keras-hub 0.25.1__py3-none-any.whl → 0.26.0.dev0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/layers/__init__.py +21 -0
- keras_hub/models/__init__.py +27 -0
- keras_hub/src/layers/modeling/non_max_supression.py +5 -2
- keras_hub/src/layers/modeling/reversible_embedding.py +2 -275
- keras_hub/src/layers/modeling/token_and_position_embedding.py +6 -6
- keras_hub/src/layers/modeling/transformer_layer_utils.py +9 -9
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +3 -1
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +3 -1
- keras_hub/src/models/albert/albert_backbone.py +1 -3
- keras_hub/src/models/backbone.py +3 -0
- keras_hub/src/models/bart/bart_backbone.py +1 -3
- keras_hub/src/models/bert/bert_backbone.py +2 -4
- keras_hub/src/models/bloom/bloom_backbone.py +1 -3
- keras_hub/src/models/causal_lm.py +2 -2
- keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +1 -3
- keras_hub/src/models/edrec/edrec_backbone.py +147 -0
- keras_hub/src/models/edrec/edrec_layers.py +434 -0
- keras_hub/src/models/edrec/edrec_seq2seq_lm.py +273 -0
- keras_hub/src/models/electra/electra_backbone.py +1 -3
- keras_hub/src/models/f_net/f_net_backbone.py +1 -3
- keras_hub/src/models/falcon/falcon_backbone.py +1 -3
- keras_hub/src/models/flux/flux_layers.py +3 -3
- keras_hub/src/models/flux/flux_maths.py +29 -15
- keras_hub/src/models/gemma/gemma_backbone.py +1 -3
- keras_hub/src/models/gemma/gemma_causal_lm.py +1 -1
- keras_hub/src/models/gemma3/gemma3_attention.py +1 -1
- keras_hub/src/models/gemma3/gemma3_backbone.py +70 -8
- keras_hub/src/models/gemma3/gemma3_causal_lm.py +16 -1
- keras_hub/src/models/gemma3/gemma3_decoder_block.py +1 -1
- keras_hub/src/models/gemma3/{gemma3_interleave_embeddings.py → gemma3_layers.py} +101 -0
- keras_hub/src/models/gemma3/gemma3_presets.py +67 -7
- keras_hub/src/models/gemma3/gemma3_vision_encoder.py +1 -1
- keras_hub/src/models/gpt2/gpt2_backbone.py +1 -3
- keras_hub/src/models/gpt2/gpt2_causal_lm.py +1 -1
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +1 -3
- keras_hub/src/models/gpt_oss/gpt_oss_backbone.py +1 -3
- keras_hub/src/models/llama/llama_backbone.py +1 -3
- keras_hub/src/models/masked_lm.py +1 -1
- keras_hub/src/models/mistral/mistral_backbone.py +1 -3
- keras_hub/src/models/mixtral/mixtral_backbone.py +1 -3
- keras_hub/src/models/moonshine/moonshine_backbone.py +1 -3
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +1 -3
- keras_hub/src/models/parseq/parseq_tokenizer.py +3 -1
- keras_hub/src/models/phi3/phi3_backbone.py +1 -3
- keras_hub/src/models/qwen/qwen_backbone.py +1 -3
- keras_hub/src/models/qwen/qwen_presets.py +209 -0
- keras_hub/src/models/qwen3/qwen3_backbone.py +1 -3
- keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +1 -3
- keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +15 -0
- keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +1 -3
- keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +1 -3
- keras_hub/src/models/rqvae/__init__.py +5 -0
- keras_hub/src/models/rqvae/rqvae_backbone.py +167 -0
- keras_hub/src/models/rqvae/rqvae_layers.py +335 -0
- keras_hub/src/models/rwkv7/__init__.py +5 -0
- keras_hub/src/models/rwkv7/rwkv7_backbone.py +180 -0
- keras_hub/src/models/rwkv7/rwkv7_causal_lm.py +259 -0
- keras_hub/src/models/rwkv7/rwkv7_causal_lm_preprocessor.py +214 -0
- keras_hub/src/models/rwkv7/rwkv7_layer.py +724 -0
- keras_hub/src/models/rwkv7/rwkv7_presets.py +26 -0
- keras_hub/src/models/rwkv7/rwkv7_tokenizer.py +495 -0
- keras_hub/src/models/sam/sam_backbone.py +5 -1
- keras_hub/src/models/sam/sam_prompt_encoder.py +1 -1
- keras_hub/src/models/sam3/__init__.py +7 -0
- keras_hub/src/models/sam3/roi_align.py +222 -0
- keras_hub/src/models/sam3/sam3_detr_decoder.py +641 -0
- keras_hub/src/models/sam3/sam3_detr_encoder.py +293 -0
- keras_hub/src/models/sam3/sam3_dot_product_scoring.py +120 -0
- keras_hub/src/models/sam3/sam3_geometry_encoder.py +517 -0
- keras_hub/src/models/sam3/sam3_image_converter.py +10 -0
- keras_hub/src/models/sam3/sam3_layers.py +814 -0
- keras_hub/src/models/sam3/sam3_mask_decoder.py +374 -0
- keras_hub/src/models/sam3/sam3_pc_backbone.py +306 -0
- keras_hub/src/models/sam3/sam3_pc_image_segmenter.py +282 -0
- keras_hub/src/models/sam3/sam3_pc_image_segmenter_preprocessor.py +336 -0
- keras_hub/src/models/sam3/sam3_presets.py +16 -0
- keras_hub/src/models/sam3/sam3_text_encoder.py +212 -0
- keras_hub/src/models/sam3/sam3_tokenizer.py +65 -0
- keras_hub/src/models/sam3/sam3_utils.py +134 -0
- keras_hub/src/models/sam3/sam3_vision_encoder.py +738 -0
- keras_hub/src/models/segformer/segformer_backbone.py +6 -6
- keras_hub/src/models/siglip/siglip_layers.py +1 -3
- keras_hub/src/models/smollm3/smollm3_backbone.py +1 -3
- keras_hub/src/models/stable_diffusion_3/t5_encoder.py +1 -3
- keras_hub/src/models/t5/t5_backbone.py +1 -3
- keras_hub/src/models/t5gemma/t5gemma_backbone.py +1 -3
- keras_hub/src/models/task.py +1 -1
- keras_hub/src/tests/test_case.py +394 -3
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +33 -2
- keras_hub/src/tokenizers/byte_tokenizer.py +3 -1
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +15 -1
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +3 -1
- keras_hub/src/tokenizers/word_piece_tokenizer.py +15 -1
- keras_hub/src/utils/preset_utils.py +1 -1
- keras_hub/src/utils/tensor_utils.py +12 -0
- keras_hub/src/utils/transformers/convert_gemma3.py +68 -22
- keras_hub/src/utils/transformers/convert_qwen3_moe.py +4 -1
