kumoai 2.13.0.dev202512011731__cp312-cp312-macosx_11_0_arm64.whl → 2.14.0.dev202512181731__cp312-cp312-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- kumoai/__init__.py +12 -0
- kumoai/_version.py +1 -1
- kumoai/client/pquery.py +6 -2
- kumoai/experimental/rfm/__init__.py +33 -8
- kumoai/experimental/rfm/authenticate.py +3 -4
- kumoai/experimental/rfm/backend/local/__init__.py +4 -0
- kumoai/experimental/rfm/{local_graph_store.py → backend/local/graph_store.py} +53 -107
- kumoai/experimental/rfm/backend/local/sampler.py +315 -0
- kumoai/experimental/rfm/backend/local/table.py +41 -80
- kumoai/experimental/rfm/backend/snow/__init__.py +37 -0
- kumoai/experimental/rfm/backend/snow/sampler.py +252 -0
- kumoai/experimental/rfm/backend/snow/table.py +147 -0
- kumoai/experimental/rfm/backend/sqlite/__init__.py +11 -2
- kumoai/experimental/rfm/backend/sqlite/sampler.py +349 -0
- kumoai/experimental/rfm/backend/sqlite/table.py +108 -88
- kumoai/experimental/rfm/base/__init__.py +26 -2
- kumoai/experimental/rfm/base/column.py +6 -12
- kumoai/experimental/rfm/base/column_expression.py +16 -0
- kumoai/experimental/rfm/base/sampler.py +773 -0
- kumoai/experimental/rfm/base/source.py +19 -0
- kumoai/experimental/rfm/base/sql_sampler.py +84 -0
- kumoai/experimental/rfm/base/sql_table.py +113 -0
- kumoai/experimental/rfm/base/table.py +174 -76
- kumoai/experimental/rfm/graph.py +444 -84
- kumoai/experimental/rfm/infer/__init__.py +6 -0
- kumoai/experimental/rfm/infer/dtype.py +77 -0
- kumoai/experimental/rfm/infer/pkey.py +128 -0
- kumoai/experimental/rfm/infer/time_col.py +61 -0
- kumoai/experimental/rfm/pquery/executor.py +27 -27
- kumoai/experimental/rfm/pquery/pandas_executor.py +30 -32
- kumoai/experimental/rfm/rfm.py +299 -240
- kumoai/experimental/rfm/sagemaker.py +4 -4
- kumoai/pquery/predictive_query.py +10 -6
- kumoai/testing/snow.py +50 -0
- kumoai/utils/__init__.py +3 -2
- kumoai/utils/progress_logger.py +178 -12
- kumoai/utils/sql.py +3 -0
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/METADATA +6 -2
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/RECORD +42 -30
- kumoai/experimental/rfm/local_graph_sampler.py +0 -182
- kumoai/experimental/rfm/local_pquery_driver.py +0 -689
- kumoai/experimental/rfm/utils.py +0 -344
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/WHEEL +0 -0
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/licenses/LICENSE +0 -0
- {kumoai-2.13.0.dev202512011731.dist-info → kumoai-2.14.0.dev202512181731.dist-info}/top_level.txt +0 -0
kumoai/__init__.py
CHANGED
|
@@ -280,7 +280,19 @@ __all__ = [
|
|
|
280
280
|
]
|
|
281
281
|
|
|
282
282
|
|
|
283
|
+
def in_snowflake_notebook() -> bool:
|
|
284
|
+
try:
|
|
285
|
+
from snowflake.snowpark.context import get_active_session
|
|
286
|
+
import streamlit # noqa: F401
|
|
287
|
+
get_active_session()
|
|
288
|
+
return True
|
|
289
|
+
except Exception:
|
|
290
|
+
return False
|
|
291
|
+
|
|
292
|
+
|
|
283
293
|
def in_notebook() -> bool:
|
|
294
|
+
if in_snowflake_notebook():
|
|
295
|
+
return True
|
|
284
296
|
try:
|
|
285
297
|
from IPython import get_ipython
|
|
286
298
|
shell = get_ipython()
|
kumoai/_version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = '2.
