kumoai 2.14.0.dev202512181731__cp312-cp312-macosx_11_0_arm64.whl → 2.14.0.dev202512301731__cp312-cp312-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +23 -26
- kumoai/_version.py +1 -1
- kumoai/client/client.py +6 -0
- kumoai/client/jobs.py +24 -0
- kumoai/experimental/rfm/__init__.py +22 -22
- kumoai/experimental/rfm/backend/local/graph_store.py +12 -21
- kumoai/experimental/rfm/backend/local/sampler.py +0 -3
- kumoai/experimental/rfm/backend/local/table.py +25 -24
- kumoai/experimental/rfm/backend/snow/sampler.py +106 -61
- kumoai/experimental/rfm/backend/snow/table.py +146 -51
- kumoai/experimental/rfm/backend/sqlite/sampler.py +127 -78
- kumoai/experimental/rfm/backend/sqlite/table.py +94 -47
- kumoai/experimental/rfm/base/__init__.py +6 -7
- kumoai/experimental/rfm/base/column.py +97 -5
- kumoai/experimental/rfm/base/expression.py +44 -0
- kumoai/experimental/rfm/base/sampler.py +5 -17
- kumoai/experimental/rfm/base/source.py +1 -1
- kumoai/experimental/rfm/base/sql_sampler.py +68 -9
- kumoai/experimental/rfm/base/table.py +284 -120
- kumoai/experimental/rfm/graph.py +139 -86
- kumoai/experimental/rfm/infer/__init__.py +6 -4
- kumoai/experimental/rfm/infer/dtype.py +6 -1
- kumoai/experimental/rfm/infer/multicategorical.py +1 -1
- kumoai/experimental/rfm/infer/stype.py +35 -0
- kumoai/experimental/rfm/relbench.py +76 -0
- kumoai/experimental/rfm/rfm.py +4 -20
- kumoai/trainer/distilled_trainer.py +175 -0
- kumoai/utils/display.py +51 -0
- {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/METADATA +1 -1
- {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/RECORD +33 -30
- kumoai/experimental/rfm/base/column_expression.py +0 -16
- kumoai/experimental/rfm/base/sql_table.py +0 -113
- {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/WHEEL +0 -0
- {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.14.0.dev202512181731.dist-info → kumoai-2.14.0.dev202512301731.dist-info}/top_level.txt +0 -0
|
@@ -1,16 +1,20 @@
|
|
|
1
1
|
import json
|
|
2
2
|
from collections.abc import Iterator
|
|
3
3
|
from contextlib import contextmanager
|
|
4
|
+
from typing import TYPE_CHECKING
|
|
4
5
|
|
|
5
6
|
import numpy as np
|
|
6
7
|
import pandas as pd
|
|
7
8
|
import pyarrow as pa
|
|
8
9
|
from kumoapi.pquery import ValidatedPredictiveQuery
|
|
9
10
|
|
|
10
|
-
from kumoai.experimental.rfm.backend.snow import Connection
|
|
11
|
-
from kumoai.experimental.rfm.base import SQLSampler
|
|
11
|
+
from kumoai.experimental.rfm.backend.snow import Connection, SnowTable
|
|
12
|
+
from kumoai.experimental.rfm.base import SQLSampler, Table
|
|
12
13
|
from kumoai.experimental.rfm.pquery import PQueryPandasExecutor
|
|
13
|
-
from kumoai.utils import
|
|
14
|
+
from kumoai.utils import ProgressLogger
|
|
15
|
+
|
|
16
|
+
if TYPE_CHECKING:
|
|
17
|
+
from kumoai.experimental.rfm import Graph
|
|
14
18
|
|
|
15
19
|
|
|
16
20
|
@contextmanager
|
|
@@ -22,18 +26,30 @@ def paramstyle(connection: Connection, style: str = 'qmark') -> Iterator[None]:
|
|
|
22
26
|
|
|
23
27
|
|
|
24
28
|
class SnowSampler(SQLSampler):
|
|
29
|
+
def __init__(
|
|
30
|
+
self,
|
|
31
|
+
graph: 'Graph',
|
|
32
|
+
verbose: bool | ProgressLogger = True,
|
|
33
|
+
) -> None:
|
|
34
|
+
super().__init__(graph=graph, verbose=verbose)
|
|
35
|
+
|
|
36
|
+
for table in graph.tables.values():
|
|
37
|
+
assert isinstance(table, SnowTable)
|
|
38
|
+
self._connection = table._connection
|
|
39
|
+
|
|
25
40
|
def _get_min_max_time_dict(
|
|
26
41
|
self,
|
|
27
42
|
table_names: list[str],
|
|
28
43
|
) -> dict[str, tuple[pd.Timestamp, pd.Timestamp]]:
|
|
29
44
|
selects: list[str] = []
|
|
30
45
|
for table_name in table_names:
|
|
31
|
-
|
|
46
|
+
column = self.time_column_dict[table_name]
|
|
47
|
+
column_ref = self.table_column_ref_dict[table_name][column]
|
|
32
48
|
select = (f"SELECT\n"
|
|
33
49
|
f" ? as table_name,\n"
|
|
34
|
-
f" MIN({
|
|
35
|
-
f" MAX({
|
|
36
|
-
f"FROM {self.
