kumoai 2.14.0.dev202512211732__cp313-cp313-win_amd64.whl → 2.14.0.dev202601081732__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +23 -26
- kumoai/_version.py +1 -1
- kumoai/client/client.py +6 -0
- kumoai/client/jobs.py +26 -0
- kumoai/connector/utils.py +21 -7
- kumoai/experimental/rfm/__init__.py +24 -22
- kumoai/experimental/rfm/backend/local/graph_store.py +12 -21
- kumoai/experimental/rfm/backend/local/sampler.py +0 -3
- kumoai/experimental/rfm/backend/local/table.py +24 -25
- kumoai/experimental/rfm/backend/snow/sampler.py +184 -70
- kumoai/experimental/rfm/backend/snow/table.py +137 -64
- kumoai/experimental/rfm/backend/sqlite/sampler.py +191 -86
- kumoai/experimental/rfm/backend/sqlite/table.py +85 -55
- kumoai/experimental/rfm/base/__init__.py +6 -9
- kumoai/experimental/rfm/base/column.py +95 -11
- kumoai/experimental/rfm/base/expression.py +44 -0
- kumoai/experimental/rfm/base/sampler.py +26 -17
- kumoai/experimental/rfm/base/source.py +1 -1
- kumoai/experimental/rfm/base/sql_sampler.py +182 -19
- kumoai/experimental/rfm/base/table.py +275 -109
- kumoai/experimental/rfm/graph.py +115 -107
- kumoai/experimental/rfm/infer/dtype.py +4 -1
- kumoai/experimental/rfm/infer/multicategorical.py +1 -1
- kumoai/experimental/rfm/relbench.py +76 -0
- kumoai/experimental/rfm/rfm.py +530 -304
- kumoai/experimental/rfm/task_table.py +292 -0
- kumoai/kumolib.cp313-win_amd64.pyd +0 -0
- kumoai/pquery/training_table.py +16 -2
- kumoai/trainer/distilled_trainer.py +175 -0
- kumoai/utils/display.py +87 -0
- kumoai/utils/progress_logger.py +13 -1
- {kumoai-2.14.0.dev202512211732.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/METADATA +1 -1
- {kumoai-2.14.0.dev202512211732.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/RECORD +36 -33
- kumoai/experimental/rfm/base/column_expression.py +0 -50
- kumoai/experimental/rfm/base/sql_table.py +0 -229
- {kumoai-2.14.0.dev202512211732.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/WHEEL +0 -0
- {kumoai-2.14.0.dev202512211732.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.14.0.dev202512211732.dist-info → kumoai-2.14.0.dev202601081732.dist-info}/top_level.txt +0 -0
|
@@ -1,22 +1,33 @@
|
|
|
1
|
+
import warnings
|
|
1
2
|
from abc import ABC, abstractmethod
|
|
2
3
|
from collections.abc import Sequence
|
|
3
4
|
from functools import cached_property
|
|
4
5
|
|
|
6
|
+
import numpy as np
|
|
5
7
|
import pandas as pd
|
|
8
|
+
import pyarrow as pa
|
|
6
9
|
from kumoapi.model_plan import MissingType
|
|
7
10
|
from kumoapi.source_table import UnavailableSourceTable
|
|
8
11
|
from kumoapi.table import Column as ColumnDefinition
|
|
9
12
|
from kumoapi.table import TableDefinition
|
|
10
|
-
from kumoapi.typing import Stype
|
|
13
|
+
from kumoapi.typing import Dtype, Stype
|
|
11
14
|
from typing_extensions import Self
|
|
12
15
|
|
|
13
|
-
from kumoai import
|
|
14
|
-
|
|
16
|
+
from kumoai.experimental.rfm.base import (
|
|
17
|
+
Column,
|
|
18
|
+
ColumnSpec,
|
|
19
|
+
ColumnSpecType,
|
|
20
|
+
DataBackend,
|
|
21
|
+
SourceColumn,
|
|
22
|
+
SourceForeignKey,
|
|
23
|
+
)
|
|
15
24
|
from kumoai.experimental.rfm.infer import (
|
|
25
|
+
infer_dtype,
|
|
16
26
|
infer_primary_key,
|
|
17
27
|
infer_stype,
|
|
18
28
|
infer_time_column,
|
|
19
29
|
)
|
|
30
|
+
from kumoai.utils import display, quote_ident
|
|
20
31
|
|
|
21
32
|
|
|
22
33
|
class Table(ABC):
|
|
@@ -26,39 +37,46 @@ class Table(ABC):
|
|
|
26
37
|
|
|
27
38
|
Args:
|
|
28
39
|
name: The name of this table.
