kumoai 2.13.0.dev202512011731__cp312-cp312-macosx_11_0_arm64.whl → 2.14.0.dev202512181731__cp312-cp312-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +12 -0
- kumoai/_version.py +1 -1
- kumoai/client/pquery.py +6 -2
- kumoai/experimental/rfm/__init__.py +33 -8
- kumoai/experimental/rfm/authenticate.py +3 -4
- kumoai/experimental/rfm/backend/local/__init__.py +4 -0
- kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +53 -107
- kumoai/experimental/rfm/backend/local/sampler.py +315 -0
- kumoai/experimental/rfm/backend/local/table.py +41 -80
- kumoai/experimental/rfm/backend/snow/__init__.py +37 -0
- kumoai/experimental/rfm/backend/snow/sampler.py +252 -0
- kumoai/experimental/rfm/backend/snow/table.py +147 -0
- kumoai/experimental/rfm/backend/sqlite/__init__.py +11 -2
- kumoai/experimental/rfm/backend/sqlite/sampler.py +349 -0
- kumoai/experimental/rfm/backend/sqlite/table.py +108 -88
- kumoai/experimental/rfm/base/__init__.py +26 -2
- kumoai/experimental/rfm/base/column.py +6 -12
- kumoai/experimental/rfm/base/column_expression.py +16 -0
- kumoai/experimental/rfm/base/sampler.py +773 -0
- kumoai/experimental/rfm/base/source.py +19 -0
- kumoai/experimental/rfm/base/sql_sampler.py +84 -0
- kumoai/experimental/rfm/base/sql_table.py +113 -0
- kumoai/experimental/rfm/base/table.py +174 -76
- kumoai/experimental/rfm/graph.py +444 -84
- kumoai/experimental/rfm/infer/__init__.py +6 -0
- kumoai/experimental/rfm/infer/dtype.py +77 -0
- kumoai/experimental/rfm/infer/pkey.py +128 -0
- kumoai/experimental/rfm/infer/time_col.py +61 -0
- kumoai/experimental/rfm/pquery/executor.py +27 -27
- kumoai/experimental/rfm/pquery/pandas_executor.py +30 -32
- kumoai/experimental/rfm/rfm.py +299 -240
- kumoai/experimental/rfm/sagemaker.py +4 -4
- kumoai/pquery/predictive_query.py +10 -6
- kumoai/testing/snow.py +50 -0
- kumoai/utils/__init__.py +3 -2
- kumoai/utils/progress_logger.py +178 -12
- kumoai/utils/sql.py +3 -0
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/METADATA +6 -2
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/RECORD +42 -30
- kumoai/experimental/rfm/local_graph_sampler.py +0 -182
- kumoai/experimental/rfm/local_pquery_driver.py +0 -689
- kumoai/experimental/rfm/utils.py +0 -344
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/WHEEL +0 -0
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,252 @@
|
|
|
1
|
+
import json
|
|
2
|
+
from collections.abc import Iterator
|
|
3
|
+
from contextlib import contextmanager
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pandas as pd
|
|
7
|
+
import pyarrow as pa
|
|
8
|
+
from kumoapi.pquery import ValidatedPredictiveQuery
|
|
9
|
+
|
|
10
|
+
from kumoai.experimental.rfm.backend.snow import Connection
|
|
11
|
+
from kumoai.experimental.rfm.base import SQLSampler
|
|
12
|
+
