kumoai 2.14.0.dev202512181731__cp312-cp312-macosx_11_0_arm64.whl → 2.14.0.dev202512301731__cp312-cp312-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. kumoai/__init__.py +23 -26
  2. kumoai/_version.py +1 -1
  3. kumoai/client/client.py +6 -0
  4. kumoai/client/jobs.py +24 -0
  5. kumoai/experimental/rfm/__init__.py +22 -22
  6. kumoai/experimental/rfm/backend/local/graph_store.py +12 -21
  7. kumoai/experimental/rfm/backend/local/sampler.py +0 -3
  8. kumoai/experimental/rfm/backend/local/table.py +25 -24
  9. kumoai/experimental/rfm/backend/snow/sampler.py +106 -61
  10. kumoai/experimental/rfm/backend/snow/table.py +146 -51
  11. kumoai/experimental/rfm/backend/sqlite/sampler.py +127 -78
  12. kumoai/experimental/rfm/backend/sqlite/table.py +94 -47
  13. kumoai/experimental/rfm/base/__init__.py +6 -7
  14. kumoai/experimental/rfm/base/column.py +97 -5
  15. kumoai/experimental/rfm/base/expression.py +44 -0
  16. kumoai/experimental/rfm/base/sampler.py +5 -17
  17. kumoai/experimental/rfm/base/source.py +1 -1
  18. kumoai/experimental/rfm/base/sql_sampler.py +68 -9
  19. kumoai/experimental/rfm/base/table.py +284 -120
  20. kumoai/experimental/rfm/graph.py +139 -86
  21. kumoai/experimental/rfm/infer/__init__.py +6 -4
  22. kumoai/experimental/rfm/infer/dtype.py +6 -1
  23. kumoai/experimental/rfm/infer/multicategorical.py +1 -1
  24. kumoai/experimental/rfm/infer/stype.py +35 -0
  25. kumoai/experimental/rfm/relbench.py +76 -0
  26. kumoai/experimental/rfm/rfm.py +4 -20
  27. kumoai/trainer/distilled_trainer.py +175 -0
  28. kumoai/utils/display.py +51 -0
  29. {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/METADATA +1 -1
  30. {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/RECORD +33 -30
  31. kumoai/experimental/rfm/base/column_expression.py +0 -16
  32. kumoai/experimental/rfm/base/sql_table.py +0 -113
  33. {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/WHEEL +0 -0
  34. {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/licenses/LICENSE +0 -0
  35. {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,175 @@
1
+ import logging
2
+ from typing import Literal, Mapping, Optional, Union, overload
3
+
4
+ from kumoapi.distilled_model_plan import DistilledModelPlan
5
+ from kumoapi.jobs import DistillationJobRequest, DistillationJobResource
6
+
7
+ from kumoai import global_state
8
+ from kumoai.client.jobs import TrainingJobID
9
+ from kumoai.graph import Graph
10
+ from kumoai.pquery.training_table import TrainingTable, TrainingTableJob
11
+ from kumoai.trainer.job import TrainingJob, TrainingJobResult
12
+
13
+ logger = logging.getLogger(__name__)
14
+
15
+
16
+ class DistillationTrainer:
17
+ r"""A trainer supports creating a Kumo machine learning model
18
+ for use in an online serving endpoint. The distllation process involes
19
+ training a shallow model on a :class:`~kumoai.pquery.PredictiveQuery` using
20
+ the embeddings generated by a base model :args:`base_training_job_id`.
21
+
22
+ Args:
23
+ model_plan: The distilled model plan to use for the distillation process.
24
+ base_training_job_id: The ID of the base training job to use for the distillation process.
25
+ """ # noqa: E501
26
+
27
+ def __init__(
28
+ self,
29
+ model_plan: DistilledModelPlan,
30
+ base_training_job_id: TrainingJobID,
31
+ ) -> None:
32
+ self.model_plan: DistilledModelPlan = model_plan
33
+ self.base_training_job_id: TrainingJobID = base_training_job_id
34
+
35
+ # Cached from backend:
36
+ self._training_job_id: Optional[TrainingJobID] = None
37
+
38
+ # Metadata ################################################################
39
+
40
+ @property
41
+ def is_trained(self) -> bool:
42
+ r"""Returns ``True`` if this trainer instance has successfully been
43
+ trained (and is therefore ready for prediction); ``False`` otherwise.
44
+ """
45
+ raise NotImplementedError(
46
+ "Checking if a distilled trainer is trained is not "
47
+ "implemented yet.")