|
|
40
|
+
source_name: The source name of this table. If set to ``None``,
|
|
41
|
+
``name`` is being used.
|
|
29
42
|
columns: The selected columns of this table.
|
|
30
43
|
primary_key: The name of the primary key of this table, if it exists.
|
|
31
44
|
time_column: The name of the time column of this table, if it exists.
|
|
32
45
|
end_time_column: The name of the end time column of this table, if it
|
|
33
46
|
exists.
|
|
34
47
|
"""
|
|
48
|
+
_NUM_SAMPLE_ROWS = 1_000
|
|
49
|
+
|
|
35
50
|
def __init__(
|
|
36
51
|
self,
|
|
37
52
|
name: str,
|
|
38
|
-
|
|
53
|
+
source_name: str | None = None,
|
|
54
|
+
columns: Sequence[ColumnSpecType] | None = None,
|
|
39
55
|
primary_key: MissingType | str | None = MissingType.VALUE,
|
|
40
56
|
time_column: str | None = None,
|
|
41
57
|
end_time_column: str | None = None,
|
|
42
58
|
) -> None:
|
|
43
59
|
|
|
44
60
|
self._name = name
|
|
61
|
+
self._source_name = source_name or name
|
|
62
|
+
self._column_dict: dict[str, Column] = {}
|
|
45
63
|
self._primary_key: str | None = None
|
|
46
64
|
self._time_column: str | None = None
|
|
47
65
|
self._end_time_column: str | None = None
|
|
66
|
+
self._expr_sample_df = pd.DataFrame(index=range(self._NUM_SAMPLE_ROWS))
|
|
48
67
|
|
|
49
68
|
if columns is None:
|
|
50
69
|
columns = list(self._source_column_dict.keys())
|
|
51
70
|
|
|
52
|
-
self.
|
|
53
|
-
for column_name in columns:
|
|
54
|
-
self.add_column(column_name)
|
|
71
|
+
self.add_columns(columns)
|
|
55
72
|
|
|
56
73
|
if isinstance(primary_key, MissingType):
|
|
57
|
-
#
|
|
58
|
-
|
|
74
|
+
# Infer primary key from source metadata, but only set it in case
|
|
75
|
+
# it is already part of the column set (don't magically add it):
|
|
76
|
+
if any(column.is_source for column in self.columns):
|
|
59
77
|
primary_key = self._source_primary_key
|
|
60
78
|
if (primary_key is not None and primary_key in self
|
|
61
|
-
and self[primary_key].
|
|
79
|
+
and self[primary_key].is_source):
|
|
62
80
|
self.primary_key = primary_key
|
|
63
81
|
elif primary_key is not None:
|
|
64
82
|
if primary_key not in self:
|
|
@@ -80,13 +98,22 @@ class Table(ABC):
|
|
|
80
98
|
r"""The name of this table."""
|
|
81
99
|
return self._name
|
|
82
100
|
|
|
101
|
+
@property
|
|
102
|
+
def source_name(self) -> str:
|
|
103
|
+
r"""The source name of this table."""
|
|
104
|
+
return self._source_name
|
|
105
|
+
|
|
106
|
+
@property
|
|
107
|
+
def _quoted_source_name(self) -> str:
|
|
108
|
+
return quote_ident(self._source_name)
|
|
109
|
+
|
|
83
110
|
# Column ##################################################################
|
|
84
111
|
|
|
85
112
|
def has_column(self, name: str) -> bool:
|
|
86
113
|
r"""Returns ``True`` if this table holds a column with name ``name``;
|
|
87
114
|
``False`` otherwise.
|
|
88
115
|
"""
|
|
89
|
-
return name in self.
|
|
116
|
+
return name in self._column_dict
|
|
90
117
|
|
|
91
118
|
def column(self, name: str) -> Column:
|
|
92
119
|
r"""Returns the data column named with name ``name`` in this table.
|
|
@@ -99,51 +126,113 @@ class Table(ABC):
|
|
|
99
126
|
"""
|
|
100
127
|
if not self.has_column(name):
|
|
101
128
|
raise KeyError(f"Column '{name}' not found in table '{self.name}'")
|
|
102
|
-
return self.