|
|
1
|
+
__version__ = '2.14.0.dev202512181731'
|
kumoai/client/pquery.py
CHANGED
|
@@ -176,8 +176,12 @@ def filter_model_plan(
|
|
|
176
176
|
# Undefined
|
|
177
177
|
pass
|
|
178
178
|
|
|
179
|
-
|
|
180
|
-
|
|
179
|
+
# Forward compatibility - Remove any newly introduced arguments not
|
|
180
|
+
# returned yet by the backend:
|
|
181
|
+
value = getattr(section, field.name)
|
|
182
|
+
if value != MissingType.VALUE:
|
|
183
|
+
new_opt_fields.append((field.name, _type, default))
|
|
184
|
+
new_opts.append(value)
|
|
181
185
|
|
|
182
186
|
Section = dataclass(
|
|
183
187
|
config=dict(validate_assignment=True),
|
|
@@ -6,11 +6,11 @@ import socket
|
|
|
6
6
|
import threading
|
|
7
7
|
from dataclasses import dataclass
|
|
8
8
|
from enum import Enum
|
|
9
|
-
from typing import Dict, Optional, Tuple
|
|
10
9
|
from urllib.parse import urlparse
|
|
11
10
|
|
|
12
11
|
import kumoai
|
|
13
12
|
from kumoai.client.client import KumoClient
|
|
13
|
+
from kumoai.spcs import _get_active_session
|
|
14
14
|
|
|
15
15
|
from .authenticate import authenticate
|
|
16
16
|
from .sagemaker import (
|
|
@@ -49,7 +49,8 @@ class InferenceBackend(str, Enum):
|
|
|
49
49
|
|
|
50
50
|
|
|
51
51
|
def _detect_backend(
|
|
52
|
-
url: str
|
|
52
|
+
url: str, #
|
|
53
|
+
) -> tuple[InferenceBackend, str | None, str | None]:
|
|
53
54
|
parsed = urlparse(url)
|
|
54
55
|
|
|
55
56
|
# Remote SageMaker
|
|
@@ -73,12 +74,27 @@ def _detect_backend(
|
|
|
73
74
|
return InferenceBackend.REST, None, None
|
|
74
75
|
|
|
75
76
|
|
|
77
|
+
def _get_snowflake_url(snowflake_application: str) -> str:
|
|
78
|
+
snowpark_session = _get_active_session()
|
|
79
|
+
if not snowpark_session:
|
|
80
|
+
raise ValueError(
|
|
81
|
+
"Client creation failed: snowflake_application is specified "
|
|
82
|
+
"without an active snowpark session. If running outside "
|
|
83
|
+
"a snowflake notebook, specify a URL and credentials.")
|
|
84
|
+
with snowpark_session.connection.cursor() as cur:
|
|
85
|
+
cur.execute(
|
|
86
|
+
f"DESCRIBE SERVICE {snowflake_application}.user_schema.rfm_service"
|
|
87
|
+
f" ->> SELECT \"dns_name\" from $1")
|
|
88
|
+
dns_name: str = cur.fetchone()[0]
|
|
89
|
+
return f"http://{dns_name}:8000/api"
|
|
90
|
+
|
|
91
|
+
|
|
76
92
|
@dataclass
|
|
77
93
|
class RfmGlobalState:
|
|
78
94
|
_url: str = '__url_not_provided__'
|
|
79
95
|
_backend: InferenceBackend = InferenceBackend.UNKNOWN
|
|
80
|
-
_region:
|
|
81
|
-
_endpoint_name:
|
|
96
|
+
_region: str | None = None
|
|
97
|
+
_endpoint_name: str | None = None
|
|
82
98
|
_thread_local = threading.local()
|
|
83
99
|
|
|
84
100
|
# Thread-safe init-once.
|
|
@@ -121,10 +137,10 @@ global_state = RfmGlobalState()
|
|
|
121
137
|
|
|
122
138
|
|
|
123
139
|
def init(
|
|
124
|
-
url:
|
|
125
|
-
api_key:
|
|
126
|
-
snowflake_credentials:
|
|
127
|
-
snowflake_application:
|
|
140
|
+
url: str | None = None,
|
|
141
|
+
api_key: str | None = None,
|
|
142
|
+
snowflake_credentials: dict[str, str] | None = None,
|
|
143
|
+
snowflake_application: str | None = None,
|
|
128
144
|
log_level: str = "INFO",
|
|
129
145
|
) -> None:
|
|
130
146
|
with global_state._lock:
|
|
@@ -136,6 +152,15 @@ def init(
|
|
|
136
152
|
"supported.")
|
|
137
153
|
return
|
|
138
154
|
|
|
155
|
+
if snowflake_application:
|
|
156
|
+
if url is not None:
|
|
157
|
+
raise ValueError(
|
|
158
|
+
"Client creation failed: both snowflake_application and "
|
|
159
|
+
"url are specified. If running from a snowflake notebook, "
|
|
160
|
+
"specify only snowflake_application.")