48
+
49
+ @overload
50
+ def fit(
51
+ self,
52
+ graph: Graph,
53
+ train_table: Union[TrainingTable, TrainingTableJob],
54
+ ) -> TrainingJobResult:
55
+ pass
56
+
57
+ @overload
58
+ def fit(
59
+ self,
60
+ graph: Graph,
61
+ train_table: Union[TrainingTable, TrainingTableJob],
62
+ *,
63
+ non_blocking: Literal[False],
64
+ ) -> TrainingJobResult:
65
+ pass
66
+
67
+ @overload
68
+ def fit(
69
+ self,
70
+ graph: Graph,
71
+ train_table: Union[TrainingTable, TrainingTableJob],
72
+ *,
73
+ non_blocking: Literal[True],
74
+ ) -> TrainingJob:
75
+ pass
76
+
77
+ @overload
78
+ def fit(
79
+ self,
80
+ graph: Graph,
81
+ train_table: Union[TrainingTable, TrainingTableJob],
82
+ *,
83
+ non_blocking: bool,
84
+ ) -> Union[TrainingJob, TrainingJobResult]:
85
+ pass
86
+
87
+ def fit(
88
+ self,
89
+ graph: Graph,
90
+ train_table: Union[TrainingTable, TrainingTableJob],
91
+ *,
92
+ non_blocking: bool = False,
93
+ custom_tags: Mapping[str, str] = {},
94
+ ) -> Union[TrainingJob, TrainingJobResult]:
95
+ r"""Fits a model to the specified graph and training table, with the
96
+ strategy defined by :class:`DistilledTrainer`'s :obj:`model_plan`.
97
+
98
+ Args:
99
+ graph: The :class:`~kumoai.graph.Graph` object that represents the
100
+ tables and relationships that Kumo will learn from.
101
+ train_table: The :class:`~kumoai.pquery.TrainingTable`, or
102
+ in-progress :class:`~kumoai.pquery.TrainingTableJob`, that
103
+ represents the training data produced by a
104
+ :class:`~kumoai.pquery.PredictiveQuery` on :obj:`graph`.
105
+ non_blocking: Whether this operation should return immediately
106
+ after launching the training job, or await completion of the
107
+ training job.
108
+ custom_tags: Additional, customer defined k-v tags to be associated
109
+ with the job to be launched. Job tags are useful for grouping
110
+ and searching jobs.
111
+
112
+ Returns:
113
+ Union[TrainingJobResult, TrainingJob]:
114
+ If ``non_blocking=False``, returns a training job object. If
115
+ ``non_blocking=True``, returns a training job future object.
116
+ """
117
+ # TODO(manan, siyang): remove soon:
118
+ job_id = train_table.job_id
119
+ assert job_id is not None
120
+
121
+ train_table_job_api = global_state.client.generate_train_table_job_api
122
+ pq_id = train_table_job_api.get(job_id).config.pquery_id
123
+ assert pq_id is not None
124
+
125
+ custom_table = None
126
+ if isinstance(train_table, TrainingTable):
127
+ custom_table = train_table._custom_train_table
128
+
129
+ # NOTE the backend implementation currently handles sequentialization
130
+ # between a training table future and a training job; that is, if the
131
+ # training table future is still executing, the backend will wait on
132
+ # the job ID completion before executing a training job. This preserves
133
+ # semantics for both futures, ensures that Kumo works as expected if
134
+ # used only via REST API, and allows us to avoid chaining calllbacks
135
+ # in an ugly way here:
136
+ api = global_state.client.distillation_job_api
137
+ self._training_job_id = api.create(
138
+ DistillationJobRequest(
139
+ dict(custom_tags),
140
+ pquery_id=pq_id,
141
+ base_training_job_id=self.base_training_job_id,
142
+ distilled_model_plan=self.model_plan,
143
+ graph_snapshot_id=graph.snapshot(non_blocking=non_blocking),
144
+ train_table_job_id=job_id,
145
+ custom_train_table=custom_table,
146
+ ))
147
+
148
+ out = TrainingJob(job_id=self._training_job_id)
149
+ if non_blocking:
150
+ return out
151
+ return out.attach()
152
+
153
+ @classmethod
154
+ def _load_from_job(
155
+ cls,
156
+ job: DistillationJobResource,
157
+ ) -> 'DistillationTrainer':
158
+ trainer = cls(job.config.distilled_model_plan,
159
+ job.config.base_training_job_id)
160
+ trainer._training_job_id = job.job_id
161
+ return trainer
162
+
163
+ @classmethod
164
+ def load(cls, job_id: TrainingJobID) -> 'DistillationTrainer':
165
+ r"""Creates a :class:`~kumoai.trainer.Trainer` instance from a training
166
+ job ID.