|
|
129
|
+
return self._column_dict[name]
|
|
103
130
|
|
|
104
131
|
@property
|
|
105
132
|
def columns(self) -> list[Column]:
|
|
106
133
|
r"""Returns a list of :class:`Column` objects that represent the
|
|
107
134
|
columns in this table.
|
|
108
135
|
"""
|
|
109
|
-
return list(self.
|
|
136
|
+
return list(self._column_dict.values())
|
|
110
137
|
|
|
111
|
-
def
|
|
112
|
-
r"""Adds a
|
|
138
|
+
def add_columns(self, columns: Sequence[ColumnSpecType]) -> None:
|
|
139
|
+
r"""Adds a set of columns to this table.
|
|
113
140
|
|
|
114
141
|
Args:
|
|
115
|
-
|
|
142
|
+
columns: The columns to add.
|
|
116
143
|
|
|
117
144
|
Raises:
|
|
118
|
-
KeyError: If
|
|
145
|
+
KeyError: If any of the column names already exist in this table.
|
|
119
146
|
"""
|
|
120
|
-
if
|
|
121
|
-
|
|
122
|
-
f"'{self.name}'")
|
|
123
|
-
|
|
124
|
-
if name not in self._source_column_dict:
|
|
125
|
-
raise KeyError(f"Column '{name}' does not exist in the underlying "
|
|
126
|
-
f"source table")
|
|
127
|
-
|
|
128
|
-
dtype = self._source_column_dict[name].dtype
|
|
129
|
-
|
|
130
|
-
ser = self._source_sample_df[name]
|
|
131
|
-
try:
|
|
132
|
-
stype = infer_stype(ser, name, dtype)
|
|
133
|
-
except Exception as e:
|
|
134
|
-
raise RuntimeError(f"Could not obtain semantic type for column "
|
|
135
|
-
f"'{name}' with data type '{dtype}' in table "
|
|
136
|
-
f"'{self.name}'. Change the data type of the "
|
|
137
|
-
f"column in the source table or remove it from "
|
|
138
|
-
f"this table.") from e
|
|
139
|
-
|
|
140
|
-
self._columns[name] = Column(
|
|
141
|
-
name=name,
|
|
142
|
-
stype=stype,
|
|
143
|
-
dtype=dtype,
|
|
144
|
-
)
|
|
147
|
+
if len(columns) == 0:
|
|
148
|
+
return
|
|
145
149
|
|
|
146
|
-
|
|
150
|
+
column_specs = [ColumnSpec.coerce(column) for column in columns]
|
|
151
|
+
|
|
152
|
+
# Obtain a batch-wise sample for all column expressions:
|
|
153
|
+
expr_specs = [spec for spec in column_specs if not spec.is_source]
|
|
154
|
+
if len(expr_specs) > 0:
|
|
155
|
+
dfs = [
|
|
156
|
+
self._expr_sample_df,
|
|
157
|
+
self._get_expr_sample_df(expr_specs).reset_index(drop=True),
|
|
158
|
+
]
|
|
159
|
+
size = min(map(len, dfs))
|
|
160
|
+
df = pd.concat([dfs[0].iloc[:size], dfs[1].iloc[:size]], axis=1)
|
|
161
|
+
df = df.loc[:, ~df.columns.duplicated(keep='last')]
|
|
162
|
+
self._expr_sample_df = df
|
|
163
|
+
|
|
164
|
+
for column_spec in column_specs:
|
|
165
|
+
if column_spec.name in self:
|
|
166
|
+
raise KeyError(f"Column '{column_spec.name}' already exists "
|
|
167
|
+
f"in table '{self.name}'")
|
|
168
|
+
|
|
169
|
+
dtype = column_spec.dtype
|
|
170
|
+
stype = column_spec.stype
|
|
171
|
+
|
|
172
|
+
if column_spec.is_source:
|
|
173
|
+
if column_spec.name not in self._source_column_dict:
|
|
174
|
+
raise ValueError(
|
|
175
|
+
f"Column '{column_spec.name}' does not exist in the "
|
|
176
|
+
f"underlying source table")
|
|
177
|
+
|
|
178
|
+
if dtype is None:
|
|
179
|
+
dtype = self._source_column_dict[column_spec.name].dtype
|
|
180
|
+
|
|
181
|
+
if dtype == Dtype.unsupported:
|
|
182
|
+
raise ValueError(
|
|
183
|
+
f"Encountered unsupported data type for column "
|
|
184
|
+
f"'{column_spec.name}' in table '{self.name}'. Please "
|
|
185
|
+
f"either change the column's data type or remove the "
|
|
186
|
+
f"column from this table.")