|
|
161
|
+
url = _get_snowflake_url(snowflake_application)
|
|
162
|
+
api_key = "test:DISABLED"
|
|
163
|
+
|
|
139
164
|
if url is None:
|
|
140
165
|
url = os.getenv("RFM_API_URL", "https://kumorfm.ai/api")
|
|
141
166
|
|
|
@@ -2,12 +2,11 @@ import logging
|
|
|
2
2
|
import os
|
|
3
3
|
import platform
|
|
4
4
|
from datetime import datetime
|
|
5
|
-
from typing import Optional
|
|
6
5
|
|
|
7
6
|
from kumoai import in_notebook
|
|
8
7
|
|
|
9
8
|
|
|
10
|
-
def authenticate(api_url:
|
|
9
|
+
def authenticate(api_url: str | None = None) -> None:
|
|
11
10
|
"""Authenticates the user and sets the Kumo API key for the SDK.
|
|
12
11
|
|
|
13
12
|
This function detects the current environment and launches the appropriate
|
|
@@ -65,11 +64,11 @@ def _authenticate_local(api_url: str, redirect_port: int = 8765) -> None:
|
|
|
65
64
|
import webbrowser
|
|
66
65
|
from getpass import getpass
|
|
67
66
|
from socketserver import TCPServer
|
|
68
|
-
from typing import Any
|
|
67
|
+
from typing import Any
|
|
69
68
|
|
|
70
69
|
logger = logging.getLogger('kumoai')
|
|
71
70
|
|
|
72
|
-
token_status:
|
|
71
|
+
token_status: dict[str, Any] = {
|
|
73
72
|
'token': None,
|
|
74
73
|
'token_name': None,
|
|
75
74
|
'failed': False
|
|
@@ -32,7 +32,11 @@ Please create a feature request at 'https://github.com/kumo-ai/kumo-rfm'."""
|
|
|
32
32
|
raise RuntimeError(_msg) from e
|
|
33
33
|
|
|
34
34
|
from .table import LocalTable
|
|
35
|
+
from .graph_store import LocalGraphStore
|
|
36
|
+
from .sampler import LocalSampler
|
|
35
37
|
|
|
36
38
|
__all__ = [
|
|
37
39
|
'LocalTable',
|
|
40
|
+
'LocalGraphStore',
|
|
41
|
+
'LocalSampler',
|
|
38
42
|
]
|
|
@@ -1,14 +1,13 @@
|
|
|
1
1
|
import warnings
|
|
2
|
-
from typing import
|
|
2
|
+
from typing import TYPE_CHECKING
|
|
3
3
|
|
|
4
4
|
import numpy as np
|
|
5
5
|
import pandas as pd
|
|
6
6
|
from kumoapi.rfm.context import Subgraph
|
|
7
7
|
from kumoapi.typing import Stype
|
|
8
8
|
|
|
9
|
-
from kumoai.experimental.rfm import
|
|
10
|
-
from kumoai.
|
|
11
|
-
from kumoai.utils import InteractiveProgressLogger, ProgressLogger
|
|
9
|
+
from kumoai.experimental.rfm.backend.local import LocalTable
|
|
10
|
+
from kumoai.utils import ProgressLogger
|
|
12
11
|
|
|
13
12
|
try:
|
|
14
13
|
import torch
|
|
@@ -16,43 +15,40 @@ try:
|
|
|
16
15
|
except ImportError:
|
|
17
16
|
WITH_TORCH = False
|
|
18
17
|
|
|
18
|
+
if TYPE_CHECKING:
|
|
19
|
+
from kumoai.experimental.rfm import Graph
|
|
20
|
+
|
|
19
21
|
|
|
20
22
|
class LocalGraphStore:
|
|
21
23
|
def __init__(
|
|
22
24
|
self,
|
|
23
|
-
graph: Graph,
|
|
24
|
-
|
|
25
|
-
verbose: Union[bool, ProgressLogger] = True,
|
|
25
|
+
graph: 'Graph',
|
|
26
|
+
verbose: bool | ProgressLogger = True,
|
|
26
27
|
) -> None:
|
|
27
28
|
|
|
28
29
|
if not isinstance(verbose, ProgressLogger):
|
|
29
|
-
verbose =
|
|
30
|
-
"Materializing graph",
|
|
30
|
+
verbose = ProgressLogger.default(
|
|
31
|
+
msg="Materializing graph",
|
|
31
32
|
verbose=verbose,
|
|
32
33
|
)
|
|
33
34
|
|
|
34
35
|
with verbose as logger:
|
|
35
|
-
self.df_dict, self.mask_dict = self.sanitize(graph
|
|
36
|
-
self.stype_dict = self.get_stype_dict(graph)
|
|
36
|
+
self.df_dict, self.mask_dict = self.sanitize(graph)
|
|
37
37
|
logger.log("Sanitized input data")
|
|
38
38
|
|
|
39
|
-
self.