- keras_hub/src/utils/transformers/convert_sam3.py +472 -0
- keras_hub/src/utils/transformers/export/gemma3.py +196 -0
- keras_hub/src/utils/transformers/export/hf_exporter.py +86 -25
- keras_hub/src/utils/transformers/export/qwen.py +136 -0
- keras_hub/src/utils/transformers/preset_loader.py +15 -1
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +6 -0
- {keras_hub-0.25.1.dist-info → keras_hub-0.26.0.dev0.dist-info}/METADATA +6 -13
- {keras_hub-0.25.1.dist-info → keras_hub-0.26.0.dev0.dist-info}/RECORD +108 -76
- {keras_hub-0.25.1.dist-info → keras_hub-0.26.0.dev0.dist-info}/WHEEL +1 -1
- keras_hub/src/models/gemma3/rms_normalization.py +0 -26
- {keras_hub-0.25.1.dist-info → keras_hub-0.26.0.dev0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,222 @@
|
|
|
1
|
+
from keras import backend
|
|
2
|
+
from keras import ops
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def _bilinear_interpolate(
|
|
6
|
+
feature_maps, roi_batch_ind, y, x, ymask, xmask, height, width, hidden_dim
|
|
7
|
+
):
|
|
8
|
+
feature_maps_dtype = backend.standardize_dtype(feature_maps.dtype)
|
|
9
|
+
y = ops.maximum(y, 0.0)
|
|
10
|
+
x = ops.maximum(x, 0.0)
|
|
11
|
+
y_low = ops.cast(y, "int32")
|
|
12
|
+
x_low = ops.cast(x, "int32")
|
|
13
|
+
y_high = ops.where(
|
|
14
|
+
ops.greater_equal(y_low, height - 1), height - 1, y_low + 1
|
|
15
|
+
)
|
|
16
|
+
y_low = ops.where(ops.greater_equal(y_low, height - 1), height - 1, y_low)
|
|
17
|
+
y = ops.where(
|
|
18
|
+
ops.greater_equal(y_low, height - 1),
|
|
19
|
+
ops.cast(y, dtype=feature_maps_dtype),
|
|
20
|
+
y,
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
x_high = ops.where(
|
|
24
|
+
ops.greater_equal(x_low, width - 1), width - 1, x_low + 1
|
|
25
|
+
)
|
|
26
|
+
x_low = ops.where(ops.greater_equal(x_low, width - 1), width - 1, x_low)
|
|
27
|
+
x = ops.where(
|
|
28
|
+
ops.greater_equal(x_low, width - 1),
|
|
29
|
+
ops.cast(x, dtype=feature_maps_dtype),
|
|
30
|
+
x,
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
ly = ops.subtract(y, y_low)
|
|
34
|
+
lx = ops.subtract(x, x_low)
|
|
35
|
+
hy = ops.subtract(1.0, ly)
|
|
36
|
+
hx = ops.subtract(1.0, lx)
|
|
37
|
+
|
|
38
|
+
def masked_index(y, x):
|
|
39
|
+
y = ops.where(ymask[:, None, :], y, 0)
|
|
40
|
+
x = ops.where(xmask[:, None, :], x, 0)
|
|
41
|
+
batch_idx = roi_batch_ind[:, None, None, None, None, None]
|
|
42
|
+
channel_idx = ops.arange(hidden_dim)[None, None, None, None, None, :]
|
|
43
|
+
y_idx = y[:, :, None, :, None, None]
|
|
44
|
+
x_idx = x[:, None, :, None, :, None]
|
|
45
|
+
|
|
46
|
+
if backend.backend() == "tensorflow":
|
|
47
|
+
import tensorflow as tf
|
|
48
|
+
|
|
49
|
+
# Explicitly broadcast indices to the same shape for XLA
|