|
|
187
|
+
|
|
188
|
+
if dtype is None:
|
|
189
|
+
if column_spec.is_source:
|
|
190
|
+
ser = self._source_sample_df[column_spec.name]
|
|
191
|
+
else:
|
|
192
|
+
ser = self._expr_sample_df[column_spec.name]
|
|
193
|
+
try:
|
|
194
|
+
dtype = infer_dtype(ser)
|
|
195
|
+
except Exception as e:
|
|
196
|
+
raise RuntimeError(
|
|
197
|
+
f"Encountered unsupported data type '{ser.dtype}' for "
|
|
198
|
+
f"column '{column_spec.name}' in table '{self.name}'. "
|
|
199
|
+
f"Please either manually override the columns's data "
|
|
200
|
+
f"type or remove the column from this table.") from e
|
|
201
|
+
|
|
202
|
+
if stype is None:
|
|
203
|
+
if column_spec.is_source:
|
|
204
|
+
ser = self._source_sample_df[column_spec.name]
|
|
205
|
+
else:
|
|
206
|
+
ser = self._expr_sample_df[column_spec.name]
|
|
207
|
+
try:
|
|
208
|
+
stype = infer_stype(ser, column_spec.name, dtype)
|
|
209
|
+
except Exception as e:
|
|
210
|
+
raise RuntimeError(
|
|
211
|
+
f"Could not determine semantic type for column "
|
|
212
|
+
f"'{column_spec.name}' with data type '{dtype}' in "
|
|
213
|
+
f"table '{self.name}'. Please either change the "
|
|
214
|
+
f"column's data type or remove the column from this "
|
|
215
|
+
f"table.") from e
|
|
216
|
+
|
|
217
|
+
self._column_dict[column_spec.name] = Column(
|
|
218
|
+
name=column_spec.name,
|
|
219
|
+
expr=column_spec.expr,
|
|
220
|
+
dtype=dtype,
|
|
221
|
+
stype=stype,
|
|
222
|
+
)
|
|
223
|
+
|
|
224
|
+
def add_column(self, column: ColumnSpecType) -> Column:
|
|
225
|
+
r"""Adds a column to this table.
|
|
226
|
+
|
|
227
|
+
Args:
|
|
228
|
+
column: The column to add.
|
|
229
|
+
|
|
230
|
+
Raises:
|
|
231
|
+
KeyError: If the column name already exists in this table.
|
|
232
|
+
"""
|
|
233
|
+
column_spec = ColumnSpec.coerce(column)
|
|
234
|
+
self.add_columns([column_spec])
|
|
235
|
+
return self[column_spec.name]
|
|
147
236
|
|
|
148
237
|
def remove_column(self, name: str) -> Self:
|
|
149
238
|
r"""Removes a column from this table.
|
|
@@ -163,7 +252,7 @@ class Table(ABC):
|
|
|
163
252
|
self.time_column = None
|
|
164
253
|
if self._end_time_column == name:
|
|
165
254
|
self.end_time_column = None
|
|
166
|
-
del self.
|
|
255
|
+
del self._column_dict[name]
|
|
167
256
|
|
|
168
257
|
return self
|
|
169
258
|
|
|
@@ -183,8 +272,8 @@ class Table(ABC):
|
|
|
183
272
|
no such primary key is present.
|
|
184
273
|
|
|
185
274
|
The setter sets a column as a primary key on this table, and raises a
|
|
186
|
-
:class:`ValueError` if the primary key has a non-ID
|
|
187
|
-
if the column name does not match a column in the data frame.
|
|
275
|
+
:class:`ValueError` if the primary key has a non-ID compatible data
|
|
276
|
+
type or if the column name does not match a column in the data frame.
|
|
188
277
|
"""
|
|
189
278
|
if self._primary_key is None:
|
|
190
279
|
return None
|
|
@@ -228,8 +317,9 @@ class Table(ABC):
|
|
|
228
317
|
such time column is present.
|
|
229
318
|
|
|
230
319
|
The setter sets a column as a time column on this table, and raises a
|
|
231
|
-
:class:`ValueError` if the time column has a non-timestamp
|
|
232
|
-
type or if the column name does not match a column in the data
|
|
320
|
+
:class:`ValueError` if the time column has a non-timestamp compatible
|
|
321
|
+
data type or if the column name does not match a column in the data
|
|
322
|
+
frame.
