+
# Local SageMaker
|
|
68
|
+
if parsed.port == 8080 and parsed.path.endswith(
|
|
69
|
+
"/invocations") and _is_local_address(parsed.hostname):
|
|
70
|
+
return InferenceBackend.LOCAL_SAGEMAKER, None, None
|
|
71
|
+
|
|
72
|
+
# Default: regular REST
|
|
73
|
+
return InferenceBackend.REST, None, None
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
@dataclass
|
|
77
|
+
class RfmGlobalState:
|
|
78
|
+
_url: str = '__url_not_provided__'
|
|
79
|
+
_backend: InferenceBackend = InferenceBackend.UNKNOWN
|
|
80
|
+
_region: Optional[str] = None
|
|
81
|
+
_endpoint_name: Optional[str] = None
|
|
82
|
+
_thread_local = threading.local()
|
|
83
|
+
|
|
84
|
+
# Thread-safe init-once.
|
|
85
|
+
_initialized: bool = False
|
|
86
|
+
_lock: threading.Lock = threading.Lock()
|
|
87
|
+
|
|
88
|
+
@property
|
|
89
|
+
def client(self) -> KumoClient:
|
|
90
|
+
if self._backend == InferenceBackend.REST:
|
|
91
|
+
return kumoai.global_state.client
|
|
92
|
+
|
|
93
|
+
if hasattr(self._thread_local, '_sagemaker'):
|
|
94
|
+
# Set the spcs token in the client to ensure it has the latest.
|
|
95
|
+
return self._thread_local._sagemaker
|
|
96
|
+
|
|
97
|
+
sagemaker_client: KumoClient
|
|
98
|
+
if self._backend == InferenceBackend.LOCAL_SAGEMAKER:
|
|
99
|
+
sagemaker_client = KumoClient_SageMakerProxy_Local(self._url)
|
|
100
|
+
else:
|
|
101
|
+
assert self._backend == InferenceBackend.AWS_SAGEMAKER
|
|
102
|
+
assert self._region
|
|
103
|
+
assert self._endpoint_name
|
|
104
|
+
sagemaker_client = KumoClient_SageMakerAdapter(
|
|
105
|
+
self._region, self._endpoint_name)
|
|
106
|
+
|
|
107
|
+
self._thread_local._sagemaker = sagemaker_client
|
|
108
|
+
return sagemaker_client
|
|
109
|
+
|
|
110
|
+
def reset(self) -> None: # For testing only.
|
|
111
|
+
with self._lock:
|
|
112
|
+
self._initialized = False
|
|
113
|
+
self._url = '__url_not_provided__'
|
|
114
|
+
self._backend = InferenceBackend.UNKNOWN
|
|
115
|
+
self._region = None
|
|
116
|
+
self._endpoint_name = None
|
|
117
|
+
self._thread_local = threading.local()
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
global_state = RfmGlobalState()
|
|
41
121
|
|
|
42
122
|
|
|
43
123
|
def init(
|
|
@@ -47,19 +127,57 @@ def init(
|
|
|
47
127
|
snowflake_application: Optional[str] = None,
|
|
48
128
|
log_level: str = "INFO",
|
|
49
129
|
) -> None:
|
|
50
|
-
|
|
51
|
-
|
|
130
|
+
with global_state._lock:
|
|
131
|
+
if global_state._initialized:
|
|
132
|
+
if url != global_state._url:
|
|
133
|
+
raise ValueError(
|
|
134
|
+
"Kumo RFM has already been initialized with a different "
|
|
135
|
+
"URL. Re-initialization with a different URL is not "
|
|
136
|
+
"supported.")