|
|
39
|
+
self.pkey_map_dict = self.get_pkey_map_dict(graph)
|
|
40
40
|
num_pkeys = sum(t.has_primary_key() for t in graph.tables.values())
|
|
41
41
|
if num_pkeys > 1:
|
|
42
42
|
logger.log(f"Collected primary keys from {num_pkeys} tables")
|
|
43
43
|
else:
|
|
44
44
|
logger.log(f"Collected primary key from {num_pkeys} table")
|
|
45
45
|
|
|
46
|
-
(
|
|
47
|
-
|
|
48
|
-
self.
|
|
49
|
-
self.
|
|
50
|
-
self.min_time,
|
|
51
|
-
self.max_time,
|
|
52
|
-
) = self.get_time_data(graph)
|
|
53
|
-
if self.max_time != pd.Timestamp.min:
|
|
46
|
+
self.time_dict, self.min_max_time_dict = self.get_time_data(graph)
|
|
47
|
+
if len(self.min_max_time_dict) > 0:
|
|
48
|
+
min_time = min(t for t, _ in self.min_max_time_dict.values())
|
|
49
|
+
max_time = max(t for _, t in self.min_max_time_dict.values())
|
|
54
50
|
logger.log(f"Identified temporal graph from "
|
|
55
|
-
f"{
|
|
51
|
+
f"{min_time.date()} to {max_time.date()}")
|
|
56
52
|
else:
|
|
57
53
|
logger.log("Identified static graph without timestamps")
|
|
58
54
|
|
|
@@ -62,14 +58,6 @@ class LocalGraphStore:
|
|
|
62
58
|
logger.log(f"Created graph with {num_nodes:,} nodes and "
|
|
63
59
|
f"{num_edges:,} edges")
|
|
64
60
|
|
|
65
|
-
@property
|
|
66
|
-
def node_types(self) -> List[str]:
|
|
67
|
-
return list(self.df_dict.keys())
|
|
68
|
-
|
|
69
|
-
@property
|
|
70
|
-
def edge_types(self) -> List[Tuple[str, str, str]]:
|
|
71
|
-
return list(self.row_dict.keys())
|
|
72
|
-
|
|
73
61
|
def get_node_id(self, table_name: str, pkey: pd.Series) -> np.ndarray:
|
|
74
62
|
r"""Returns the node ID given primary keys.
|
|
75
63
|
|
|
@@ -105,9 +93,8 @@ class LocalGraphStore:
|
|
|
105
93
|
|
|
106
94
|
def sanitize(
|
|
107
95
|
self,
|
|
108
|
-
graph: Graph,
|
|
109
|
-
|
|
110
|
-
) -> Tuple[Dict[str, pd.DataFrame], Dict[str, np.ndarray]]:
|
|
96
|
+
graph: 'Graph',
|
|
97
|
+
) -> tuple[dict[str, pd.DataFrame], dict[str, np.ndarray]]:
|
|
111
98
|
r"""Sanitizes raw data according to table schema definition:
|
|
112
99
|
|
|
113
100
|
In particular, it:
|
|
@@ -115,20 +102,14 @@ class LocalGraphStore:
|
|
|
115
102
|
* drops timezone information from timestamps
|
|
116
103
|
* drops duplicate primary keys
|
|
117
104
|
* removes rows with missing primary keys or time values
|
|
118
|
-
|
|
119
|
-
If ``preprocess`` is set to ``True``, it will additionally pre-process
|
|
120
|
-
data for faster model processing. In particular, it:
|
|
121
|
-
* tokenizes any text column that is not a foreign key
|
|
122
105
|
"""
|
|
123
|
-
df_dict:
|
|
106
|
+
df_dict: dict[str, pd.DataFrame] = {}
|
|
124
107
|
for table_name, table in graph.tables.items():
|
|
125
108
|
assert isinstance(table, LocalTable)
|
|
126
109
|
df = table._data
|
|
127
110
|
df_dict[table_name] = df.copy(deep=False).reset_index(drop=True)
|
|
128
111
|
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
mask_dict: Dict[str, np.ndarray] = {}
|
|
112
|
+
mask_dict: dict[str, np.ndarray] = {}
|
|
132
113
|