|
|
50
|
+
f" MIN({column_ref}) as min_date,\n"
|
|
51
|
+
f" MAX({column_ref}) as max_date\n"
|
|
52
|
+
f"FROM {self.source_name_dict[table_name]}")
|
|
37
53
|
selects.append(select)
|
|
38
54
|
sql = "\nUNION ALL\n".join(selects)
|
|
39
55
|
|
|
@@ -59,17 +75,27 @@ class SnowSampler(SQLSampler):
|
|
|
59
75
|
# NOTE Snowflake does support `SEED` only as part of `SYSTEM` sampling.
|
|
60
76
|
num_rows = min(num_rows, 1_000_000) # Snowflake's upper limit.
|
|
61
77
|
|
|
78
|
+
source_table = self.source_table_dict[table_name]
|
|
62
79
|
filters: list[str] = []
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
80
|
+
|
|
81
|
+
key = self.primary_key_dict[table_name]
|
|
82
|
+
if key not in source_table or source_table[key].is_nullable:
|
|
83
|
+
key_ref = self.table_column_ref_dict[table_name][key]
|
|
84
|
+
filters.append(f" {key_ref} IS NOT NULL")
|
|
85
|
+
|
|
86
|
+
column = self.time_column_dict.get(table_name)
|
|
87
|
+
if column is None:
|
|
88
|
+
pass
|
|
89
|
+
elif column not in source_table or source_table[column].is_nullable:
|
|
90
|
+
column_ref = self.table_column_ref_dict[table_name][column]
|
|
91
|
+
filters.append(f" {column_ref} IS NOT NULL")
|
|
92
|
+
|
|
93
|
+
projections = [
|
|
94
|
+
self.table_column_proj_dict[table_name][column]
|
|
95
|
+
for column in columns
|
|
96
|
+
]
|
|
97
|
+
sql = (f"SELECT {', '.join(projections)}\n"
|
|
98
|
+
f"FROM {self.source_name_dict[table_name]}\n"
|
|
73
99
|
f"SAMPLE ROW ({num_rows} ROWS)")
|
|
74
100
|
if len(filters) > 0:
|
|
75
101
|
sql += f"\nWHERE{' AND'.join(filters)}"
|
|
@@ -79,7 +105,11 @@ class SnowSampler(SQLSampler):
|
|
|
79
105
|
cursor.execute(sql)
|
|
80
106
|
table = cursor.fetch_arrow_all()
|
|
81
107
|
|
|
82
|
-
return
|
|
108
|
+
return Table._sanitize(
|
|
109
|
+
df=table.to_pandas(types_mapper=pd.ArrowDtype),
|
|
110
|
+
dtype_dict=self.table_dtype_dict[table_name],
|
|
111
|
+
stype_dict=self.table_stype_dict[table_name],
|
|
112
|
+
)
|
|
83
113
|
|
|
84
114
|
def _sample_target(
|
|
85
115
|
self,
|
|
@@ -152,42 +182,51 @@ class SnowSampler(SQLSampler):
|
|
|
152
182
|
pkey: pd.Series,
|
|
153
183
|
columns: set[str],
|
|
154
184
|
) -> tuple[pd.DataFrame, np.ndarray]:
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
185
|
+
key = self.primary_key_dict[table_name]
|
|
186
|
+
key_ref = self.table_column_ref_dict[table_name][key]
|
|
187
|
+
projections = [
|
|
188
|
+
self.table_column_proj_dict[table_name][column]
|
|
189
|
+
for column in columns
|
|
190
|
+
]
|
|
158
191
|
|
|
159
192
|
payload = json.dumps(list(pkey))
|
|
160
193
|
|
|
161
194
|
sql = ("WITH TMP as (\n"
|
|
162
195
|
" SELECT\n"
|
|
163
|
-
" f.index as
|
|
164
|
-
if
|
|
165
|
-
sql += " f.value::NUMBER as
|
|
166
|
-
elif
|
|
167
|
-
sql += " f.value::FLOAT as
|
|
196
|
+
" f.index as __KUMO_BATCH__,\n")
|
|
197
|
+
if self.table_dtype_dict[table_name][key].is_int():
|
|
198
|
+
sql += " f.value::NUMBER as __KUMO_ID__\n"
|
|
199
|
+
elif self.table_dtype_dict[table_name][key].is_float():
|
|
200
|
+
sql += " f.value::FLOAT as __KUMO_ID__\n"
|
|
168
201
|
else:
|
|
169
|
-
sql += " f.value::VARCHAR as
|
|
202
|
+
sql += " f.value::VARCHAR as __KUMO_ID__\n"
|
|
170
203
|
sql += (f" FROM TABLE(FLATTEN(INPUT => PARSE_JSON(?))) f\n"
|
|
171
204
|
f")\n"
|
|
172
|
-
f"SELECT
|
|
173
|
-
f"
|
|
205
|
+
f"SELECT "
|
|
206
|
+
f"TMP.__KUMO_BATCH__ as __KUMO_BATCH__, "
|
|
207
|
+
f"{', '.join(projections)}\n"
|
|
174
208
|
f"FROM TMP\n"