|
|
137
|
+
return
|
|
52
138
|
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
snowflake_application=snowflake_application,
|
|
56
|
-
log_level=log_level)
|
|
139
|
+
if url is None:
|
|
140
|
+
url = os.getenv("RFM_API_URL", "https://kumorfm.ai/api")
|
|
57
141
|
|
|
142
|
+
backend, region, endpoint_name = _detect_backend(url)
|
|
143
|
+
if backend == InferenceBackend.REST:
|
|
144
|
+
# Initialize kumoai.global_state
|
|
145
|
+
if (kumoai.global_state.initialized
|
|
146
|
+
and kumoai.global_state._url != url):
|
|
147
|
+
raise ValueError(
|
|
148
|
+
"Kumo AI SDK has already been initialized with different "
|
|
149
|
+
"API URL. Please restart Python interpreter and "
|
|
150
|
+
"initialize via kumoai.rfm.init()")
|
|
151
|
+
kumoai.init(url=url, api_key=api_key,
|
|
152
|
+
snowflake_credentials=snowflake_credentials,
|
|
153
|
+
snowflake_application=snowflake_application,
|
|
154
|
+
log_level=log_level)
|
|
155
|
+
elif backend == InferenceBackend.AWS_SAGEMAKER:
|
|
156
|
+
assert region
|
|
157
|
+
assert endpoint_name
|
|
158
|
+
KumoClient_SageMakerAdapter(region, endpoint_name).authenticate()
|
|
159
|
+
else:
|
|
160
|
+
assert backend == InferenceBackend.LOCAL_SAGEMAKER
|
|
161
|
+
KumoClient_SageMakerProxy_Local(url).authenticate()
|
|
162
|
+
|
|
163
|
+
global_state._url = url
|
|
164
|
+
global_state._backend = backend
|
|
165
|
+
global_state._region = region
|
|
166
|
+
global_state._endpoint_name = endpoint_name
|
|
167
|
+
global_state._initialized = True
|
|
168
|
+
logger.info("Kumo RFM initialized with backend: %s, url: %s", backend,
|
|
169
|
+
url)
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
LocalGraph = Graph # NOTE Backward compatibility - do not use anymore.
|
|
58
173
|
|
|
59
174
|
__all__ = [
|
|
60
|
-
'LocalTable',
|
|
61
|
-
'LocalGraph',
|
|
62
|
-
'KumoRFM',
|
|
63
175
|
'authenticate',
|
|
64
176
|
'init',
|
|
177
|
+
'Table',
|
|
178
|
+
'LocalTable',
|
|
179
|
+
'Graph',
|
|
180
|
+
'KumoRFM',
|
|
181
|
+
'ExplainConfig',
|
|
182
|
+
'Explanation',
|
|
65
183
|
]
|
|
@@ -264,14 +264,17 @@ def _authenticate_local(api_url: str, redirect_port: int = 8765) -> None:
|
|
|
264
264
|
f"?callback_url={urllib.parse.quote(callback_url)}" +
|
|
265
265
|
f"&token_name={urllib.parse.quote(token_name)}")
|
|
266
266
|
|
|
267
|
-
print(
|
|
267
|
+
print(
|
|
268
|
+
"Opening browser page to automatically generate an API key...\n" +
|
|
269
|
+
"If the page does not open, manually create a new API key at " +
|
|
270
|
+
f"{api_url}/api-keys and set it using os.environ[\"KUMO_API_KEY\"] " +
|
|
271
|
+
"= \"YOUR_API_KEY\"")
|
|
272
|
+
|
|
268
273
|
webbrowser.open(login_url)
|
|
269
274
|
|
|
270
275
|
def get_user_input() -> None:
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
token_entered = getpass("API Key (type then press enter): ").strip()
|
|
276
|
+
token_entered = getpass(
|
|
277
|
+
"or paste the API key here and press enter: ").strip()
|
|
275
278
|
|
|
276
279
|
while (len(token_entered) == 0):
|
|
277
280
|
token_entered = getpass(
|
|
File without changes
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
try:
|
|
2
|
+
import kumoai.kumolib # noqa: F401
|
|
3
|
+
except Exception as e:
|
|
4
|
+
import platform
|
|
5
|
+
|
|
6
|
+
_msg = f"""RFM is not supported in your environment.