from kumoai.experimental.rfm.pquery import PQueryPandasExecutor
|
|
13
|
+
from kumoai.utils import quote_ident
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@contextmanager
|
|
17
|
+
def paramstyle(connection: Connection, style: str = 'qmark') -> Iterator[None]:
|
|
18
|
+
_style = connection._paramstyle
|
|
19
|
+
connection._paramstyle = style
|
|
20
|
+
yield
|
|
21
|
+
connection._paramstyle = _style
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class SnowSampler(SQLSampler):
|
|
25
|
+
def _get_min_max_time_dict(
|
|
26
|
+
self,
|
|
27
|
+
table_names: list[str],
|
|
28
|
+
) -> dict[str, tuple[pd.Timestamp, pd.Timestamp]]:
|
|
29
|
+
selects: list[str] = []
|
|
30
|
+
for table_name in table_names:
|
|
31
|
+
time_column = self.time_column_dict[table_name]
|
|
32
|
+
select = (f"SELECT\n"
|
|
33
|
+
f" ? as table_name,\n"
|
|
34
|
+
f" MIN({quote_ident(time_column)}) as min_date,\n"
|
|
35
|
+
f" MAX({quote_ident(time_column)}) as max_date\n"
|
|
36
|
+
f"FROM {self.fqn_dict[table_name]}")
|
|
37
|
+
selects.append(select)
|
|
38
|
+
sql = "\nUNION ALL\n".join(selects)
|
|
39
|
+
|
|
40
|
+
out_dict: dict[str, tuple[pd.Timestamp, pd.Timestamp]] = {}
|
|
41
|
+
with paramstyle(self._connection), self._connection.cursor() as cursor:
|
|
42
|
+
cursor.execute(sql, table_names)
|
|
43
|
+
rows = cursor.fetchall()
|
|
44
|
+
for table_name, _min, _max in rows:
|
|
45
|
+
out_dict[table_name] = (
|
|
46
|
+
pd.Timestamp.max if _min is None else pd.Timestamp(_min),
|
|
47
|
+
pd.Timestamp.min if _max is None else pd.Timestamp(_max),
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
return out_dict
|
|
51
|
+
|
|
52
|
+
def _sample_entity_table(
|
|
53
|
+
self,
|
|
54
|
+
table_name: str,
|
|
55
|
+
columns: set[str],
|
|
56
|
+
num_rows: int,
|
|
57
|
+
random_seed: int | None = None,
|
|
58
|
+
) -> pd.DataFrame:
|
|
59
|
+
# NOTE Snowflake does support `SEED` only as part of `SYSTEM` sampling.
|
|
60
|
+
num_rows = min(num_rows, 1_000_000) # Snowflake's upper limit.
|
|
61
|
+
|
|
62
|
+
filters: list[str] = []
|
|
63
|
+
primary_key = self.primary_key_dict[table_name]
|
|
64
|
+
if self.source_table_dict[table_name][primary_key].is_nullable:
|
|
65
|
+
filters.append(f" {quote_ident(primary_key)} IS NOT NULL")
|
|
66
|
+
time_column = self.time_column_dict.get(table_name)
|
|
67
|
+
if (time_column is not None and
|
|
68
|
+
self.source_table_dict[table_name][time_column].is_nullable):
|
|
69
|
+
filters.append(f" {quote_ident(time_column)} IS NOT NULL")
|
|
70
|
+
|
|
71
|
+
sql = (f"SELECT {', '.join(quote_ident(col) for col in columns)}\n"
|
|
72
|
+
f"FROM {self.fqn_dict[table_name]}\n"
|
|
73
|
+
f"SAMPLE ROW ({num_rows} ROWS)")
|
|
74
|
+
if len(filters) > 0:
|
|
75
|
+
sql += f"\nWHERE{' AND'.join(filters)}"
|
|
76
|
+
|
|
77
|
+
with self._connection.cursor() as cursor:
|
|
78
|
+
# NOTE This may return duplicate primary keys. This is okay.
|
|
79
|
+
cursor.execute(sql)
|
|
80
|
+
table = cursor.fetch_arrow_all()
|
|
81
|
+
|
|
82
|
+
return self._sanitize(table_name, table)
|
|
83
|
+
|
|
84
|
+
def _sample_target(
|
|
85
|
+
self,
|
|
86
|
+
query: ValidatedPredictiveQuery,
|
|
87
|
+
entity_df: pd.DataFrame,
|
|
88
|
+
train_index: np.ndarray,
|
|
89
|
+
train_time: pd.Series,
|
|
90
|
+
num_train_examples: int,
|
|
91
|
+
test_index: np.ndarray,
|
|
92
|
+
test_time: pd.Series,
|
|
93
|
+
num_test_examples: int,
|
|
94
|
+
columns_dict: dict[str, set[str]],
|
|
95
|
+
time_offset_dict: dict[
|
|
96
|
+
tuple[str, str, str],
|
|
97
|
+
tuple[pd.DateOffset | None, pd.DateOffset],
|
|
98
|
+
],
|
|
99
|
+
) -> tuple[pd.Series, np.ndarray, pd.Series, np.ndarray]:
|
|
100
|
+
|
|
101
|
+
# NOTE For Snowflake, we execute everything at once to pay minimal
|
|
102
|
+
# query initialization costs.
|
|
103
|
+
index = np.concatenate([train_index, test_index])
|
|
104
|
+
time = pd.concat([train_time, test_time], axis=0, ignore_index=True)
|
|
105
|
+
|
|
106
|
+
entity_df = entity_df.iloc[index].reset_index(drop=True)
|
|
107
|
+
|
|
108
|
+
feat_dict: dict[str, pd.DataFrame] = {query.entity_table: entity_df}
|
|
109
|
+
time_dict: dict[str, pd.Series] = {}
|
|
110
|
+
time_column = self.time_column_dict.get(query.entity_table)
|
|
111
|
+
if time_column in columns_dict[query.entity_table]:
|
|
112
|
+
time_dict[query.entity_table] = entity_df[time_column]
|
|
113
|
+
batch_dict: dict[str, np.ndarray] = {
|
|
114
|
+
query.entity_table: np.arange(len(entity_df)),
|
|
115
|
+
}
|
|
116
|
+
for edge_type, (min_offset, max_offset) in time_offset_dict.items():
|
|
117
|
+
table_name, fkey, _ = edge_type
|
|
118
|
+
feat_dict[table_name], batch_dict[table_name] = self._by_time(
|
|
119
|
+
table_name=table_name,
|
|
120
|
+
fkey=fkey,
|
|
121
|
+
pkey=entity_df[self.primary_key_dict[query.entity_table]],
|
|
122
|
+
anchor_time=time,
|
|
123
|
+
min_offset=min_offset,
|
|
124
|
+
max_offset=max_offset,
|
|
125
|
+
columns=columns_dict[table_name],
|
|
126
|
+
)
|
|
127
|
+
time_column = self.time_column_dict.get(table_name)
|
|
128
|
+
if time_column in columns_dict[table_name]:
|
|
129
|
+
time_dict[table_name] = feat_dict[table_name][time_column]
|
|
130
|
+
|
|
131
|
+
y, mask = PQueryPandasExecutor().execute(
|
|
132
|
+
query=query,
|
|
133
|
+
feat_dict=feat_dict,
|
|
134
|
+
time_dict=time_dict,
|
|
135
|
+
batch_dict=batch_dict,
|
|
136
|
+
anchor_time=time,
|
|
137
|
+
num_forecasts=query.num_forecasts,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
train_mask = mask[:len(train_index)]
|
|
141
|
+
test_mask = mask[len(train_index):]
|
|
142
|
+
|
|
143
|
+
boundary = int(train_mask.sum())
|
|
144