|
|
175
|
-
f"JOIN {self.
|
|
176
|
-
f" ON
|
|
209
|
+
f"JOIN {self.source_name_dict[table_name]} ENT\n"
|
|
210
|
+
f" ON {key_ref} = TMP.__KUMO_ID__")
|
|
177
211
|
|
|
178
212
|
with paramstyle(self._connection), self._connection.cursor() as cursor:
|
|
179
213
|
cursor.execute(sql, (payload, ))
|
|
180
214
|
table = cursor.fetch_arrow_all()
|
|
181
215
|
|
|
182
216
|
# Remove any duplicated primary keys in post-processing:
|
|
183
|
-
tmp = table.append_column('
|
|
184
|
-
gb = tmp.group_by('
|
|
185
|
-
table = table.take(gb['
|
|
217
|
+
tmp = table.append_column('__KUMO_ID__', pa.array(range(len(table))))
|
|
218
|
+
gb = tmp.group_by('__KUMO_BATCH__').aggregate([('__KUMO_ID__', 'min')])
|
|
219
|
+
table = table.take(gb['__KUMO_ID___min'])
|
|
186
220
|
|
|
187
|
-
batch = table['
|
|
188
|
-
|
|
221
|
+
batch = table['__KUMO_BATCH__'].cast(pa.int64()).to_numpy()
|
|
222
|
+
batch_index = table.schema.get_field_index('__KUMO_BATCH__')
|
|
223
|
+
table = table.remove_column(batch_index)
|
|
189
224
|
|
|
190
|
-
return
|
|
225
|
+
return Table._sanitize(
|
|
226
|
+
df=table.to_pandas(),
|
|
227
|
+
dtype_dict=self.table_dtype_dict[table_name],
|
|
228
|
+
stype_dict=self.table_stype_dict[table_name],
|
|
229
|
+
), batch
|
|
191
230
|
|
|
192
231
|
# Helper Methods ##########################################################
|
|
193
232
|
|
|
@@ -201,6 +240,7 @@ class SnowSampler(SQLSampler):
|
|
|
201
240
|
max_offset: pd.DateOffset,
|
|
202
241
|
columns: set[str],
|
|
203
242
|
) -> tuple[pd.DataFrame, np.ndarray]:
|
|
243
|
+
time_column = self.time_column_dict[table_name]
|
|
204
244
|
|
|
205
245
|
end_time = anchor_time + max_offset
|
|
206
246
|
end_time = end_time.dt.strftime("%Y-%m-%d %H:%M:%S")
|
|
@@ -211,42 +251,47 @@ class SnowSampler(SQLSampler):
|
|
|
211
251
|
else:
|
|
212
252
|
payload = json.dumps(list(zip(pkey, end_time)))
|
|
213
253
|
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
254
|
+
key_ref = self.table_column_ref_dict[table_name][fkey]
|
|
255
|
+
time_ref = self.table_column_ref_dict[table_name][time_column]
|
|
256
|
+
projections = [
|
|
257
|
+
self.table_column_proj_dict[table_name][column]
|
|
258
|
+
for column in columns
|
|
259
|
+
]
|
|
218
260
|
sql = ("WITH TMP as (\n"
|
|
219
261
|
" SELECT\n"
|
|
220
|
-
" f.index as
|
|
221
|
-
if
|
|
222
|
-
sql += " f.value[0]::NUMBER as
|
|
223
|
-
elif
|
|
224
|
-
sql += " f.value[0]::FLOAT as
|
|
262
|
+
" f.index as __KUMO_BATCH__,\n")
|
|
263
|
+
if self.table_dtype_dict[table_name][fkey].is_int():
|
|
264
|
+
sql += " f.value[0]::NUMBER as __KUMO_ID__,\n"
|
|
265
|
+
elif self.table_dtype_dict[table_name][fkey].is_float():
|
|
266
|
+
sql += " f.value[0]::FLOAT as __KUMO_ID__,\n"
|
|
225
267
|
else:
|
|
226
|
-
sql += " f.value[0]::VARCHAR as
|
|
227
|
-
sql += " f.value[1]::TIMESTAMP_NTZ as
|
|
268
|
+
sql += " f.value[0]::VARCHAR as __KUMO_ID__,\n"
|
|
269
|
+
sql += " f.value[1]::TIMESTAMP_NTZ as __KUMO_END_TIME__"
|
|
228
270
|
if min_offset is not None:
|
|
229
|
-
sql += ",\n f.value[2]::TIMESTAMP_NTZ as
|
|
271
|
+
sql += ",\n f.value[2]::TIMESTAMP_NTZ as __KUMO_START_TIME__"
|
|
230
272
|
sql += (f"\n"
|
|
231
273
|
f" FROM TABLE(FLATTEN(INPUT => PARSE_JSON(?))) f\n"
|
|
232
274
|
f")\n"
|
|
233
|
-
f"SELECT
|
|
234
|
-
f"
|
|
275
|
+
f"SELECT "
|
|
276
|
+
f"TMP.__KUMO_BATCH__ as __KUMO_BATCH__, "
|
|
277
|
+
f"{', '.join(projections)}\n"
|
|
235
278
|
f"FROM TMP\n"
|
|
236
|
-
f"JOIN {self.