|
50
|
+
# compatibility
|
|
51
|
+
common_zero = ops.zeros_like(
|
|
52
|
+
batch_idx + y_idx + x_idx + channel_idx
|
|
53
|
+
)
|
|
54
|
+
batch_idx = batch_idx + common_zero
|
|
55
|
+
y_idx = y_idx + common_zero
|
|
56
|
+
x_idx = ops.transpose(
|
|
57
|
+
ops.transpose(x_idx, (0, 2, 1, 4, 3, 5)) + common_zero,
|
|
58
|
+
(0, 2, 1, 4, 3, 5),
|
|
59
|
+
)
|
|
60
|
+
channel_idx = channel_idx + common_zero
|
|
61
|
+
indices = ops.stack([batch_idx, y_idx, x_idx, channel_idx], axis=-1)
|
|
62
|
+
indices = ops.cast(indices, "int32")
|
|
63
|
+
return tf.gather_nd(feature_maps, indices)
|
|
64
|
+
else:
|
|
65
|
+
return feature_maps[
|
|
66
|
+
batch_idx,
|
|
67
|
+
y_idx,
|
|
68
|
+
x_idx,
|
|
69
|
+
channel_idx,
|
|
70
|
+
]
|
|
71
|
+
|
|
72
|
+
v1 = masked_index(y_low, x_low)
|
|
73
|
+
v2 = masked_index(y_low, x_high)
|
|
74
|
+
v3 = masked_index(y_high, x_low)
|
|
75
|
+
v4 = masked_index(y_high, x_high)
|
|
76
|
+
|
|
77
|
+
def outer_prod(y, x):
|
|
78
|
+
return ops.multiply(
|
|
79
|
+
y[:, :, None, :, None, None], x[:, None, :, None, :, None]
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
w1 = outer_prod(hy, hx)
|
|
83
|
+
w2 = outer_prod(hy, lx)
|
|
84
|
+
w3 = outer_prod(ly, hx)
|
|
85
|
+
w4 = outer_prod(ly, lx)
|
|
86
|
+
|
|
87
|
+
val = ops.add(
|
|
88
|
+
ops.add(ops.multiply(w1, v1), ops.multiply(w2, v2)),
|
|
89
|
+
ops.add(ops.multiply(w3, v3), ops.multiply(w4, v4)),
|
|
90
|
+
)
|
|
91
|
+
return val
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
def roi_align_torch(
|
|
95
|
+
feature_maps,
|
|
96
|
+
rois,
|
|
97
|
+
output_size,
|
|
98
|
+
spatial_scale=1.0,
|
|
99
|
+
aligned=False,
|
|
100
|
+
):
|
|
101
|
+
import torchvision
|
|
102
|
+
|
|
103
|
+
dtype = backend.standardize_dtype(feature_maps.dtype)
|
|
104
|
+
need_cast = False
|
|
105
|
+
if dtype == "bfloat16":
|
|
106
|
+
# torchvision.ops.roi_align does not support bfloat16.
|
|
107
|
+
feature_maps = ops.cast(feature_maps, "float32")
|
|
108
|
+
rois = ops.cast(rois, "float32")
|
|
109
|
+
need_cast = True
|
|
110
|
+
|
|
111
|
+
output = ops.transpose(
|
|
112
|
+
torchvision.ops.roi_align(
|
|
113
|
+
ops.transpose(feature_maps, (0, 3, 1, 2)),
|
|
114
|
+
rois,
|
|
115
|
+
output_size,
|
|
116
|
+
spatial_scale=spatial_scale,
|
|
117
|
+
aligned=aligned,
|
|
118
|
+
),
|
|
119
|
+
(0, 2, 3, 1),
|
|
120
|
+
)
|
|
121
|
+
if need_cast:
|
|
122
|
+
output = ops.cast(output, dtype)
|
|
123
|
+
return output
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def roi_align(
|
|
127
|
+
feature_maps,
|
|
128
|
+
rois,
|
|
129
|
+
output_size,
|
|
130
|
+
height,
|
|
131
|
+
width,
|
|
132
|
+
hidden_dim,
|
|
133
|
+
spatial_scale=1.0,
|
|
134
|
+
aligned=False,
|
|
135
|
+
):