|
+
train_y = y.iloc[:boundary]
|
|
145
|
+
test_y = y.iloc[boundary:].reset_index(drop=True)
|
|
146
|
+
|
|
147
|
+
return train_y, train_mask, test_y, test_mask
|
|
148
|
+
|
|
149
|
+
def _by_pkey(
|
|
150
|
+
self,
|
|
151
|
+
table_name: str,
|
|
152
|
+
pkey: pd.Series,
|
|
153
|
+
columns: set[str],
|
|
154
|
+
) -> tuple[pd.DataFrame, np.ndarray]:
|
|
155
|
+
|
|
156
|
+
pkey_name = self.primary_key_dict[table_name]
|
|
157
|
+
source_table = self.source_table_dict[table_name]
|
|
158
|
+
|
|
159
|
+
payload = json.dumps(list(pkey))
|
|
160
|
+
|
|
161
|
+
sql = ("WITH TMP as (\n"
|
|
162
|
+
" SELECT\n"
|
|
163
|
+
" f.index as BATCH,\n")
|
|
164
|
+
if source_table[pkey_name].dtype.is_int():
|
|
165
|
+
sql += " f.value::NUMBER as ID\n"
|
|
166
|
+
elif source_table[pkey_name].dtype.is_float():
|
|
167
|
+
sql += " f.value::FLOAT as ID\n"
|
|
168
|
+
else:
|
|
169
|
+
sql += " f.value::VARCHAR as ID\n"
|
|
170
|
+
sql += (f" FROM TABLE(FLATTEN(INPUT => PARSE_JSON(?))) f\n"
|
|
171
|
+
f")\n"
|
|
172
|
+
f"SELECT TMP.BATCH as __BATCH__, "
|
|
173
|
+
f"{', '.join('ENT.' + quote_ident(col) for col in columns)}\n"
|
|
174
|
+
f"FROM TMP\n"
|
|
175
|
+
f"JOIN {self.fqn_dict[table_name]} ENT\n"
|
|
176
|
+
f" ON ENT.{quote_ident(pkey_name)} = TMP.ID")
|
|
177
|
+
|
|
178
|
+
with paramstyle(self._connection), self._connection.cursor() as cursor:
|
|
179
|
+
cursor.execute(sql, (payload, ))
|
|
180
|
+
table = cursor.fetch_arrow_all()
|
|
181
|
+
|
|
182
|
+
# Remove any duplicated primary keys in post-processing:
|
|
183
|
+
tmp = table.append_column('__TMP__', pa.array(range(len(table))))
|
|
184
|
+
gb = tmp.group_by('__BATCH__').aggregate([('__TMP__', 'min')])
|
|
185
|
+
table = table.take(gb['__TMP___min'])
|
|
186
|
+
|
|
187
|
+
batch = table['__BATCH__'].cast(pa.int64()).to_numpy()
|
|
188
|
+
table = table.remove_column(table.schema.get_field_index('__BATCH__'))
|
|
189
|
+
|
|
190
|
+
return table.to_pandas(), batch # TODO Use `self._sanitize`.
|
|
191
|
+
|
|
192
|
+
# Helper Methods ##########################################################
|
|
193
|
+
|
|
194
|
+
def _by_time(
|
|
195
|
+
self,
|
|
196
|
+
table_name: str,
|
|
197
|
+
fkey: str,
|
|
198
|
+
pkey: pd.Series,
|
|
199
|
+
anchor_time: pd.Series,
|
|
200
|
+
min_offset: pd.DateOffset | None,
|
|
201
|
+
max_offset: pd.DateOffset,
|
|
202
|
+
columns: set[str],
|
|
203
|
+
) -> tuple[pd.DataFrame, np.ndarray]:
|
|
204
|
+
|
|
205
|
+
end_time = anchor_time + max_offset
|
|
206
|
+
end_time = end_time.dt.strftime("%Y-%m-%d %H:%M:%S")
|
|
207
|
+
if min_offset is not None:
|
|
208
|
+
start_time = anchor_time + min_offset
|
|
209
|
+
start_time = start_time.dt.strftime("%Y-%m-%d %H:%M:%S")
|
|
210
|
+
payload = json.dumps(list(zip(pkey, end_time, start_time)))