167
+ """
168
+ raise NotImplementedError(
169
+ "Loading a distilled trainer from a job ID is not implemented yet."
170
+ )
171
+
172
+ @classmethod
173
+ def load_from_tags(cls, tags: Mapping[str, str]) -> 'DistillationTrainer':
174
+ raise NotImplementedError(
175
+ "Loading a distilled trainer from tags is not implemented yet.")
@@ -0,0 +1,51 @@
1
+ from collections.abc import Sequence
2
+
3
+ import pandas as pd
4
+
5
+ from kumoai import in_notebook, in_snowflake_notebook
6
+
7
+
8
+ def message(msg: str) -> None:
9
+ msg = msg.replace("`", "'") if not in_notebook() else msg
10
+
11
+ if in_snowflake_notebook():
12
+ import streamlit as st
13
+ st.markdown(msg)
14
+ elif in_notebook():
15
+ from IPython.display import Markdown, display
16
+ display(Markdown(msg))
17
+ else:
18
+ print(msg)
19
+
20
+
21
+ def title(msg: str) -> None:
22
+ message(f"### {msg}" if in_notebook() else f"{msg}:")
23
+
24
+
25
+ def italic(msg: str) -> None:
26
+ message(f"*{msg}*" if in_notebook() else msg)
27
+
28
+
29
+ def unordered_list(items: Sequence[str]) -> None:
30
+ if in_notebook():
31
+ msg = '\n'.join([f"- {item}" for item in items])
32
+ else:
33
+ msg = '\n'.join([f"• {item.replace('`', '')}" for item in items])
34
+ message(msg)
35
+
36
+
37
+ def dataframe(df: pd.DataFrame) -> None:
38
+ if in_snowflake_notebook():
39
+ import streamlit as st
40
+ st.dataframe(df, hide_index=True)
41
+ elif in_notebook():
42
+ from IPython.display import display
43
+ try:
44
+ if hasattr(df.style, 'hide'):
45
+ display(df.style.hide(axis='index')) # pandas=2
46
+ else:
47
+ display(df.style.hide_index()) # pandas<1.3
48
+ except ImportError:
49
+ print(df.to_string(index=False)) # missing jinja2
50
+ else:
51
+ print(df.to_string(index=False))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kumoai
3
- Version: 2.14.0.dev202512181731
3
+ Version: 2.14.0.dev202512301731
4
4
  Summary: AI on the Modern Data Stack
5
5
  Author-email: "Kumo.AI" <hello@kumo.ai>
6
6
  License-Expression: MIT
@@ -1,8 +1,8 @@
1
1
  kumoai/_logging.py,sha256=U2_5ROdyk92P4xO4H2WJV8EC7dr6YxmmnM-b7QX9M7I,886
2
2
  kumoai/mixin.py,sha256=MP413xzuCqWhxAPUHmloLA3j4ZyF1tEtfi516b_hOXQ,812
3
- kumoai/_version.py,sha256=x_VP--ZQYmARddiqEJCsKj7I1LaFz23DUBdstrPepwI,39
3
+ kumoai/_version.py,sha256=zkmtgpHzS-8suGoRkSmHrktIFS142gX_ptBF0P9S3u4,39
4
4
  kumoai/kumolib.cpython-312-darwin.so,sha256=xQvdWHx9xmQ11y3F3ywxJv6A0sDk6D3-2fQbxSdM1z4,232576
5
- kumoai/__init__.py,sha256=Nn9YH_x9kAeEFn8RWbP95slZow0qFnakPZZ1WADe1hY,10843
5
+ kumoai/__init__.py,sha256=x6Emn6VesHQz0wR7ZnbddPRYO9A5-0JTHDkzJ3Ocq6w,10907
6
6
  kumoai/formatting.py,sha256=jA_rLDCGKZI8WWCha-vtuLenVKTZvli99Tqpurz1H84,953
7
7
  kumoai/futures.py,sha256=oJFIfdCM_3nWIqQteBKYMY4fPhoYlYWE_JA2o6tx-ng,3737
8
8
  kumoai/jobs.py,sha256=NrdLEFNo7oeCYSy-kj2nAvCFrz9BZ_xrhkqHFHk5ksY,2496