|
|
237
|
-
f" ON
|
|
238
|
-
f" AND
|
|
279
|
+
f"JOIN {self.source_name_dict[table_name]} FACT\n"
|
|
280
|
+
f" ON {key_ref} = TMP.__KUMO_ID__\n"
|
|
281
|
+
f" AND {time_ref} <= TMP.__KUMO_END_TIME__")
|
|
239
282
|
if min_offset is not None:
|
|
240
|
-
sql += f"\n AND
|
|
283
|
+
sql += f"\n AND {time_ref} > TMP.__KUMO_START_TIME__"
|
|
241
284
|
|
|
242
285
|
with paramstyle(self._connection), self._connection.cursor() as cursor:
|
|
243
286
|
cursor.execute(sql, (payload, ))
|
|
244
287
|
table = cursor.fetch_arrow_all()
|
|
245
288
|
|
|
246
|
-
batch = table['
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
return self._sanitize(table_name, table), batch
|
|
289
|
+
batch = table['__KUMO_BATCH__'].cast(pa.int64()).to_numpy()
|
|
290
|
+
batch_index = table.schema.get_field_index('__KUMO_BATCH__')
|
|
291
|
+
table = table.remove_column(batch_index)
|
|
250
292
|
|
|
251
|
-
|
|
252
|
-
|
|
293
|
+
return Table._sanitize(
|
|
294
|
+
df=table.to_pandas(types_mapper=pd.ArrowDtype),
|
|
295
|
+
dtype_dict=self.table_dtype_dict[table_name],
|
|
296
|
+
stype_dict=self.table_stype_dict[table_name],
|
|
297
|
+
), batch
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
import re
|
|
2
|
+
from collections import Counter
|
|
2
3
|
from collections.abc import Sequence
|
|
3
4
|
from typing import cast
|
|
4
5
|
|
|
@@ -8,27 +9,27 @@ from kumoapi.typing import Dtype
|
|
|
8
9
|
|
|
9
10
|
from kumoai.experimental.rfm.backend.snow import Connection
|
|
10
11
|
from kumoai.experimental.rfm.base import (
|
|
11
|
-
|
|
12
|
+
ColumnSpec,
|
|
13
|
+
ColumnSpecType,
|
|
12
14
|
DataBackend,
|
|
13
15
|
SourceColumn,
|
|
14
16
|
SourceForeignKey,
|
|
15
|
-
|
|
17
|
+
Table,
|
|
16
18
|
)
|
|
17
19
|
from kumoai.utils import quote_ident
|
|
18
20
|
|
|
19
21
|
|
|
20
|
-
class SnowTable(
|
|
22
|
+
class SnowTable(Table):
|
|
21
23
|
r"""A table backed by a :class:`sqlite` database.
|
|
22
24
|
|
|
23
25
|
Args:
|
|
24
26
|
connection: The connection to a :class:`snowflake` database.
|
|
25
|
-
name: The
|
|
26
|
-
source_name: The
|
|
27
|
-
``
|
|
27
|
+
name: The name of this table.
|
|
28
|
+
source_name: The source name of this table. If set to ``None``,
|
|
29
|
+
``name`` is being used.
|
|
28
30
|
database: The database.
|
|
29
31
|
schema: The schema.
|
|
30
|
-
columns: The selected
|
|
31
|
-
column_expressions: The logical columns of this table.
|
|
32
|
+
columns: The selected columns of this table.
|
|
32
33
|
primary_key: The name of the primary key of this table, if it exists.
|
|
33
34
|
time_column: The name of the time column of this table, if it exists.