for table in graph.tables.values():
|
|
133
114
|
for col in table.columns:
|
|
134
115
|
if col.stype == Stype.timestamp:
|
|
@@ -145,13 +126,7 @@ class LocalGraphStore:
|
|
|
145
126
|
ser = ser.dt.tz_localize(None)
|
|
146
127
|
df_dict[table.name][col.name] = ser
|
|
147
128
|
|
|
148
|
-
|
|
149
|
-
if (preprocess and col.stype == Stype.text
|
|
150
|
-
and (table.name, col.name) not in foreign_keys):
|
|
151
|
-
ser = df_dict[table.name][col.name]
|
|
152
|
-
df_dict[table.name][col.name] = normalize_text(ser)
|
|
153
|
-
|
|
154
|
-
mask: Optional[np.ndarray] = None
|
|
129
|
+
mask: np.ndarray | None = None
|
|
155
130
|
if table._time_column is not None:
|
|
156
131
|
ser = df_dict[table.name][table._time_column]
|
|
157
132
|
mask = ser.notna().to_numpy()
|
|
@@ -166,34 +141,16 @@ class LocalGraphStore:
|
|
|
166
141
|
|
|
167
142
|
return df_dict, mask_dict
|
|
168
143
|
|
|
169
|
-
def
|
|
170
|
-
stype_dict: Dict[str, Dict[str, Stype]] = {}
|
|
171
|
-
foreign_keys = {(edge.src_table, edge.fkey) for edge in graph.edges}
|
|
172
|
-
for table in graph.tables.values():
|
|
173
|
-
stype_dict[table.name] = {}
|
|
174
|
-
for column in table.columns:
|
|
175
|
-
if column == table.primary_key:
|
|
176
|
-
continue
|
|
177
|
-
if (table.name, column.name) in foreign_keys:
|
|
178
|
-
continue
|
|
179
|
-
stype_dict[table.name][column.name] = column.stype
|
|
180
|
-
return stype_dict
|
|
181
|
-
|
|
182
|
-
def get_pkey_data(
|
|
144
|
+
def get_pkey_map_dict(
|
|
183
145
|
self,
|
|
184
|
-
graph: Graph,
|
|
185
|
-
) ->
|
|
186
|
-
|
|
187
|
-
Dict[str, pd.DataFrame],
|
|
188
|
-
]:
|
|
189
|
-
pkey_name_dict: Dict[str, str] = {}
|
|
190
|
-
pkey_map_dict: Dict[str, pd.DataFrame] = {}
|
|
146
|
+
graph: 'Graph',
|
|
147
|
+
) -> dict[str, pd.DataFrame]:
|
|
148
|
+
pkey_map_dict: dict[str, pd.DataFrame] = {}
|
|
191
149
|
|
|
192
150
|
for table in graph.tables.values():
|
|
193
151
|
if table._primary_key is None:
|
|
194
152
|
continue
|
|
195
153
|
|
|
196
|
-
pkey_name_dict[table.name] = table._primary_key
|
|
197
154
|
pkey = self.df_dict[table.name][table._primary_key]
|
|
198
155
|
pkey_map = pd.DataFrame(
|
|
199
156
|
dict(arange=range(len(pkey))),
|
|
@@ -215,61 +172,50 @@ class LocalGraphStore:
|
|
|
215
172
|
|
|
216
173
|
pkey_map_dict[table.name] = pkey_map
|
|
217
174
|
|
|
218
|
-
return
|
|
175
|
+
return pkey_map_dict
|
|
219
176
|
|
|
220
177
|
def get_time_data(
|
|
221
178
|
self,
|
|
222
|
-
graph: Graph,
|
|
223
|
-
) ->
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
Dict[str, np.ndarray],
|
|
227
|
-
pd.Timestamp,
|
|
228
|
-
pd.Timestamp,
|
|
179
|
+
graph: 'Graph',
|
|
180
|
+
) -> tuple[
|
|
181
|
+
dict[str, np.ndarray],
|
|
182
|
+
dict[str, tuple[pd.Timestamp, pd.Timestamp]],
|
|
229
183
|
]:
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
time_dict: Dict[str, np.ndarray] = {}
|
|
233
|
-
min_time = pd.Timestamp.max
|
|
234
|
-
max_time = pd.Timestamp.min
|
|
184
|
+
time_dict: dict[str, np.ndarray] = {}
|
|
185