|
|
211
|
+
else:
|
|
212
|
+
payload = json.dumps(list(zip(pkey, end_time)))
|
|
213
|
+
|
|
214
|
+
# Based on benchmarking, JSON payload is the fastest way to query by
|
|
215
|
+
# custom indices (compared to large `IN` clauses or temporary tables):
|
|
216
|
+
source_table = self.source_table_dict[table_name]
|
|
217
|
+
time_column = self.time_column_dict[table_name]
|
|
218
|
+
sql = ("WITH TMP as (\n"
|
|
219
|
+
" SELECT\n"
|
|
220
|
+
" f.index as BATCH,\n")
|
|
221
|
+
if source_table[fkey].dtype.is_int():
|
|
222
|
+
sql += " f.value[0]::NUMBER as ID,\n"
|
|
223
|
+
elif source_table[fkey].dtype.is_float():
|
|
224
|
+
sql += " f.value[0]::FLOAT as ID,\n"
|
|
225
|
+
else:
|
|
226
|
+
sql += " f.value[0]::VARCHAR as ID,\n"
|
|
227
|
+
sql += " f.value[1]::TIMESTAMP_NTZ as END_TIME"
|
|
228
|
+
if min_offset is not None:
|
|
229
|
+
sql += ",\n f.value[2]::TIMESTAMP_NTZ as START_TIME"
|
|
230
|
+
sql += (f"\n"
|
|
231
|
+
f" FROM TABLE(FLATTEN(INPUT => PARSE_JSON(?))) f\n"
|
|
232
|
+
f")\n"
|
|
233
|
+
f"SELECT TMP.BATCH as __BATCH__, "
|
|
234
|
+
f"{', '.join('FACT.' + quote_ident(col) for col in columns)}\n"
|
|
235
|
+
f"FROM TMP\n"
|
|
236
|
+
f"JOIN {self.fqn_dict[table_name]} FACT\n"
|
|
237
|
+
f" ON FACT.{quote_ident(fkey)} = TMP.ID\n"
|
|
238
|
+
f" AND FACT.{quote_ident(time_column)} <= TMP.END_TIME")
|
|
239
|
+
if min_offset is not None:
|
|
240
|
+
sql += f"\n AND FACT.{quote_ident(time_column)} > TMP.START_TIME"
|
|
241
|
+
|
|
242
|
+
with paramstyle(self._connection), self._connection.cursor() as cursor:
|
|
243
|
+
cursor.execute(sql, (payload, ))
|
|
244
|
+
table = cursor.fetch_arrow_all()
|
|
245
|
+
|
|
246
|
+
batch = table['__BATCH__'].cast(pa.int64()).to_numpy()
|
|
247
|
+
table = table.remove_column(table.schema.get_field_index('__BATCH__'))
|
|
248
|
+
|
|
249
|
+
return self._sanitize(table_name, table), batch
|
|
250
|
+
|
|
251
|
+
def _sanitize(self, table_name: str, table: pa.table) -> pd.DataFrame:
|
|
252
|
+
return table.to_pandas(types_mapper=pd.ArrowDtype)
|
|
@@ -0,0 +1,147 @@
|
|
|
1
|
+
import re
|
|
2
|
+
from collections.abc import Sequence
|
|
3
|
+
from typing import cast
|
|
4
|
+
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from kumoapi.model_plan import MissingType
|
|
7
|
+
from kumoapi.typing import Dtype
|
|
8
|
+
|
|
9
|
+
from kumoai.experimental.rfm.backend.snow import Connection
|
|
10
|
+
from kumoai.experimental.rfm.base import (
|
|
11
|
+
ColumnExpressionType,
|
|
12
|
+
DataBackend,
|
|
13
|
+
SourceColumn,
|
|
14
|
+
SourceForeignKey,
|
|
15
|
+
SQLTable,
|
|
16
|
+
)
|
|
17
|
+
from kumoai.utils import quote_ident
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class SnowTable(SQLTable):
|
|
21
|
+
r"""A table backed by a :class:`sqlite` database.