|
|
7
|
+
|
|
8
|
+
💻 Your Environment:
|
|
9
|
+
Python version: {platform.python_version()}
|
|
10
|
+
Operating system: {platform.system()}
|
|
11
|
+
CPU architecture: {platform.machine()}
|
|
12
|
+
glibc version: {platform.libc_ver()[1]}
|
|
13
|
+
|
|
14
|
+
✅ Supported Environments:
|
|
15
|
+
* Python versions: 3.10, 3.11, 3.12, 3.13
|
|
16
|
+
* Operating systems and CPU architectures:
|
|
17
|
+
* Linux (x86_64)
|
|
18
|
+
* macOS (arm64)
|
|
19
|
+
* Windows (x86_64)
|
|
20
|
+
* glibc versions: >=2.28
|
|
21
|
+
|
|
22
|
+
❌ Unsupported Environments:
|
|
23
|
+
* Python versions: 3.8, 3.9, 3.14
|
|
24
|
+
* Operating systems and CPU architectures:
|
|
25
|
+
* Linux (arm64)
|
|
26
|
+
* macOS (x86_64)
|
|
27
|
+
* Windows (arm64)
|
|
28
|
+
* glibc versions: <2.28
|
|
29
|
+
|
|
30
|
+
Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
|
|
31
|
+
|
|
32
|
+
raise RuntimeError(_msg) from e
|
|
33
|
+
|
|
34
|
+
from .table import LocalTable
|
|
35
|
+
|
|
36
|
+
__all__ = [
|
|
37
|
+
'LocalTable',
|
|
38
|
+
]
|
|
@@ -0,0 +1,109 @@
|
|
|
1
|
+
import warnings
|
|
2
|
+
from typing import List, Optional
|
|
3
|
+
|
|
4
|
+
import pandas as pd
|
|
5
|
+
|
|
6
|
+
from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
|
|
7
|
+
from kumoai.experimental.rfm.infer import infer_dtype
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class LocalTable(Table):
|
|
11
|
+
r"""A table backed by a :class:`pandas.DataFrame`.
|
|
12
|
+
|
|
13
|
+
A :class:`LocalTable` fully specifies the relevant metadata, *i.e.*
|
|
14
|
+
selected columns, column semantic types, primary keys and time columns.
|
|
15
|
+
:class:`LocalTable` is used to create a :class:`Graph`.
|
|
16
|
+
|
|
17
|
+
.. code-block:: python
|
|
18
|
+
|
|
19
|
+
import pandas as pd
|
|
20
|
+
import kumoai.experimental.rfm as rfm
|
|
21
|
+
|
|
22
|
+
# Load data from a CSV file:
|
|
23
|
+
df = pd.read_csv("data.csv")
|
|
24
|
+
|
|
25
|
+
# Create a table from a `pandas.DataFrame` and infer its metadata ...
|
|
26
|
+
table = rfm.LocalTable(df, name="my_table").infer_metadata()
|
|
27
|
+
|
|
28
|
+
# ... or create a table explicitly:
|
|
29
|
+
table = rfm.LocalTable(
|
|
30
|
+
df=df,
|
|
31
|
+
name="my_table",
|
|
32
|
+
primary_key="id",
|
|
33
|
+
time_column="time",
|
|
34
|
+
end_time_column=None,
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
# Verify metadata:
|
|
38
|
+
table.print_metadata()
|
|
39
|
+
|
|
40
|
+
# Change the semantic type of a column:
|
|
41
|
+
table[column].stype = "text"
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
df: The data frame to create this table from.
|
|
45
|
+
name: The name of this table.
|
|
46
|
+
primary_key: The name of the primary key of this table, if it exists.
|
|
47
|
+
time_column: The name of the time column of this table, if it exists.
|
|
48
|
+
end_time_column: The name of the end time column of this table, if it
|
|
49
|
+
exists.