@@ -11,41 +11,42 @@ kumoai/databricks.py,sha256=e6E4lOFvZHXFwh4CO1kXU1zzDU3AapLQYMxjiHPC-HQ,476
11
11
  kumoai/spcs.py,sha256=N31d7rLa-bgYh8e2J4YzX1ScxGLqiVXrqJnCl1y4Mts,4139
12
12
  kumoai/_singleton.py,sha256=UTwrbDkoZSGB8ZelorvprPDDv9uZkUi1q_SrmsyngpQ,836
13
13
  kumoai/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
- kumoai/experimental/rfm/graph.py,sha256=4gtGKHgLVRMNQrbXieSWtImggX5KDRf4XrLk0LcF-AA,44446
15
- kumoai/experimental/rfm/__init__.py,sha256=9aelcHodt2Oriw76vdEmtWrmAQ0CXTdFPrKgwVB9eKc,7124
14
+ kumoai/experimental/rfm/relbench.py,sha256=cVsxxV3TIL3PLEoYb-8tAVW3GSef6NQAd3rxdHJL63I,2276
15
+ kumoai/experimental/rfm/graph.py,sha256=H9lIQLDkL5zJMwEHh7PgruvMUxWsjpynXUT7gnmTTUM,46351
16
+ kumoai/experimental/rfm/__init__.py,sha256=TAy2TntkZdwB82wURsZasUsQ-yi06LEXT2u2qTNCVxc,6965
16
17
  kumoai/experimental/rfm/sagemaker.py,sha256=6fyXO1Jd_scq-DH7kcv6JcV8QPyTbh4ceqwQDPADlZ0,4963
17
- kumoai/experimental/rfm/rfm.py,sha256=Yssmo-PaCfjT9hll0BKl8fahsuKpG-gViwFdKH1F3os,50247
18
+ kumoai/experimental/rfm/rfm.py,sha256=Qna-oSk5lgzmVC_KPolYo5Y6m81qKpyw9wfrvirT3Oc,49526
18
19
  kumoai/experimental/rfm/authenticate.py,sha256=G2RkRWznMVQUzvhvbKhn0bMCY7VmoNYxluz3THRqSdE,18851
19
20
  kumoai/experimental/rfm/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
21
  kumoai/experimental/rfm/backend/sqlite/__init__.py,sha256=jl-DBbhsqQ-dUXyWhyQTM1AU2qNAtXCmi1mokdhtBTg,902
21
- kumoai/experimental/rfm/backend/sqlite/table.py,sha256=PhBMj2vwChCxsTHrDzeiau8xs3EHgxA8t-uc6_JcREY,5221
22
- kumoai/experimental/rfm/backend/sqlite/sampler.py,sha256=pBCj0bXnh1PMg9cYJw-K983FzJX1_SLOe3QuOxkmvBQ,14242
22
+ kumoai/experimental/rfm/backend/sqlite/table.py,sha256=WqYtd_rwlawItRMXZUfv14qdyU6huQmODuFjDo483dI,6683
23
+ kumoai/experimental/rfm/backend/sqlite/sampler.py,sha256=_D9C5mj3oL4J2qZFap3emvTy2jxzth3dEWZPfr4dmEE,16201
23
24
  kumoai/experimental/rfm/backend/local/__init__.py,sha256=2s9sSA-E-8pfkkzCH4XPuaSxSznEURMfMgwEIfYYPsg,1014
24
- kumoai/experimental/rfm/backend/local/table.py,sha256=fCtLuBSvCSlTbrl77Pe1Aas4GQIC1TXfpuneBSv_wwI,3662
25
- kumoai/experimental/rfm/backend/local/graph_store.py,sha256=cY9KeLir9Xsp4MJl_K0VZckNa_LMKiiWCZG14uu21JI,11854
26
- kumoai/experimental/rfm/backend/local/sampler.py,sha256=85HoHCDiFOiuD_vFPZRx9JCyQUlLsqgsuB3NAw50wNw,10836
25
+ kumoai/experimental/rfm/backend/local/table.py,sha256=GKeYGcu52ztCU8EBMqp5UVj85E145Ug41xiCPiTCXq4,3489
26
+ kumoai/experimental/rfm/backend/local/graph_store.py,sha256=RHhkI13KpdPxqb4vXkwEwuFiX5DkrEsfZsOLywNnrvU,11294
27
+ kumoai/experimental/rfm/backend/local/sampler.py,sha256=UKxTjsYs00sYuV_LAlDuZOvQq0BZzPCzZK1Fki2Fd70,10726
27
28
  kumoai/experimental/rfm/backend/snow/__init__.py,sha256=BYfsiuJ4Ee30GjG9EuUtitMHXnRfvVKi85zNlIwldV4,993
28