|
|
34
35
|
end_time_column: The name of the end time column of this table, if it
|
|
@@ -41,14 +42,21 @@ class SnowTable(SQLTable):
|
|
|
41
42
|
source_name: str | None = None,
|
|
42
43
|
database: str | None = None,
|
|
43
44
|
schema: str | None = None,
|
|
44
|
-
columns: Sequence[
|
|
45
|
-
column_expressions: Sequence[ColumnExpressionType] | None = None,
|
|
45
|
+
columns: Sequence[ColumnSpecType] | None = None,
|
|
46
46
|
primary_key: MissingType | str | None = MissingType.VALUE,
|
|
47
47
|
time_column: str | None = None,
|
|
48
48
|
end_time_column: str | None = None,
|
|
49
49
|
) -> None:
|
|
50
50
|
|
|
51
|
-
if database is
|
|
51
|
+
if database is None or schema is None:
|
|
52
|
+
with connection.cursor() as cursor:
|
|
53
|
+
cursor.execute("SELECT CURRENT_DATABASE(), CURRENT_SCHEMA()")
|
|
54
|
+
result = cursor.fetchone()
|
|
55
|
+
database = database or result[0]
|
|
56
|
+
assert database is not None
|
|
57
|
+
schema = schema or result[1]
|
|
58
|
+
|
|
59
|
+
if schema is None:
|
|
52
60
|
raise ValueError(f"Unspecified 'schema' for table "
|
|
53
61
|
f"'{source_name or name}' in database "
|
|
54
62
|
f"'{database}'")
|
|
@@ -61,19 +69,22 @@ class SnowTable(SQLTable):
|
|
|
61
69
|
name=name,
|
|
62
70
|
source_name=source_name,
|
|
63
71
|
columns=columns,
|
|
64
|
-
column_expressions=column_expressions,
|
|
65
72
|
primary_key=primary_key,
|
|
66
73
|
time_column=time_column,
|
|
67
74
|
end_time_column=end_time_column,
|
|
68
75
|
)
|
|
69
76
|
|
|
70
77
|
@property
|
|
71
|
-
def
|
|
72
|
-
|
|
78
|
+
def source_name(self) -> str:
|
|
79
|
+
names: list[str] = []
|
|
80
|
+
if self._database is not None:
|
|
81
|
+
names.append(self._database)
|
|
82
|
+
if self._schema is not None:
|
|
83
|
+
names.append(self._schema)
|
|
84
|
+
return '.'.join(names + [self._source_name])
|
|
73
85
|
|
|
74
86
|
@property
|
|
75
|
-
def
|
|
76
|
-
r"""The fully-qualified quoted table name."""
|
|
87
|
+
def _quoted_source_name(self) -> str:
|
|
77
88
|
names: list[str] = []
|
|
78
89
|
if self._database is not None:
|
|
79
90
|
names.append(quote_ident(self._database))
|
|
@@ -81,42 +92,26 @@ class SnowTable(SQLTable):
|
|
|
81
92
|
names.append(quote_ident(self._schema))
|
|
82
93
|
return '.'.join(names + [quote_ident(self._source_name)])