|
|
50
|
+
"""
|
|
51
|
+
def __init__(
|
|
52
|
+
self,
|
|
53
|
+
df: pd.DataFrame,
|
|
54
|
+
name: str,
|
|
55
|
+
primary_key: Optional[str] = None,
|
|
56
|
+
time_column: Optional[str] = None,
|
|
57
|
+
end_time_column: Optional[str] = None,
|
|
58
|
+
) -> None:
|
|
59
|
+
|
|
60
|
+
if df.empty:
|
|
61
|
+
raise ValueError("Data frame is empty")
|
|
62
|
+
if isinstance(df.columns, pd.MultiIndex):
|
|
63
|
+
raise ValueError("Data frame must not have a multi-index")
|
|
64
|
+
if not df.columns.is_unique:
|
|
65
|
+
raise ValueError("Data frame must have unique column names")
|
|
66
|
+
if any(col == '' for col in df.columns):
|
|
67
|
+
raise ValueError("Data frame must have non-empty column names")
|
|
68
|
+
|
|
69
|
+
self._data = df.copy(deep=False)
|
|
70
|
+
|
|
71
|
+
super().__init__(
|
|
72
|
+
name=name,
|
|
73
|
+
columns=list(df.columns),
|
|
74
|
+
primary_key=primary_key,
|
|
75
|
+
time_column=time_column,
|
|
76
|
+
end_time_column=end_time_column,
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
def _get_source_columns(self) -> List[SourceColumn]:
|
|
80
|
+
source_columns: List[SourceColumn] = []
|
|
81
|
+
for column in self._data.columns:
|
|
82
|
+
ser = self._data[column]
|
|
83
|
+
try:
|
|
84
|
+
dtype = infer_dtype(ser)
|
|
85
|
+
except Exception:
|
|
86
|
+
warnings.warn(f"Data type inference for column '{column}' in "
|
|
87
|
+
f"table '{self.name}' failed. Consider changing "
|
|
88
|
+
f"the data type of the column to use it within "
|
|
89
|
+
f"this table.")
|
|
90
|
+
continue
|
|
91
|
+
|
|
92
|
+
source_column = SourceColumn(
|
|
93
|
+
name=column,
|
|
94
|
+
dtype=dtype,
|
|
95
|
+
is_primary_key=False,
|
|
96
|
+
is_unique_key=False,
|
|
97
|
+
)
|
|
98
|
+
source_columns.append(source_column)
|
|
99
|
+
|
|
100
|
+
return source_columns
|
|
101
|
+
|
|
102
|
+
def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
|
|
103
|
+
return []
|
|
104
|
+
|
|
105
|
+
def _get_sample_df(self) -> pd.DataFrame:
|
|
106
|
+
return self._data
|
|
107
|
+
|
|
108
|
+
def _get_num_rows(self) -> Optional[int]:
|
|
109
|
+
return len(self._data)
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
from typing import Any, TypeAlias
|
|
2
|
+
|
|
3
|
+
try:
|
|
4
|
+
import snowflake.connector
|
|
5
|
+
except ImportError:
|
|
6
|
+
raise ImportError("No module named 'snowflake'. Please install Kumo SDK "
|
|
7
|
+
"with the 'snowflake' extension via "
|
|
8
|
+
"`pip install kumoai[snowflake]`.")
|
|
9
|
+
|
|
10
|
+
Connection: TypeAlias = snowflake.connector.SnowflakeConnection
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def connect(**kwargs: Any) -> Connection:
|
|
14
|
+
r"""Opens a connection to a :class:`snowflake` database.
|
|
15
|
+
|
|
16
|
+
If available, will return a connection to the active session.
|
|
17
|
+
|
|
18
|
+
kwargs: Connection arguments, following the :class:`snowflake` protocol.
|
|
19
|
+
"""
|
|
20
|
+
try:
|
|
21
|
+
from snowflake.snowpark.context import get_active_session
|
|
22
|
+
return get_active_session().connection
|
|
23
|
+
except Exception:
|
|
24
|
+
pass
|
|
25
|
+
|
|
26
|
+
return snowflake.connector.connect(**kwargs)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
from .table import SnowTable # noqa: E402
|
|
30
|
+
|
|
31
|
+
__all__ = [
|
|
32
|
+
'connect',
|
|
33
|
+
'Connection',
|
|
34
|
+
'SnowTable',
|
|
35
|
+
]
|
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
import re
|
|
2
|
+
from typing import List, Optional, Sequence
|
|
3
|
+
|
|
4
|
+
import pandas as pd
|
|
5
|
+
from kumoapi.typing import Dtype
|
|
6
|
+
|
|
7
|
+
from kumoai.experimental.rfm.backend.snow import Connection
|
|
8
|
+
from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class SnowTable(Table):
|
|
12
|
+
r"""A table backed by a :class:`sqlite` database.