- kumoai/experimental/rfm/backend/snow/table.py,sha256=-LIumOr3jvd2Kww1gBUcFkZN_xaZEUGzhsLb2sRDMe8,5491
29
- kumoai/experimental/rfm/backend/snow/sampler.py,sha256=oNiBTo-Dr6LNCFJ9uHzLfKFYtx0rZq-Do2UOluwWWt0,10010
29
+ kumoai/experimental/rfm/backend/snow/table.py,sha256=9N7TOcXX8hhAjCawnhuvQCArBFTCdng3gBakunUxg90,8892
30
+ kumoai/experimental/rfm/backend/snow/sampler.py,sha256=zvPsgVnDfvskcnPWsIcqxw-Fn9DsCLfdoLE-m3bjeww,11483
30
31
  kumoai/experimental/rfm/pquery/__init__.py,sha256=X0O3EIq5SMfBEE-ii5Cq6iDhR3s3XMXB52Cx5htoePw,152
31
32
  kumoai/experimental/rfm/pquery/pandas_executor.py,sha256=MwSvFRwLq-z19LEdF0G0AT7Gj9tCqu-XLEA7mNbqXwc,18454
32
33
  kumoai/experimental/rfm/pquery/executor.py,sha256=gs5AVNaA50ci8zXOBD3qt5szdTReSwTs4BGuEyx4BEE,2728
33
- kumoai/experimental/rfm/infer/multicategorical.py,sha256=0-cLpDnGryhr76QhZNO-klKokJ6MUSfxXcGdQ61oykY,1102
34
+ kumoai/experimental/rfm/infer/multicategorical.py,sha256=lNO_8aJw1whO6QVEMB3PRWMNlEEiX44g3v4tP88TSQY,1119
34
35
  kumoai/experimental/rfm/infer/categorical.py,sha256=VwNaKwKbRYkTxEJ1R6gziffC8dGsEThcDEfbi-KqW5c,853
35
36
  kumoai/experimental/rfm/infer/time_col.py,sha256=oNenUK6P7ql8uwShodtQ73uG1x3fbFWT78jRcF9DLTI,1789
36
37
  kumoai/experimental/rfm/infer/pkey.py,sha256=IaJI5GHK8ds_a3AOr3YYVgUlSmYYEgr4Nu92s2RyBV4,4412
37
38
  kumoai/experimental/rfm/infer/id.py,sha256=ZIO0DWIoiEoS_8MVc5lkqBfkTWWQ0yGCgjkwLdaYa_Q,908
38
- kumoai/experimental/rfm/infer/dtype.py,sha256=zjQ6Dhvb2QKv7A-c8mDxBnK5Dijhmn4fCgavIw4UH8Y,2582
39
- kumoai/experimental/rfm/infer/__init__.py,sha256=krdMFN8iKZlSFOl-M5MW1KuSviQV3H1E18jj2uB8g6Q,469
39
+ kumoai/experimental/rfm/infer/dtype.py,sha256=FyAqvtrOWQC9hGrhQ7sC4BAI6c9k6ew-fo8ClS1sewM,2782
40
+ kumoai/experimental/rfm/infer/__init__.py,sha256=8GDxQKd0pxZULdk7mpwl3CsOpL4v2HPuPEsbi2t_vzc,519
40
41
  kumoai/experimental/rfm/infer/timestamp.py,sha256=vM9--7eStzaGG13Y-oLYlpNJyhL6f9dp17HDXwtl_DM,1094
41
- kumoai/experimental/rfm/base/sql_sampler.py,sha256=-2dyftqvfbzMceIhE6i4wYFt7-p7FDeqlfH4P--qjWw,2598
42
- kumoai/experimental/rfm/base/__init__.py,sha256=ZWG3HDJfxlu0JZ6cdAbd9hmUCN1irLMrAXitMKmGlxs,799
43
- kumoai/experimental/rfm/base/sql_table.py,sha256=fX3aBvTgpt_S3XLGsUsWafeyV_SlO1Twah2ZbcI07GY,3764
44
- kumoai/experimental/rfm/base/table.py,sha256=5T52J_qNL8af84tZQZTD-9K4tDOtArWJRDH6jXOsdrQ,19888
45
- kumoai/experimental/rfm/base/column_expression.py,sha256=pYjM3nVsdBgsSFUlmx2nBfRj-0pch2ED6EfdS2WOUqk,336
46
- kumoai/experimental/rfm/base/sampler.py,sha256=aCD98t0CUhAvGXEFv24Vq2g4otuclpKkkyL1rMR_mFg,31449
47
- kumoai/experimental/rfm/base/source.py,sha256=RqlI_kBoRV0ADb8KdEKn15RNHMdFUzEVzb57lIoyBM4,294
48
- kumoai/experimental/rfm/base/column.py,sha256=Yc7oX8OUYJdnJmgD9Mz4jKSChjMXqJYRFybHWGVcDHE,2133
42
+ kumoai/experimental/rfm/infer/stype.py,sha256=fu4zsOB-C7jNeMnq6dsK4bOZSewe7PtZe_AkohSRLoM,894