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
connection: The connection to a :class:`snowflake` database.
|
|
25
|
+
name: The logical name of this table.
|
|
26
|
+
source_name: The physical name of this table in the database. If set to
|
|
27
|
+
``None``, ``name`` is being used.
|
|
28
|
+
database: The database.
|
|
29
|
+
schema: The schema.
|
|
30
|
+
columns: The selected physical columns of this table.
|
|
31
|
+
column_expressions: The logical columns of this table.
|
|
32
|
+
primary_key: The name of the primary key of this table, if it exists.
|
|
33
|
+
time_column: The name of the time column of this table, if it exists.
|
|
34
|
+
end_time_column: The name of the end time column of this table, if it
|
|
35
|
+
exists.
|
|
36
|
+
"""
|
|
37
|
+
def __init__(
|
|
38
|
+
self,
|
|
39
|
+
connection: Connection,
|
|
40
|
+
name: str,
|
|
41
|
+
source_name: str | None = None,
|
|
42
|
+
database: str | None = None,
|
|
43
|
+
schema: str | None = None,
|
|
44
|
+
columns: Sequence[str] | None = None,
|
|
45
|
+
column_expressions: Sequence[ColumnExpressionType] | None = None,
|
|
46
|
+
primary_key: MissingType | str | None = MissingType.VALUE,
|
|
47
|
+
time_column: str | None = None,
|
|
48
|
+
end_time_column: str | None = None,
|
|
49
|
+
) -> None:
|
|
50
|
+
|
|
51
|
+
if database is not None and schema is None:
|
|
52
|
+
raise ValueError(f"Unspecified 'schema' for table "
|
|
53
|
+
f"'{source_name or name}' in database "
|
|
54
|
+
f"'{database}'")
|
|
55
|
+
|
|
56
|
+
self._connection = connection
|
|
57
|
+
self._database = database
|
|
58
|
+
self._schema = schema
|
|
59
|
+
|
|
60
|
+
super().__init__(
|
|
61
|
+
name=name,
|
|
62
|
+
source_name=source_name,
|
|
63
|
+
columns=columns,
|
|
64
|
+
column_expressions=column_expressions,
|
|
65
|
+
primary_key=primary_key,
|
|
66
|
+
time_column=time_column,
|
|
67
|
+
end_time_column=end_time_column,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
@property
|
|
71
|
+
def backend(self) -> DataBackend:
|
|
72
|
+
return cast(DataBackend, DataBackend.SNOWFLAKE)
|
|
73
|
+
|
|
74
|
+
@property
|
|
75
|
+
def fqn(self) -> str:
|
|
76
|
+
r"""The fully-qualified quoted table name."""
|
|
77
|
+
names: list[str] = []
|
|
78
|
+
if self._database is not None:
|
|
79
|
+
names.append(quote_ident(self._database))
|
|
80
|
+
if self._schema is not None:
|
|
81
|
+
names.append(quote_ident(self._schema))
|
|
82
|
+
return '.'.join(names + [quote_ident(self._source_name)])
|
|
83
|
+
|
|
84
|
+
def _get_source_columns(self) -> list[SourceColumn]:
|
|
85
|
+
source_columns: list[SourceColumn] = []
|
|
86
|
+
with self._connection.cursor() as cursor:
|
|
87
|
+
try:
|
|
88
|
+
sql = f"DESCRIBE TABLE {self.fqn}"
|
|
89
|
+
cursor.execute(sql)
|
|
90
|
+
except Exception as e:
|
|
91
|
+
names: list[str] = []
|
|
92
|
+
if self._database is not None:
|
|
93
|
+
names.append(self._database)
|
|
94
|
+
if self._schema is not None:
|
|
95
|
+
names.append(self._schema)
|
|
96
|
+
source_name = '.'.join(names + [self._source_name])
|
|
97
|
+
raise ValueError(f"Table '{source_name}' does not exist in "