|
|
233
323
|
"""
|
|
234
324
|
if self._time_column is None:
|
|
235
325
|
return None
|
|
@@ -274,8 +364,8 @@ class Table(ABC):
|
|
|
274
364
|
|
|
275
365
|
The setter sets a column as an end time column on this table, and
|
|
276
366
|
raises a :class:`ValueError` if the end time column has a non-timestamp
|
|
277
|
-
|
|
278
|
-
frame.
|
|
367
|
+
compatible data type or if the column name does not match a column in
|
|
368
|
+
the data frame.
|
|
279
369
|
"""
|
|
280
370
|
if self._end_time_column is None:
|
|
281
371
|
return None
|
|
@@ -310,39 +400,39 @@ class Table(ABC):
|
|
|
310
400
|
r"""Returns a :class:`pandas.DataFrame` object containing metadata
|
|
311
401
|
information about the columns in this table.
|
|
312
402
|
|
|
313
|
-
The returned dataframe has columns ``
|
|
314
|
-
``
|
|
315
|
-
which provide an
|
|
316
|
-
this table.
|
|
403
|
+
The returned dataframe has columns ``"Name"``, ``"Data Type"``,
|
|
404
|
+
``"Semantic Type"``, ``"Primary Key"``, ``"Time Column"`` and
|
|
405
|
+
``"End Time Column"``, which provide an aggregated view of the
|
|
406
|
+
properties of the columns of this table.
|
|
317
407
|
|
|
318
408
|
Example:
|
|
319
409
|
>>> # doctest: +SKIP
|
|
320
410
|
>>> import kumoai.experimental.rfm as rfm
|
|
321
411
|
>>> table = rfm.LocalTable(df=..., name=...).infer_metadata()
|
|
322
412
|
>>> table.metadata
|
|
323
|
-
|
|
324
|
-
0 CustomerID float64
|
|
413
|
+
Name Data Type Semantic Type Primary Key Time Column End Time Column
|
|
414
|
+
0 CustomerID float64 ID True False False
|
|
325
415
|
""" # noqa: E501
|
|
326
416
|
cols = self.columns
|
|
327
417
|
|
|
328
418
|
return pd.DataFrame({
|
|
329
|
-
'
|
|
419
|
+
'Name':
|
|
330
420
|
pd.Series(dtype=str, data=[c.name for c in cols]),
|
|
331
|
-
'
|
|
421
|
+
'Data Type':
|
|
332
422
|
pd.Series(dtype=str, data=[c.dtype for c in cols]),
|
|
333
|
-
'
|
|
423
|
+
'Semantic Type':
|
|
334
424
|
pd.Series(dtype=str, data=[c.stype for c in cols]),
|
|
335
|
-
'
|
|
425
|
+
'Primary Key':
|
|
336
426
|
pd.Series(
|
|
337
427
|
dtype=bool,
|
|
338
428
|
data=[self._primary_key == c.name for c in cols],
|
|
339
429
|
),
|
|
340
|
-
'
|
|
430
|
+
'Time Column':
|
|
341
431
|
pd.Series(
|
|
342
432
|
dtype=bool,
|
|
343
433
|
data=[self._time_column == c.name for c in cols],
|
|
344
434
|
),
|
|
345
|
-
'
|
|
435
|
+
'End Time Column':
|
|
346
436
|
pd.Series(
|
|
347
437
|
dtype=bool,
|
|
348
438
|
data=[self._end_time_column == c.name for c in cols],
|
|
@@ -351,30 +441,12 @@ class Table(ABC):
|
|
|
351
441
|
|
|
352
442
|
def print_metadata(self) -> None:
|
|
353
443
|
r"""Prints the :meth:`~metadata` of this table."""