43
+ kumoai/experimental/rfm/base/sql_sampler.py,sha256=qurkEVlMhDZw3d9SM2uGud6TMv_Wx_iqWoCgEKd_g9o,5094
44
+ kumoai/experimental/rfm/base/__init__.py,sha256=rjmMux5lG8srw1bjQGcFQFv6zET9e5riP81nPkw28Jg,724
45
+ kumoai/experimental/rfm/base/table.py,sha256=JWaSOcVYfGveUHFZpu85CUr4trLt1PJmAtgsz3QC8N8,26534
46
+ kumoai/experimental/rfm/base/sampler.py,sha256=tXYnVEyKC5NjSIpe8pNYp0V3Qbg-KbUE_QB0Emy2YiQ,30882
47
+ kumoai/experimental/rfm/base/expression.py,sha256=Y7NtLTnKlx6euG_N3fLTcrFKheB6P5KS_jhCfoXV9DE,1252
48
+ kumoai/experimental/rfm/base/source.py,sha256=bwu3GU2TvIXR2fwKAmJ1-5BDoNXMnI1SU3Fgdk8lWnc,301
49
+ kumoai/experimental/rfm/base/column.py,sha256=GXzLC-VpShr6PecUzaj1MJKc_PHzfW5Jn9bOYPA8fFA,4965
49
50
  kumoai/encoder/__init__.py,sha256=VPGs4miBC_WfwWeOXeHhFomOUocERFavhKf5fqITcds,182
50
51
  kumoai/graph/graph.py,sha256=iyp4klPIMn2ttuEqMJvsrxKb_tmz_DTnvziIhCegduM,38291
51
52
  kumoai/graph/__init__.py,sha256=n8X4X8luox4hPBHTRC9R-3JzvYYMoR8n7lF1H4w4Hzc,228
@@ -56,6 +57,7 @@ kumoai/artifact_export/job.py,sha256=GEisSwvcjK_35RgOfsLXGgxMTXIWm765B_BW_Kgs-V0
56
57
  kumoai/artifact_export/__init__.py,sha256=BsfDrc3mCHpO9-BqvqKm8qrXDIwfdaoH5UIoG4eQkc4,238
57
58
  kumoai/utils/datasets.py,sha256=ptKIUoBONVD55pTVNdRCkQT3NWdN_r9UAUu4xewPa3U,2928
58
59
  kumoai/utils/__init__.py,sha256=6S-UtwjeLpnCYRCCIEWhkitPYGaqOGXC1ChE13DzXiU,256
60
+ kumoai/utils/display.py,sha256=eXlw4B72y6zEruWYOfwvfqxfMBTL9AsPtWfw3BjaWqQ,1397
59
61
  kumoai/utils/progress_logger.py,sha256=3aYOoVSbQv5i9m2T8IqMydofKf6iNB1jxsl1uGjHZz8,9265
60
62
  kumoai/utils/sql.py,sha256=f6lR6rBEW7Dtk0NdM26dOZXUHDizEHb1WPlBCJrwoq0,118
61
63
  kumoai/utils/forecasting.py,sha256=-nDS6ucKNfQhTQOfebjefj0wwWH3-KYNslIomxwwMBM,7415
@@ -93,12 +95,12 @@ kumoai/pquery/predictive_query.py,sha256=UXn1s8ztubYZMNGl4ijaeidMiGlFveb1TGw9qI5
93
95
  kumoai/pquery/prediction_table.py,sha256=QPDH22X1UB0NIufY7qGuV2XW7brG3Pv--FbjNezzM2g,10776
94
96
  kumoai/pquery/training_table.py,sha256=elmPDZx11kPiC_dkOhJcBUGtHKgL32GCBvZ9k6U0pMg,15809
95
97
  kumoai/client/pquery.py,sha256=IQ8As-OOJOkuMoMosphOsA5hxQYLCbzOQJO7RezK8uY,7091
96
- kumoai/client/client.py,sha256=Jda8V9yiu3LbhxlcgRWPeYi7eF6jzCKcq8-B_vEd1ik,8514
98
+ kumoai/client/client.py,sha256=npTLooBtmZ9xOo7AbEiYQTh9wFktsGSEpSEfdB7vdB4,8715
97
99
  kumoai/client/graph.py,sha256=zvLEDExLT_RVbUMHqVl0m6tO6s2gXmYSoWmPF6YMlnA,3831
98
100
  kumoai/client/online.py,sha256=pkBBh_DEC3GAnPcNw6bopNRlGe7EUbIFe7_seQqZRaw,2720
99
101
  kumoai/client/source_table.py,sha256=VCsCcM7KYcnjGP7HLTb-AOSEGEVsJTWjk8bMg1JdgPU,2101
100
102
  kumoai/client/__init__.py,sha256=MkyOuMaHQ2c8GPxjBDQSVFhfRE2d2_6CXQ6rxj4ps4w,64
101
- kumoai/client/jobs.py,sha256=iu_Wrta6BQMlV6ZtzSnmhjwNPKDMQDXOsqVVIyWodqw,17074
103
+ kumoai/client/jobs.py,sha256=z3By5MWvWdJ_wYFyJA34pD4NueOXvXEqrAANWEpp4Pk,18066
102