|
|
98
|
+
f"the remote data backend") from e
|
|
99
|
+
|
|
100
|
+
for row in cursor.fetchall():
|
|
101
|
+
column, type, _, null, _, is_pkey, is_unique, *_ = row
|
|
102
|
+
|
|
103
|
+
type = type.strip().upper()
|
|
104
|
+
if type.startswith('NUMBER'):
|
|
105
|
+
dtype = Dtype.int
|
|
106
|
+
elif type.startswith('VARCHAR'):
|
|
107
|
+
dtype = Dtype.string
|
|
108
|
+
elif type == 'FLOAT':
|
|
109
|
+
dtype = Dtype.float
|
|
110
|
+
elif type == 'BOOLEAN':
|
|
111
|
+
dtype = Dtype.bool
|
|
112
|
+
elif re.search('DATE|TIMESTAMP', type):
|
|
113
|
+
dtype = Dtype.date
|
|
114
|
+
else:
|
|
115
|
+
continue
|
|
116
|
+
|
|
117
|
+
source_column = SourceColumn(
|
|
118
|
+
name=column,
|
|
119
|
+
dtype=dtype,
|
|
120
|
+
is_primary_key=is_pkey.strip().upper() == 'Y',
|
|
121
|
+
is_unique_key=is_unique.strip().upper() == 'Y',
|
|
122
|
+
is_nullable=null.strip().upper() == 'Y',
|
|
123
|
+
)
|
|
124
|
+
source_columns.append(source_column)
|
|
125
|
+
|
|
126
|
+
return source_columns
|
|
127
|
+
|
|
128
|
+
def _get_source_foreign_keys(self) -> list[SourceForeignKey]:
|
|
129
|
+
source_fkeys: list[SourceForeignKey] = []
|
|
130
|
+
with self._connection.cursor() as cursor:
|
|
131
|
+
sql = f"SHOW IMPORTED KEYS IN TABLE {self.fqn}"
|
|
132
|
+
cursor.execute(sql)
|
|
133
|
+
for row in cursor.fetchall():
|
|
134
|
+
_, _, _, dst_table, pkey, _, _, _, fkey, *_ = row
|
|
135
|
+
source_fkeys.append(SourceForeignKey(fkey, dst_table, pkey))
|
|
136
|
+
return source_fkeys
|
|
137
|
+
|
|
138
|
+
def _get_sample_df(self) -> pd.DataFrame:
|
|
139
|
+
with self._connection.cursor() as cursor:
|
|
140
|
+
columns = [quote_ident(col) for col in self._source_column_dict]
|
|
141
|
+
sql = f"SELECT {', '.join(columns)} FROM {self.fqn} LIMIT 1000"
|
|
142
|
+
cursor.execute(sql)
|
|
143
|
+
table = cursor.fetch_arrow_all()
|
|
144
|
+
return table.to_pandas(types_mapper=pd.ArrowDtype)
|
|
145
|
+
|
|
146
|
+
def _get_num_rows(self) -> int | None:
|
|
147
|
+
return None
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
from pathlib import Path
|
|
2
|
-
from typing import Any, TypeAlias
|
|
2
|
+
from typing import Any, TypeAlias
|
|
3
3
|
|
|
4
4
|
try:
|
|
5
5
|
import adbc_driver_sqlite.dbapi as adbc
|
|
@@ -11,13 +11,22 @@ except ImportError:
|
|
|
11
11
|
Connection: TypeAlias = adbc.AdbcSqliteConnection
|
|
12
12
|
|
|
13
13
|
|
|
14
|
-
def connect(uri:
|
|
14
|
+
def connect(uri: str | Path | None = None, **kwargs: Any) -> Connection:
|
|
15
|
+
r"""Opens a connection to a :class:`sqlite` database.
|
|
16
|
+
|
|
17
|
+
uri: The path to the database file to be opened.
|
|
18
|
+
kwargs: Additional connection arguments, following the
|
|
19
|
+
:class:`adbc_driver_sqlite` protocol.
|
|
20
|
+
"""
|
|
15
21
|
return adbc.connect(uri, **kwargs)
|
|
16
22
|
|
|
17
23
|
|
|
18
24
|
from .table import SQLiteTable # noqa: E402
|
|
25
|
+
from .sampler import SQLiteSampler # noqa: E402
|
|
19
26
|
|
|
20
27
|
__all__ = [
|
|
28
|
+
'connect',
|
|
21
29
|
'Connection',
|
|
22
30
|
'SQLiteTable',
|
|
31
|
+
'SQLiteSampler',
|
|
23
32
|
]
|