|
|
354
|
-
|
|
355
|
-
if self._num_rows
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
md_repr = f"### 🏷️ Metadata of Table `{self.name}`{num_rows_repr}"
|
|
361
|
-
st.markdown(md_repr)
|
|
362
|
-
st.dataframe(self.metadata, hide_index=True)
|
|
363
|
-
elif in_notebook():
|
|
364
|
-
from IPython.display import Markdown, display
|
|
365
|
-
md_repr = f"### 🏷️ Metadata of Table `{self.name}`{num_rows_repr}"
|
|
366
|
-
display(Markdown(md_repr))
|
|
367
|
-
df = self.metadata
|
|
368
|
-
try:
|
|
369
|
-
if hasattr(df.style, 'hide'):
|
|
370
|
-
display(df.style.hide(axis='index')) # pandas=2
|
|
371
|
-
else:
|
|
372
|
-
display(df.style.hide_index()) # pandas<1.3
|
|
373
|
-
except ImportError:
|
|
374
|
-
print(df.to_string(index=False)) # missing jinja2
|
|
375
|
-
else:
|
|
376
|
-
print(f"🏷️ Metadata of Table '{self.name}'{num_rows_repr}")
|
|
377
|
-
print(self.metadata.to_string(index=False))
|
|
444
|
+
msg = f"🏷️ Metadata of Table `{self.name}`"
|
|
445
|
+
if num := self._num_rows:
|
|
446
|
+
msg += " (1 row)" if num == 1 else f" ({num:,} rows)"
|
|
447
|
+
|
|
448
|
+
display.title(msg)
|
|
449
|
+
display.dataframe(self.metadata)
|
|
378
450
|
|
|
379
451
|
def infer_primary_key(self, verbose: bool = True) -> Self:
|
|
380
452
|
r"""Infers the primary key in this table.
|
|
@@ -388,14 +460,14 @@ class Table(ABC):
|
|
|
388
460
|
def _set_primary_key(primary_key: str) -> None:
|
|
389
461
|
self.primary_key = primary_key
|
|
390
462
|
if verbose:
|
|
391
|
-
|
|
392
|
-
|
|
463
|
+
display.message(f"Inferred primary key `{primary_key}` for "
|
|
464
|
+
f"table `{self.name}`")
|
|
393
465
|
|
|
394
466
|
# Inference from source column metadata:
|
|
395
|
-
if
|
|
467
|
+
if any(column.is_source for column in self.columns):
|
|
396
468
|
primary_key = self._source_primary_key
|
|
397
469
|
if (primary_key is not None and primary_key in self
|
|
398
|
-
and self[primary_key].
|
|
470
|
+
and self[primary_key].is_source):
|
|
399
471
|
_set_primary_key(primary_key)
|
|
400
472
|
return self
|
|
401
473
|
|
|
@@ -405,7 +477,7 @@ class Table(ABC):
|
|
|
405
477
|
]
|
|
406
478
|
if (len(unique_keys) == 1 # NOTE No composite keys yet.
|
|
407
479
|
and unique_keys[0] in self
|
|
408
|
-
and self[unique_keys[0]].
|
|
480
|
+
and self[unique_keys[0]].is_source):
|
|
409
481
|
_set_primary_key(unique_keys[0])
|
|
410
482
|
return self
|
|
411
483
|
|
|
@@ -423,7 +495,7 @@ class Table(ABC):
|
|
|
423
495
|
|
|
424
496
|
if primary_key := infer_primary_key(
|
|
425
497
|
table_name=self.name,
|
|
426
|
-
df=self.
|
|
498
|
+
df=self._get_sample_df(),
|
|
427
499
|
candidates=candidates,
|
|
428
500
|
):
|
|
429
501
|
_set_primary_key(primary_key)
|
|
@@ -448,14 +520,14 @@ class Table(ABC):
|
|
|
448
520
|
]
|
|
449
521
|
|
|
450
522
|
if time_column := infer_time_column(
|
|
451
|
-
df=self.