|
|
136
|
+
# Use torchvision's optimized roi_align implementation.
|
|
137
|
+
if backend.backend() == "torch":
|
|
138
|
+
return roi_align_torch(
|
|
139
|
+
feature_maps,
|
|
140
|
+
rois,
|
|
141
|
+
output_size,
|
|
142
|
+
spatial_scale=spatial_scale,
|
|
143
|
+
aligned=aligned,
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
original_dtype = backend.standardize_dtype(feature_maps.dtype)
|
|
147
|
+
out_h, out_w = output_size[0], output_size[1]
|
|
148
|
+
|
|
149
|
+
feature_maps = ops.cast(feature_maps, "float32")
|
|
150
|
+
rois = ops.cast(rois, "float32")
|
|
151
|
+
|
|
152
|
+
ph = ops.arange(out_h, dtype="float32")
|
|
153
|
+
pw = ops.arange(out_w, dtype="float32")
|
|
154
|
+
|
|
155
|
+
# input: [N, C, H, W]
|
|
156
|
+
# rois: [K, 5]
|
|
157
|
+
|
|
158
|
+
roi_batch_ind = ops.cast(rois[:, 0], "int32")
|
|
159
|
+
offset = 0.5 if aligned else 0.0
|
|
160
|
+
roi_start_w = ops.subtract(ops.multiply(rois[:, 1], spatial_scale), offset)
|
|
161
|
+
roi_start_h = ops.subtract(ops.multiply(rois[:, 2], spatial_scale), offset)
|
|
162
|
+
roi_end_w = ops.subtract(ops.multiply(rois[:, 3], spatial_scale), offset)
|
|
163
|
+
roi_end_h = ops.subtract(ops.multiply(rois[:, 4], spatial_scale), offset)
|
|
164
|
+
|
|
165
|
+
roi_width = ops.subtract(roi_end_w, roi_start_w)
|
|
166
|
+
roi_height = ops.subtract(roi_end_h, roi_start_h)
|
|
167
|
+
if not aligned:
|
|
168
|
+
roi_width = ops.maximum(roi_width, 1.0)
|
|
169
|
+
roi_height = ops.maximum(roi_height, 1.0)
|
|
170
|
+
|
|
171
|
+
bin_size_h = ops.divide(roi_height, out_h)
|
|
172
|
+
bin_size_w = ops.divide(roi_width, out_w)
|
|
173
|
+
|
|
174
|
+
roi_bin_grid_h = ops.ceil(ops.divide(roi_height, out_h))
|
|
175
|
+
roi_bin_grid_w = ops.ceil(ops.divide(roi_width, out_w))
|
|
176
|
+
|
|
177
|
+
count = ops.maximum(ops.multiply(roi_bin_grid_h, roi_bin_grid_w), 1.0)
|
|
178
|
+
iy = ops.arange(height, dtype="float32")
|
|
179
|
+
ix = ops.arange(width, dtype="float32")
|
|
180
|
+
ymask = ops.less(iy[None, :], roi_bin_grid_h[:, None])
|
|
181
|
+
xmask = ops.less(ix[None, :], roi_bin_grid_w[:, None])
|
|
182
|
+
|
|
183
|
+
def from_k(t):
|
|
184
|
+
return t[:, None, None]
|
|
185
|
+
|
|
186
|
+
y = ops.add(
|
|
187
|
+
ops.add(
|
|
188
|
+
from_k(roi_start_h),
|
|
189
|
+
ops.multiply(ph[None, :, None], from_k(bin_size_h)),
|
|
190
|
+
),
|
|
191
|
+
ops.multiply(
|
|
192
|
+
ops.cast(ops.add(iy[None, None, :], 0.5), dtype="float32"),
|
|
193
|
+
from_k(ops.divide(bin_size_h, roi_bin_grid_h)),
|
|
194
|
+
),
|
|
195
|
+
)
|
|
196
|
+
x = ops.add(
|
|
197
|
+
ops.add(
|
|
198
|
+
from_k(roi_start_w),
|
|
199
|
+
ops.multiply(pw[None, :, None], from_k(bin_size_w)),
|
|
200
|
+
),
|
|
201
|
+
ops.multiply(
|
|
202
|
+
ops.cast(ops.add(ix[None, None, :], 0.5), dtype="float32"),
|
|
203
|
+
from_k(ops.divide(bin_size_w, roi_bin_grid_w)),
|
|
204
|
+
),
|
|
205
|
+
)
|
|
206
|
+
val = _bilinear_interpolate(
|
|
207
|
+
feature_maps,
|
|
208
|
+
roi_batch_ind,
|
|
209
|
+
y,
|
|
210
|
+
x,
|
|
211
|
+
ymask,
|
|
212
|
+
xmask,
|
|
213
|
+
height,
|
|
214
|
+
width,
|
|
215
|
+
hidden_dim,
|
|
216
|
+
)
|
|
217
|
+
val = ops.where(ymask[:, None, None, :, None, None], val, 0.0)
|
|
218
|
+
val = ops.where(xmask[:, None, None, None, :, None], val, 0.0)
|
|
219
|
+
|
|
220
|
+
output = ops.sum(val, axis=(3, 4))
|
|
221
|
+
output = ops.divide(output, count[:, None, None, None])
|
|
222
|
+
return ops.cast(output, original_dtype)
|