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
connection: The connection to a :class:`snowflake` database.
|
|
16
|
+
name: The name of this table.
|
|
17
|
+
database: The database.
|
|
18
|
+
schema: The schema.
|
|
19
|
+
columns: The selected columns of this table.
|
|
20
|
+
primary_key: The name of the primary key of this table, if it exists.
|
|
21
|
+
time_column: The name of the time column of this table, if it exists.
|
|
22
|
+
end_time_column: The name of the end time column of this table, if it
|
|
23
|
+
exists.
|
|
24
|
+
"""
|
|
25
|
+
def __init__(
|
|
26
|
+
self,
|
|
27
|
+
connection: Connection,
|
|
28
|
+
name: str,
|
|
29
|
+
database: str | None = None,
|
|
30
|
+
schema: str | None = None,
|
|
31
|
+
columns: Optional[Sequence[str]] = None,
|
|
32
|
+
primary_key: Optional[str] = None,
|
|
33
|
+
time_column: Optional[str] = None,
|
|
34
|
+
end_time_column: Optional[str] = None,
|
|
35
|
+
) -> None:
|
|
36
|
+
|
|
37
|
+
if database is not None and schema is None:
|
|
38
|
+
raise ValueError(f"Missing 'schema' for table '{name}' in "
|
|
39
|
+
f"database '{database}'")
|
|
40
|
+
|
|
41
|
+
self._connection = connection
|
|
42
|
+
self._database = database
|
|
43
|
+
self._schema = schema
|
|
44
|
+
|
|
45
|
+
super().__init__(
|
|
46
|
+
name=name,
|
|
47
|
+
columns=columns,
|
|
48
|
+
primary_key=primary_key,
|
|
49
|
+
time_column=time_column,
|
|
50
|
+
end_time_column=end_time_column,
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
@property
|
|
54
|
+
def fqn_name(self) -> str:
|
|
55
|
+
names: List[str] = []
|
|
56
|
+
if self._database is not None:
|
|
57
|
+
assert self._schema is not None
|
|
58
|
+
names.extend([self._database, self._schema])
|
|
59
|
+
elif self._schema is not None:
|
|
60
|
+
names.append(self._schema)
|
|
61
|
+
names.append(self._name)
|
|
62
|
+
return '.'.join(names)
|
|
63
|
+
|
|
64
|
+
def _get_source_columns(self) -> List[SourceColumn]:
|
|
65
|
+
source_columns: List[SourceColumn] = []
|
|
66
|
+
with self._connection.cursor() as cursor:
|
|
67
|
+
try:
|
|
68
|
+
cursor.execute(f"DESCRIBE TABLE {self.fqn_name}")
|
|
69
|
+
except Exception as e:
|
|
70
|
+
raise ValueError(
|
|
71
|
+
f"Table '{self.fqn_name}' does not exist") from e
|
|
72
|
+
|
|
73
|
+
for row in cursor.fetchall():
|
|
74
|
+
column, type, _, _, _, is_pkey, is_unique = row[:7]
|
|
75
|
+
|
|
76
|
+
type = type.strip().upper()
|
|
77
|
+
if type.startswith('NUMBER'):
|
|
78
|
+
dtype = Dtype.int
|
|
79
|
+
elif type.startswith('VARCHAR'):
|
|
80
|
+
dtype = Dtype.string
|
|
81
|
+
elif type == 'FLOAT':
|
|
82
|
+
dtype = Dtype.float
|
|
83
|
+
elif type == 'BOOLEAN':
|
|
84
|
+
dtype = Dtype.bool
|
|
85
|
+
elif re.search('DATE|TIMESTAMP', type):
|
|
86
|
+
dtype = Dtype.date
|
|
87
|
+
else:
|
|
88
|
+
continue
|
|
89
|
+
|
|
90
|
+
source_column = SourceColumn(
|
|
91
|
+
name=column,
|
|
92
|
+
dtype=dtype,
|
|