104
  kumoai/client/utils.py,sha256=lz1NubwMDHCwzQRowRXm7mjAoYRd5UjRQIwXdtWAl90,3849
103
105
  kumoai/client/connector.py,sha256=x3i2aBTJTEMZvYRcWkY-UfWVOANZjqAso4GBbcshFjw,3920
104
106
  kumoai/client/table.py,sha256=cQG-RPm-e91idEgse1IPJDvBmzddIDGDkuyrR1rq4wU,3235
@@ -110,9 +112,10 @@ kumoai/trainer/job.py,sha256=Wk69nzFhbvuA3nEvtCstI04z5CxkgvQ6tHnGchE0Lkg,44938
110
112
  kumoai/trainer/baseline_trainer.py,sha256=LlfViNOmswNv4c6zJJLsyv0pC2mM2WKMGYx06ogtEVc,4024
111
113
  kumoai/trainer/__init__.py,sha256=zUdFl-f-sBWmm2x8R-rdVzPBeU2FaMzUY5mkcgoTa1k,939
112
114
  kumoai/trainer/online_serving.py,sha256=9cddb5paeZaCgbUeceQdAOxysCtV5XP-KcsgFz_XR5w,9566
115
+ kumoai/trainer/distilled_trainer.py,sha256=2pPs5clakNxkLfaak7uqPJOrpTWe1RVVM7ztDSqQZvU,6484
113
116
  kumoai/trainer/trainer.py,sha256=hBXO7gwpo3t59zKFTeIkK65B8QRmWCwO33sbDuEAPlY,20133
114
- kumoai-2.14.0.dev202512181731.dist-info/RECORD,,
115
- kumoai-2.14.0.dev202512181731.dist-info/WHEEL,sha256=V1loQ6TpxABu1APUg0MoTRBOzSKT5xVc3skizX-ovCU,136
116
- kumoai-2.14.0.dev202512181731.dist-info/top_level.txt,sha256=YjU6UcmomoDx30vEXLsOU784ED7VztQOsFApk1SFwvs,7
117
- kumoai-2.14.0.dev202512181731.dist-info/METADATA,sha256=6DXWj2B67vLO-HDJaPEOX7fw4P5PqDzPDxRgf-o-UMY,2557
118
- kumoai-2.14.0.dev202512181731.dist-info/licenses/LICENSE,sha256=TbWlyqRmhq9PEzCaTI0H0nWLQCCOywQM8wYH8MbjfLo,1102
117
+ kumoai-2.14.0.dev202512301731.dist-info/RECORD,,
118
+ kumoai-2.14.0.dev202512301731.dist-info/WHEEL,sha256=V1loQ6TpxABu1APUg0MoTRBOzSKT5xVc3skizX-ovCU,136
119
+ kumoai-2.14.0.dev202512301731.dist-info/top_level.txt,sha256=YjU6UcmomoDx30vEXLsOU784ED7VztQOsFApk1SFwvs,7
120
+ kumoai-2.14.0.dev202512301731.dist-info/METADATA,sha256=XW8jzm0aptnoLAkWA04ZBBd_H9QnrcVQLUO5ZaF_HJk,2557
121
+ kumoai-2.14.0.dev202512301731.dist-info/licenses/LICENSE,sha256=TbWlyqRmhq9PEzCaTI0H0nWLQCCOywQM8wYH8MbjfLo,1102
@@ -1,16 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import Any, TypeAlias
3
-
4
- from kumoapi.typing import Dtype
5
-
6
- from kumoai.mixin import CastMixin
7
-
8
-
9
- @dataclass(frozen=True)
10
- class ColumnExpressionSpec(CastMixin):
11
- name: str
12
- expr: str
13
- dtype: Dtype | None = None
14
-
15
-
16
- ColumnExpressionType: TypeAlias = ColumnExpressionSpec | dict[str, Any]
@@ -1,113 +0,0 @@
1
- from abc import abstractmethod
2
- from collections import defaultdict
3
- from collections.abc import Sequence
4
- from functools import cached_property
5
- from typing import Any
6
-
7
- from kumoapi.model_plan import MissingType
8
-
9
- from kumoai.experimental.rfm.base import (
10
- ColumnExpressionType,
11
- SourceForeignKey,
12
- Table,
13
- )
14
- from kumoai.utils import quote_ident
15
-
16
-
17
- class SQLTable(Table):
18
- r"""A :class:`SQLTable` specifies a :class:`Table` backed by a SQL
19
- database.