|
+
min_max_time_dict: dict[str, tuple[pd.Timestamp, pd.Timestamp]] = {}
|
|
235
186
|
for table in graph.tables.values():
|
|
236
|
-
if table._end_time_column is not None:
|
|
237
|
-
end_time_column_dict[table.name] = table._end_time_column
|
|
238
|
-
|
|
239
187
|
if table._time_column is None:
|
|
240
188
|
continue
|
|
241
189
|
|
|
242
190
|
time = self.df_dict[table.name][table._time_column]
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
191
|
+
if time.dtype != 'datetime64[ns]':
|
|
192
|
+
time = time.astype('datetime64[ns]')
|
|
193
|
+
time_dict[table.name] = time.astype(int).to_numpy() // 1000**3
|
|
246
194
|
|
|
247
195
|
if table.name in self.mask_dict.keys():
|
|
248
196
|
time = time[self.mask_dict[table.name]]
|
|
249
197
|
if len(time) > 0:
|
|
250
|
-
|
|
251
|
-
|
|
198
|
+
min_max_time_dict[table.name] = (time.min(), time.max())
|
|
199
|
+
else:
|
|
200
|
+
min_max_time_dict[table.name] = (
|
|
201
|
+
pd.Timestamp.max,
|
|
202
|
+
pd.Timestamp.min,
|
|
203
|
+
)
|
|
252
204
|
|
|
253
|
-
return
|
|
254
|
-
time_column_dict,
|
|
255
|
-
end_time_column_dict,
|
|
256
|
-
time_dict,
|
|
257
|
-
min_time,
|
|
258
|
-
max_time,
|
|
259
|
-
)
|
|
205
|
+
return time_dict, min_max_time_dict
|
|
260
206
|
|
|
261
207
|
def get_csc(
|
|
262
208
|
self,
|
|
263
|
-
graph: Graph,
|
|
264
|
-
) ->
|
|
265
|
-
|
|
266
|
-
|
|
209
|
+
graph: 'Graph',
|
|
210
|
+
) -> tuple[
|
|
211
|
+
dict[tuple[str, str, str], np.ndarray],
|
|
212
|
+
dict[tuple[str, str, str], np.ndarray],
|
|
267
213
|
]:
|
|
268
214
|
# A mapping from raw primary keys to node indices (0 to N-1):
|
|
269
|
-
map_dict:
|
|
215
|
+
map_dict: dict[str, pd.CategoricalDtype] = {}
|
|
270
216
|
# A dictionary to manage offsets of node indices for invalid rows:
|
|
271
|
-
offset_dict:
|
|
272
|
-
for table_name in
|
|
217
|
+
offset_dict: dict[str, np.ndarray] = {}
|
|
218
|
+
for table_name in {edge.dst_table for edge in graph.edges}:
|
|
273
219
|
ser = self.df_dict[table_name][graph[table_name]._primary_key]
|
|
274
220
|
if table_name in self.mask_dict.keys():
|
|
275
221
|
mask = self.mask_dict[table_name]
|
|
@@ -278,8 +224,8 @@ class LocalGraphStore:
|
|
|
278
224
|
map_dict[table_name] = pd.CategoricalDtype(ser, ordered=True)
|
|
279
225
|
|
|
280
226
|
# Build CSC graph representation:
|
|
281
|
-
row_dict:
|
|
282
|
-
colptr_dict:
|
|
227
|
+
row_dict: dict[tuple[str, str, str], np.ndarray] = {}
|
|
228
|
+
colptr_dict: dict[tuple[str, str, str], np.ndarray] = {}
|
|
283
229
|
for src_table, fkey, dst_table in graph.edges:
|
|
284
230
|
src_df = self.df_dict[src_table]
|
|
285
231
|
dst_df = self.df_dict[dst_table]
|
|
@@ -341,7 +287,7 @@ def _argsort(input: np.ndarray) -> np.ndarray:
|
|
|
341
287
|
return torch.from_numpy(input).argsort().numpy()
|
|
342
288
|
|
|
343
289
|
|
|
344
|
-
def _lexsort(inputs:
|
|
290
|
+
def _lexsort(inputs: list[np.ndarray]) -> np.ndarray:
|
|
345
291
|
assert len(inputs) >= 1
|
|
346
292
|
|
|
347
293
|
if not WITH_TORCH:
|