93
|
+
is_primary_key=is_pkey.strip().upper() == 'Y',
|
|
94
|
+
is_unique_key=is_unique.strip().upper() == 'Y',
|
|
95
|
+
)
|
|
96
|
+
source_columns.append(source_column)
|
|
97
|
+
|
|
98
|
+
return source_columns
|
|
99
|
+
|
|
100
|
+
def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
|
|
101
|
+
source_fkeys: List[SourceForeignKey] = []
|
|
102
|
+
with self._connection.cursor() as cursor:
|
|
103
|
+
cursor.execute(f"SHOW IMPORTED KEYS IN TABLE {self.fqn_name}")
|
|
104
|
+
for row in cursor.fetchall():
|
|
105
|
+
_, _, _, dst_table, pkey, _, _, _, fkey = row[:9]
|
|
106
|
+
source_fkeys.append(SourceForeignKey(fkey, dst_table, pkey))
|
|
107
|
+
return source_fkeys
|
|
108
|
+
|
|
109
|
+
def _get_sample_df(self) -> pd.DataFrame:
|
|
110
|
+
with self._connection.cursor() as cursor:
|
|
111
|
+
columns = ', '.join(self._source_column_dict.keys())
|
|
112
|
+
cursor.execute(f"SELECT {columns} FROM {self.fqn_name} LIMIT 1000")
|
|
113
|
+
table = cursor.fetch_arrow_all()
|
|
114
|
+
return table.to_pandas(types_mapper=pd.ArrowDtype)
|
|
115
|
+
|
|
116
|
+
def _get_num_rows(self) -> Optional[int]:
|
|
117
|
+
return None
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
from pathlib import Path
|
|
2
|
+
from typing import Any, TypeAlias, Union
|
|
3
|
+
|
|
4
|
+
try:
|
|
5
|
+
import adbc_driver_sqlite.dbapi as adbc
|
|
6
|
+
except ImportError:
|
|
7
|
+
raise ImportError("No module named 'adbc_driver_sqlite'. Please install "
|
|
8
|
+
"Kumo SDK with the 'sqlite' extension via "
|
|
9
|
+
"`pip install kumoai[sqlite]`.")
|
|
10
|
+
|
|
11
|
+
Connection: TypeAlias = adbc.AdbcSqliteConnection
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def connect(uri: Union[str, Path, None] = None, **kwargs: Any) -> Connection:
|
|
15
|
+
r"""Opens a connection to a :class:`sqlite` database.
|
|
16
|
+
|
|
17
|
+
uri: The path to the database file to be opened.
|
|
18
|
+
kwargs: Additional connection arguments, following the
|
|
19
|
+
:class:`adbc_driver_sqlite` protocol.
|
|
20
|
+
"""
|
|
21
|
+
return adbc.connect(uri, **kwargs)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
from .table import SQLiteTable # noqa: E402
|
|
25
|
+
|
|
26
|
+
__all__ = [
|
|
27
|
+
'connect',
|
|
28
|
+
'Connection',
|
|
29
|
+
'SQLiteTable',
|
|
30
|
+
]
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
import re
|
|
2
|
+
import warnings
|
|
3
|
+
from typing import List, Optional, Sequence
|
|
4
|
+
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from kumoapi.typing import Dtype
|
|
7
|
+
|
|
8
|
+
from kumoai.experimental.rfm.backend.sqlite import Connection
|
|
9
|
+
from kumoai.experimental.rfm.base import SourceColumn, SourceForeignKey, Table
|
|
10
|
+
from kumoai.experimental.rfm.infer import infer_dtype
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class SQLiteTable(Table):
|
|
14
|
+
r"""A table backed by a :class:`sqlite` database.