|
|
83
94
|
|
|
95
|
+
@property
|
|
96
|
+
def backend(self) -> DataBackend:
|
|
97
|
+
return cast(DataBackend, DataBackend.SNOWFLAKE)
|
|
98
|
+
|
|
84
99
|
def _get_source_columns(self) -> list[SourceColumn]:
|
|
85
100
|
source_columns: list[SourceColumn] = []
|
|
86
101
|
with self._connection.cursor() as cursor:
|
|
87
102
|
try:
|
|
88
|
-
sql = f"DESCRIBE TABLE {self.
|
|
103
|
+
sql = f"DESCRIBE TABLE {self._quoted_source_name}"
|
|
89
104
|
cursor.execute(sql)
|
|
90
105
|
except Exception as e:
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
names.append(self._database)
|
|
94
|
-
if self._schema is not None:
|
|
95
|
-
names.append(self._schema)
|
|
96
|
-
source_name = '.'.join(names + [self._source_name])
|
|
97
|
-
raise ValueError(f"Table '{source_name}' does not exist in "
|
|
98
|
-
f"the remote data backend") from e
|
|
106
|
+
raise ValueError(f"Table '{self.source_name}' does not exist "
|
|
107
|
+
f"in the remote data backend") from e
|
|
99
108
|
|
|
100
109
|
for row in cursor.fetchall():
|
|
101
|
-
column,
|
|
102
|
-
|
|
103
|
-
type = type.strip().upper()
|
|
104
|
-
if type.startswith('NUMBER'):
|
|
105
|
-
dtype = Dtype.int
|
|
106
|
-
elif type.startswith('VARCHAR'):
|
|
107
|
-
dtype = Dtype.string
|
|
108
|
-
elif type == 'FLOAT':
|
|
109
|
-
dtype = Dtype.float
|
|
110
|
-
elif type == 'BOOLEAN':
|
|
111
|
-
dtype = Dtype.bool
|
|
112
|
-
elif re.search('DATE|TIMESTAMP', type):
|
|
113
|
-
dtype = Dtype.date
|
|
114
|
-
else:
|
|
115
|
-
continue
|
|
110
|
+
column, dtype, _, null, _, is_pkey, is_unique, *_ = row
|
|
116
111
|
|
|
117
112
|
source_column = SourceColumn(
|
|
118
113
|
name=column,
|
|
119
|
-
dtype=dtype,
|
|
114
|
+
dtype=self._to_dtype(dtype),
|
|
120
115
|
is_primary_key=is_pkey.strip().upper() == 'Y',
|
|
121
116
|
is_unique_key=is_unique.strip().upper() == 'Y',
|
|
122
117
|
is_nullable=null.strip().upper() == 'Y',
|
|
@@ -126,22 +121,122 @@ class SnowTable(SQLTable):
|
|
|
126
121
|
return source_columns
|
|
127
122
|
|
|
128
123
|
def _get_source_foreign_keys(self) -> list[SourceForeignKey]:
|
|
129
|
-
|
|
124
|
+
source_foreign_keys: list[SourceForeignKey] = []
|
|
130
125
|
with self._connection.cursor() as cursor:
|
|
131
|
-
sql = f"SHOW IMPORTED KEYS IN TABLE {self.