20
-
21
- Args:
22
- name: The logical name of this table.
23
- source_name: The physical name of this table in the database. If set to
24
- ``None``, ``name`` is being used.
25
- columns: The selected physical columns of this table.
26
- column_expressions: The logical columns of this table.
27
- primary_key: The name of the primary key of this table, if it exists.
28
- time_column: The name of the time column of this table, if it exists.
29
- end_time_column: The name of the end time column of this table, if it
30
- exists.
31
- """
32
- def __init__(
33
- self,
34
- name: str,
35
- source_name: str | None = None,
36
- columns: Sequence[str] | None = None,
37
- column_expressions: Sequence[ColumnExpressionType] | None = None,
38
- primary_key: MissingType | str | None = MissingType.VALUE,
39
- time_column: str | None = None,
40
- end_time_column: str | None = None,
41
- ) -> None:
42
-
43
- self._connection: Any
44
- self._source_name = source_name or name
45
-
46
- super().__init__(
47
- name=name,
48
- columns=[],
49
- primary_key=None,
50
- time_column=None,
51
- end_time_column=None,
52
- )
53
-
54
- if isinstance(primary_key, MissingType):
55
- primary_key = self._source_primary_key
56
-
57
- # Add column expressions with highest priority:
58
- self._add_column_expressions(column_expressions or [])
59
-
60
- if columns is None:
61
- for column_name in self._source_column_dict.keys():
62
- if column_name not in self:
63
- self.add_column(column_name)
64
- else:
65
- for column_name in columns:
66
- self.add_column(column_name)
67
-
68
- if primary_key is not None:
69
- if primary_key not in self:
70
- self.add_column(primary_key)
71
- self.primary_key = primary_key
72
-
73
- if time_column is not None:
74
- if time_column not in self:
75
- self.add_column(time_column)
76
- self.time_column = time_column
77
-
78
- if end_time_column is not None:
79
- if end_time_column not in self:
80
- self.add_column(end_time_column)
81
- self.end_time_column = end_time_column
82
-
83
- @property
84
- def fqn(self) -> str:
85
- r"""The fully-qualified quoted source table name."""
86
- return quote_ident(self._source_name)
87
-
88
- # Column ##################################################################
89
-
90
- def _add_column_expressions(
91
- self,
92
- columns: Sequence[ColumnExpressionType],
93
- ) -> None:
94
- pass
95
-
96
- # Abstract Methods ########################################################
97
-
98
- @cached_property
99
- def _source_foreign_key_dict(self) -> dict[str, SourceForeignKey]:
100
- fkeys = self._get_source_foreign_keys()
101
- # NOTE Drop all keys that link to multiple keys in the same table since
102
- # we don't support composite keys yet:
103
- table_pkeys: dict[str, set[str]] = defaultdict(set)
104
- for fkey in fkeys:
105
- table_pkeys[fkey.dst_table].add(fkey.primary_key)
106
- return {
107
- fkey.name: fkey
108
- for fkey in fkeys if len(table_pkeys[fkey.dst_table]) == 1
109
- }
110
-
111
- @abstractmethod
112
- def _get_source_foreign_keys(self) -> list[SourceForeignKey]:
113
- pass