|
|
523
|
+
df=self._get_sample_df(),
|
|
452
524
|
candidates=candidates,
|
|
453
525
|
):
|
|
454
526
|
self.time_column = time_column
|
|
455
527
|
|
|
456
528
|
if verbose:
|
|
457
|
-
|
|
458
|
-
|
|
529
|
+
display.message(f"Inferred time column `{time_column}` for "
|
|
530
|
+
f"table `{self.name}`")
|
|
459
531
|
|
|
460
532
|
return self
|
|
461
533
|
|
|
@@ -471,15 +543,16 @@ class Table(ABC):
|
|
|
471
543
|
if not self.has_primary_key():
|
|
472
544
|
self.infer_primary_key(verbose=False)
|
|
473
545
|
if self.has_primary_key():
|
|
474
|
-
logs.append(f"primary key
|
|
546
|
+
logs.append(f"primary key `{self._primary_key}`")
|
|
475
547
|
|
|
476
548
|
if not self.has_time_column():
|
|
477
549
|
self.infer_time_column(verbose=False)
|
|
478
550
|
if self.has_time_column():
|
|
479
|
-
logs.append(f"time column
|
|
551
|
+
logs.append(f"time column `{self._time_column}`")
|
|
480
552
|
|
|
481
553
|
if verbose and len(logs) > 0:
|
|
482
|
-
|
|
554
|
+
display.message(f"Inferred {' and '.join(logs)} for table "
|
|
555
|
+
f"`{self.name}`")
|
|
483
556
|
|
|
484
557
|
return self
|
|
485
558
|
|
|
@@ -501,31 +574,113 @@ class Table(ABC):
|
|
|
501
574
|
def _source_column_dict(self) -> dict[str, SourceColumn]:
|
|
502
575
|
source_columns = self._get_source_columns()
|
|
503
576
|
if len(source_columns) == 0:
|
|
504
|
-
raise ValueError(f"Table '{self.name}'
|
|
505
|
-
f"with a supported data type")
|
|
577
|
+
raise ValueError(f"Table '{self.name}' has no columns")
|
|
506
578
|
return {column.name: column for column in source_columns}
|
|
507
579
|
|
|
508
580
|
@cached_property
|
|
509
|
-
def _source_sample_df(self) -> pd.DataFrame:
|
|
510
|
-
return self._get_source_sample_df()
|
|
511
|
-
|
|
512
|
-
@property
|
|
513
581
|
def _source_primary_key(self) -> str | None:
|
|
514
582
|
primary_keys = [
|
|
515
583
|
column.name for column in self._source_column_dict.values()
|
|
516
584
|
if column.is_primary_key
|
|
517
585
|
]
|
|
518
|
-
|
|
519
|
-
|
|
586
|
+
# NOTE No composite keys yet.
|
|
587
|
+
return primary_keys[0] if len(primary_keys) == 1 else None
|
|
588
|
+
|
|
589
|
+
@cached_property
|
|
590
|
+
def _source_foreign_key_dict(self) -> dict[str, SourceForeignKey]:
|
|
591
|
+
return {key.name: key for key in self._get_source_foreign_keys()}
|
|
520
592
|
|
|
521
|
-
|
|
593
|
+
@cached_property
|
|
594
|
+
def _source_sample_df(self) -> pd.DataFrame:
|
|
595
|
+
return self._get_source_sample_df().reset_index(drop=True)
|
|
522
596
|
|
|
523
597
|
@cached_property
|
|
524
598
|
def _num_rows(self) -> int | None:
|
|
525
599
|
return self._get_num_rows()
|
|
526
600
|
|
|
527
|
-
def
|
|
528
|
-
|
|
601
|
+
def _get_sample_df(self) -> pd.DataFrame:
|
|
602
|
+
dfs: list[pd.DataFrame] = []
|
|
603
|
+
if any(column.is_source for column in self.columns):
|
|
604
|
+
dfs.append(self._source_sample_df)
|
|
605
|
+
if any(not column.is_source for column in self.columns):
|
|
606
|
+
dfs.append(self._expr_sample_df)
|
|
607
|
+
|
|
608
|
+
if len(dfs) == 0:
|
|
609
|
+
return pd.DataFrame(index=range(1000))
|
|
610
|
+
if len(dfs) == 1:
|
|
611
|
+
return dfs[0]
|
|
612
|
+
|
|
613
|
+
size = min(map(len, dfs))
|
|
614
|
+
df = pd.concat([dfs[0].iloc[:size], dfs[1].iloc[:size]], axis=1)
|
|
615
|
+
df = df.loc[:, ~df.columns.duplicated(keep='last')]
|
|
616
|
+
return df
|
|
617
|
+
|
|
618
|
+
@staticmethod
|
|
619
|
+
def _sanitize(
|
|
620
|
+
df: pd.DataFrame,
|
|
621
|
+
dtype_dict: dict[str, Dtype | None] | None = None,
|
|
622
|
+
stype_dict: dict[str, Stype | None] | None = None,
|
|
623
|
+
) -> pd.DataFrame:
|
|
624
|
+
r"""Sanitzes a :class:`pandas.DataFrame` in-place such that its data
|
|
625
|
+
types match table data and semantic type specification.