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
connection: The connection to a :class:`sqlite` database.
|
|
18
|
+
name: The name of this table.
|
|
19
|
+
columns: The selected columns of this table.
|
|
20
|
+
primary_key: The name of the primary key of this table, if it exists.
|
|
21
|
+
time_column: The name of the time column of this table, if it exists.
|
|
22
|
+
end_time_column: The name of the end time column of this table, if it
|
|
23
|
+
exists.
|
|
24
|
+
"""
|
|
25
|
+
def __init__(
|
|
26
|
+
self,
|
|
27
|
+
connection: Connection,
|
|
28
|
+
name: str,
|
|
29
|
+
columns: Optional[Sequence[str]] = None,
|
|
30
|
+
primary_key: Optional[str] = None,
|
|
31
|
+
time_column: Optional[str] = None,
|
|
32
|
+
end_time_column: Optional[str] = None,
|
|
33
|
+
) -> None:
|
|
34
|
+
|
|
35
|
+
self._connection = connection
|
|
36
|
+
|
|
37
|
+
super().__init__(
|
|
38
|
+
name=name,
|
|
39
|
+
columns=columns,
|
|
40
|
+
primary_key=primary_key,
|
|
41
|
+
time_column=time_column,
|
|
42
|
+
end_time_column=end_time_column,
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
def _get_source_columns(self) -> List[SourceColumn]:
|
|
46
|
+
source_columns: List[SourceColumn] = []
|
|
47
|
+
with self._connection.cursor() as cursor:
|
|
48
|
+
cursor.execute(f"PRAGMA table_info({self.name})")
|
|
49
|
+
rows = cursor.fetchall()
|
|
50
|
+
|
|
51
|
+
if len(rows) == 0:
|
|
52
|
+
raise ValueError(f"Table '{self.name}' does not exist")
|
|
53
|
+
|
|
54
|
+
for _, column, type, _, _, is_pkey in rows:
|
|
55
|
+
# Determine column affinity:
|
|
56
|
+
type = type.strip().upper()
|
|
57
|
+
if re.search('INT', type):
|
|
58
|
+
dtype = Dtype.int
|
|
59
|
+
elif re.search('TEXT|CHAR|CLOB', type):
|
|
60
|
+
dtype = Dtype.string
|
|
61
|
+
elif re.search('REAL|FLOA|DOUB', type):
|
|
62
|
+
dtype = Dtype.float
|
|
63
|
+
else: # NUMERIC affinity.
|
|
64
|
+
ser = self._sample_df[column]
|
|
65
|
+
try:
|
|
66
|
+
dtype = infer_dtype(ser)
|
|
67
|
+
except Exception:
|
|
68
|
+
warnings.warn(
|
|
69
|
+
f"Data type inference for column '{column}' in "
|
|
70
|
+
f"table '{self.name}' failed. Consider changing "
|
|
71
|
+
f"the data type of the column to use it within "
|
|
72
|
+
f"this table.")
|
|
73
|
+
continue
|
|
74
|
+
|
|
75
|
+
source_column = SourceColumn(
|
|
76
|
+
name=column,
|
|
77
|
+
dtype=dtype,
|
|
78
|
+
is_primary_key=bool(is_pkey),
|
|
79
|
+
is_unique_key=False,
|
|
80
|
+
)
|
|
81
|
+
source_columns.append(source_column)
|
|
82
|
+
|
|
83
|
+
return source_columns
|
|
84
|
+
|
|
85
|
+
def _get_source_foreign_keys(self) -> List[SourceForeignKey]:
|
|
86
|
+
source_fkeys: List[SourceForeignKey] = []
|
|
87
|
+
with self._connection.cursor() as cursor:
|
|
88
|
+
cursor.execute(f"PRAGMA foreign_key_list({self.name})")
|
|
89
|
+
for _, _, dst_table, fkey, pkey, _, _, _ in cursor.fetchall():
|
|
90
|
+
source_fkeys.append(SourceForeignKey(fkey, dst_table, pkey))
|
|
91
|
+
return source_fkeys
|
|
92
|
+
|
|
93
|
+
def _get_sample_df(self) -> pd.DataFrame:
|
|
94
|
+
with self._connection.cursor() as cursor:
|
|
95
|
+
cursor.execute(f"SELECT * FROM {self.name} "
|
|
96
|
+
f"ORDER BY rowid LIMIT 1000")
|
|
97
|
+
table = cursor.fetch_arrow_table()
|
|
98
|
+
return table.to_pandas(types_mapper=pd.ArrowDtype)
|
|
99
|
+
|
|
100
|
+
def _get_num_rows(self) -> Optional[int]:
|
|
101
|
+
return None
|