|
|
126
|
+
sql = f"SHOW IMPORTED KEYS IN TABLE {self._quoted_source_name}"
|
|
132
127
|
cursor.execute(sql)
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
128
|
+
rows = cursor.fetchall()
|
|
129
|
+
counts = Counter(row[13] for row in rows)
|
|
130
|
+
for row in rows:
|
|
131
|
+
if counts[row[13]] == 1:
|
|
132
|
+
source_foreign_key = SourceForeignKey(
|
|
133
|
+
name=row[8],
|
|
134
|
+
dst_table=f'{row[1]}.{row[2]}.{row[3]}',
|
|
135
|
+
primary_key=row[4],
|
|
136
|
+
)
|
|
137
|
+
source_foreign_keys.append(source_foreign_key)
|
|
138
|
+
return source_foreign_keys
|
|
139
|
+
|
|
140
|
+
def _get_source_sample_df(self) -> pd.DataFrame:
|
|
139
141
|
with self._connection.cursor() as cursor:
|
|
140
142
|
columns = [quote_ident(col) for col in self._source_column_dict]
|
|
141
|
-
sql = f"SELECT {', '.join(columns)}
|
|
143
|
+
sql = (f"SELECT {', '.join(columns)} "
|
|
144
|
+
f"FROM {self._quoted_source_name} "
|
|
145
|
+
f"LIMIT {self._NUM_SAMPLE_ROWS}")
|
|
142
146
|
cursor.execute(sql)
|
|
143
147
|
table = cursor.fetch_arrow_all()
|
|
144
|
-
|
|
148
|
+
|
|
149
|
+
if table is None:
|
|
150
|
+
raise RuntimeError(f"Table '{self.source_name}' is empty")
|
|
151
|
+
|
|
152
|
+
return self._sanitize(
|
|
153
|
+
df=table.to_pandas(types_mapper=pd.ArrowDtype),
|
|
154
|
+
dtype_dict={
|
|
155
|
+
column.name: column.dtype
|
|
156
|
+
for column in self._source_column_dict.values()
|
|
157
|
+
},
|
|
158
|
+
stype_dict=None,
|
|
159
|
+
)
|
|
145
160
|
|
|
146
161
|
def _get_num_rows(self) -> int | None:
|
|
147
162
|
return None
|
|
163
|
+
|
|
164
|
+
def _get_expr_sample_df(
|
|
165
|
+
self,
|
|
166
|
+
columns: Sequence[ColumnSpec],
|
|
167
|
+
) -> pd.DataFrame:
|
|
168
|
+
with self._connection.cursor() as cursor:
|
|
169
|
+
projections = [
|
|
170
|
+
f"{column.expr} AS {quote_ident(column.name)}"
|
|
171
|
+
for column in columns
|
|
172
|
+
]
|
|
173
|
+
sql = (f"SELECT {', '.join(projections)} "
|
|
174
|
+
f"FROM {self._quoted_source_name} "
|
|
175
|
+
f"LIMIT {self._NUM_SAMPLE_ROWS}")
|
|
176
|
+
cursor.execute(sql)
|
|
177
|
+
table = cursor.fetch_arrow_all()
|
|
178
|
+
|
|
179
|
+
if table is None:
|
|
180
|
+
raise RuntimeError(f"Table '{self.source_name}' is empty")
|
|
181
|
+
|
|
182
|
+
return self._sanitize(
|
|
183
|
+
df=table.to_pandas(types_mapper=pd.ArrowDtype),