|
|
626
|
+
"""
|
|
627
|
+
def _to_datetime(ser: pd.Series) -> pd.Series:
|
|
628
|
+
if (not pd.api.types.is_datetime64_any_dtype(ser)
|
|
629
|
+
and not (isinstance(ser.dtype, pd.ArrowDtype) and
|
|
630
|
+
pa.types.is_timestamp(ser.dtype.pyarrow_dtype))):
|
|
631
|
+
with warnings.catch_warnings():
|
|
632
|
+
warnings.filterwarnings(
|
|
633
|
+
'ignore',
|
|
634
|
+
message='Could not infer format',
|
|
635
|
+
)
|
|
636
|
+
ser = pd.to_datetime(ser, errors='coerce')
|
|
637
|
+
if (isinstance(ser.dtype, pd.DatetimeTZDtype)
|
|
638
|
+
or (isinstance(ser.dtype, pd.ArrowDtype)
|
|
639
|
+
and ser.dtype.pyarrow_dtype.tz is not None)):
|
|
640
|
+
ser = ser.dt.tz_localize(None)
|
|
641
|
+
if ser.dtype != 'datetime64[ns]':
|
|
642
|
+
ser = ser.astype('datetime64[ns]')
|
|
643
|
+
return ser
|
|
644
|
+
|
|
645
|
+
def _to_list(ser: pd.Series, dtype: Dtype | None) -> pd.Series:
|
|
646
|
+
if (pd.api.types.is_string_dtype(ser)
|
|
647
|
+
and dtype in {Dtype.intlist, Dtype.floatlist}):
|
|
648
|
+
try:
|
|
649
|
+
ser = ser.map(lambda row: np.fromstring(
|
|
650
|
+
row.strip('[]'),
|
|
651
|
+
sep=',',
|
|
652
|
+
dtype=int if dtype == Dtype.intlist else np.float32,
|
|
653
|
+
) if row is not None else None)
|
|
654
|
+
except Exception:
|
|
655
|
+
pass
|
|
656
|
+
|
|
657
|
+
if pd.api.types.is_string_dtype(ser):
|
|
658
|
+
try:
|
|
659
|
+
import orjson as json
|
|
660
|
+
except ImportError:
|
|
661
|
+
import json
|
|
662
|
+
try:
|
|
663
|
+
ser = ser.map(lambda row: json.loads(row)
|
|
664
|
+
if row is not None else None)
|
|
665
|
+
except Exception:
|
|
666
|
+
pass
|
|
667
|
+
|
|
668
|
+
return ser
|
|
669
|
+
|
|
670
|
+
for column_name in df.columns:
|
|
671
|
+
dtype = (dtype_dict or {}).get(column_name)
|
|
672
|
+
stype = (stype_dict or {}).get(column_name)
|
|
673
|
+
|
|
674
|
+
if dtype == Dtype.time:
|
|
675
|
+
df[column_name] = _to_datetime(df[column_name])
|
|
676
|
+
elif stype == Stype.timestamp:
|
|
677
|
+
df[column_name] = _to_datetime(df[column_name])
|
|
678
|
+
elif dtype is not None and dtype.is_list():
|
|
679
|
+
df[column_name] = _to_list(df[column_name], dtype)
|
|
680
|
+
elif stype == Stype.sequence:
|
|
681
|
+
df[column_name] = _to_list(df[column_name], Dtype.floatlist)
|
|
682
|
+
|
|
683
|
+
return df
|
|
529
684
|
|
|
530
685
|
# Python builtins #########################################################
|
|
531
686
|
|
|
@@ -566,10 +721,21 @@ class Table(ABC):
|
|
|
566
721
|
def _get_source_columns(self) -> list[SourceColumn]:
|
|
567
722
|
pass
|
|
568
723
|
|
|
724
|
+
@abstractmethod
|
|
725
|
+
def _get_source_foreign_keys(self) -> list[SourceForeignKey]:
|
|
726
|
+
pass
|
|
727
|
+
|
|
569
728
|
@abstractmethod
|
|
570
729
|
def _get_source_sample_df(self) -> pd.DataFrame:
|
|
571
730
|
pass
|
|
572
731
|
|
|
732
|
+
@abstractmethod
|
|
733
|
+
def _get_expr_sample_df(
|
|
734
|
+
self,
|
|
735
|
+
columns: Sequence[ColumnSpec],
|
|
736
|
+
) -> pd.DataFrame:
|
|
737
|
+
pass
|
|
738
|
+
|
|
573
739
|
@abstractmethod
|
|
574
740
|
def _get_num_rows(self) -> int | None:
|
|
575
741
|
pass
|