|
|
184
|
+
dtype_dict={column.name: column.dtype
|
|
185
|
+
for column in columns},
|
|
186
|
+
stype_dict=None,
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
@staticmethod
|
|
190
|
+
def _to_dtype(dtype: str | None) -> Dtype | None:
|
|
191
|
+
if dtype is None:
|
|
192
|
+
return None
|
|
193
|
+
dtype = dtype.strip().upper()
|
|
194
|
+
if dtype.startswith('NUMBER'):
|
|
195
|
+
try: # Parse `scale` from 'NUMBER(precision, scale)':
|
|
196
|
+
scale = int(dtype.split(',')[-1].split(')')[0])
|
|
197
|
+
return Dtype.int if scale == 0 else Dtype.float
|
|
198
|
+
except Exception:
|
|
199
|
+
return Dtype.float
|
|
200
|
+
if dtype == 'FLOAT':
|
|
201
|
+
return Dtype.float
|
|
202
|
+
if dtype.startswith('VARCHAR'):
|
|
203
|
+
return Dtype.string
|
|
204
|
+
if dtype.startswith('BINARY'):
|
|
205
|
+
return Dtype.binary
|
|
206
|
+
if dtype == 'BOOLEAN':
|
|
207
|
+
return Dtype.bool
|
|
208
|
+
if dtype.startswith('DATE') or dtype.startswith('TIMESTAMP'):
|
|
209
|
+
return Dtype.date
|
|
210
|
+
if dtype.startswith('TIME'):
|
|
211
|
+
return Dtype.time
|
|
212
|
+
if dtype.startswith('VECTOR'):
|
|
213
|
+
try: # Parse element data type from 'VECTOR(dtype, dimension)':
|
|
214
|
+
dtype = dtype.split(',')[0].split('(')[1].strip()
|
|
215
|
+
if dtype == 'INT':
|
|
216
|
+
return Dtype.intlist
|
|
217
|
+
elif dtype == 'FLOAT':
|
|
218
|
+
return Dtype.floatlist
|
|
219
|
+
except Exception:
|
|
220
|
+
pass
|
|
221
|
+
return Dtype.unsupported
|
|
222
|
+
if dtype.startswith('ARRAY'):
|
|
223
|
+
try: # Parse element data type from 'ARRAY(dtype)':
|
|
224
|
+
dtype = dtype.split('(', maxsplit=1)[1]
|
|
225
|
+
dtype = dtype.rsplit(')', maxsplit=1)[0]
|
|
226
|
+
_dtype = SnowTable._to_dtype(dtype)
|
|
227
|
+
if _dtype is not None and _dtype.is_int():
|
|
228
|
+
return Dtype.intlist
|
|
229
|
+
elif _dtype is not None and _dtype.is_float():
|
|
230
|
+
return Dtype.floatlist
|
|
231
|
+
elif _dtype is not None and _dtype.is_string():
|
|
232
|
+
return Dtype.stringlist
|
|
233
|
+
except Exception:
|
|
234
|
+
pass
|
|
235
|
+
return Dtype.unsupported
|
|
236
|
+
# Unsupported data types:
|
|
237
|
+
if re.search(
|
|
238
|
+
'DECFLOAT|VARIANT|OBJECT|MAP|FILE|GEOGRAPHY|GEOMETRY',
|
|
239
|
+
dtype,
|
|
240
|
+
):
|
|
241
|
+
return Dtype.unsupported
|
|
242
|
+
return None
|