keras-hub 0.25.1__py3-none-any.whl → 0.26.0.dev0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/layers/__init__.py +21 -0
- keras_hub/models/__init__.py +27 -0
- keras_hub/src/layers/modeling/non_max_supression.py +5 -2
- keras_hub/src/layers/modeling/reversible_embedding.py +2 -275
- keras_hub/src/layers/modeling/token_and_position_embedding.py +6 -6
- keras_hub/src/layers/modeling/transformer_layer_utils.py +9 -9
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +3 -1
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +3 -1
- keras_hub/src/models/albert/albert_backbone.py +1 -3
- keras_hub/src/models/backbone.py +3 -0
- keras_hub/src/models/bart/bart_backbone.py +1 -3
- keras_hub/src/models/bert/bert_backbone.py +2 -4
- keras_hub/src/models/bloom/bloom_backbone.py +1 -3
- keras_hub/src/models/causal_lm.py +2 -2
- keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +1 -3
- keras_hub/src/models/edrec/edrec_backbone.py +147 -0
- keras_hub/src/models/edrec/edrec_layers.py +434 -0
- keras_hub/src/models/edrec/edrec_seq2seq_lm.py +273 -0
- keras_hub/src/models/electra/electra_backbone.py +1 -3
- keras_hub/src/models/f_net/f_net_backbone.py +1 -3
- keras_hub/src/models/falcon/falcon_backbone.py +1 -3
- keras_hub/src/models/flux/flux_layers.py +3 -3
- keras_hub/src/models/flux/flux_maths.py +29 -15
- keras_hub/src/models/gemma/gemma_backbone.py +1 -3
- keras_hub/src/models/gemma/gemma_causal_lm.py +1 -1
- keras_hub/src/models/gemma3/gemma3_attention.py +1 -1
- keras_hub/src/models/gemma3/gemma3_backbone.py +70 -8
- keras_hub/src/models/gemma3/gemma3_causal_lm.py +16 -1
- keras_hub/src/models/gemma3/gemma3_decoder_block.py +1 -1
- keras_hub/src/models/gemma3/{gemma3_interleave_embeddings.py → gemma3_layers.py} +101 -0
- keras_hub/src/models/gemma3/gemma3_presets.py +67 -7
- keras_hub/src/models/gemma3/gemma3_vision_encoder.py +1 -1
- keras_hub/src/models/gpt2/gpt2_backbone.py +1 -3
- keras_hub/src/models/gpt2/gpt2_causal_lm.py +1 -1
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +1 -3
- keras_hub/src/models/gpt_oss/gpt_oss_backbone.py +1 -3
- keras_hub/src/models/llama/llama_backbone.py +1 -3
- keras_hub/src/models/masked_lm.py +1 -1
- keras_hub/src/models/mistral/mistral_backbone.py +1 -3
- keras_hub/src/models/mixtral/mixtral_backbone.py +1 -3
- keras_hub/src/models/moonshine/moonshine_backbone.py +1 -3
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +1 -3
- keras_hub/src/models/parseq/parseq_tokenizer.py +3 -1
- keras_hub/src/models/phi3/phi3_backbone.py +1 -3
- keras_hub/src/models/qwen/qwen_backbone.py +1 -3
- keras_hub/src/models/qwen/qwen_presets.py +209 -0
- keras_hub/src/models/qwen3/qwen3_backbone.py +1 -3
- keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +1 -3
- keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +15 -0
- keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +1 -3
- keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +1 -3
- keras_hub/src/models/rqvae/__init__.py +5 -0
- keras_hub/src/models/rqvae/rqvae_backbone.py +167 -0
- keras_hub/src/models/rqvae/rqvae_layers.py +335 -0
- keras_hub/src/models/rwkv7/__init__.py +5 -0
- keras_hub/src/models/rwkv7/rwkv7_backbone.py +180 -0
- keras_hub/src/models/rwkv7/rwkv7_causal_lm.py +259 -0
- keras_hub/src/models/rwkv7/rwkv7_causal_lm_preprocessor.py +214 -0
- keras_hub/src/models/rwkv7/rwkv7_layer.py +724 -0
- keras_hub/src/models/rwkv7/rwkv7_presets.py +26 -0
- keras_hub/src/models/rwkv7/rwkv7_tokenizer.py +495 -0
- keras_hub/src/models/sam/sam_backbone.py +5 -1
- keras_hub/src/models/sam/sam_prompt_encoder.py +1 -1
- keras_hub/src/models/sam3/__init__.py +7 -0
- keras_hub/src/models/sam3/roi_align.py +222 -0
- keras_hub/src/models/sam3/sam3_detr_decoder.py +641 -0
- keras_hub/src/models/sam3/sam3_detr_encoder.py +293 -0
- keras_hub/src/models/sam3/sam3_dot_product_scoring.py +120 -0
- keras_hub/src/models/sam3/sam3_geometry_encoder.py +517 -0
- keras_hub/src/models/sam3/sam3_image_converter.py +10 -0
- keras_hub/src/models/sam3/sam3_layers.py +814 -0
- keras_hub/src/models/sam3/sam3_mask_decoder.py +374 -0
- keras_hub/src/models/sam3/sam3_pc_backbone.py +306 -0
- keras_hub/src/models/sam3/sam3_pc_image_segmenter.py +282 -0
- keras_hub/src/models/sam3/sam3_pc_image_segmenter_preprocessor.py +336 -0
- keras_hub/src/models/sam3/sam3_presets.py +16 -0
- keras_hub/src/models/sam3/sam3_text_encoder.py +212 -0
- keras_hub/src/models/sam3/sam3_tokenizer.py +65 -0
- keras_hub/src/models/sam3/sam3_utils.py +134 -0
- keras_hub/src/models/sam3/sam3_vision_encoder.py +738 -0
- keras_hub/src/models/segformer/segformer_backbone.py +6 -6
- keras_hub/src/models/siglip/siglip_layers.py +1 -3
- keras_hub/src/models/smollm3/smollm3_backbone.py +1 -3
- keras_hub/src/models/stable_diffusion_3/t5_encoder.py +1 -3
- keras_hub/src/models/t5/t5_backbone.py +1 -3
- keras_hub/src/models/t5gemma/t5gemma_backbone.py +1 -3
- keras_hub/src/models/task.py +1 -1
- keras_hub/src/tests/test_case.py +394 -3
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +33 -2
- keras_hub/src/tokenizers/byte_tokenizer.py +3 -1
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +15 -1
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +3 -1
- keras_hub/src/tokenizers/word_piece_tokenizer.py +15 -1
- keras_hub/src/utils/preset_utils.py +1 -1
- keras_hub/src/utils/tensor_utils.py +12 -0
- keras_hub/src/utils/transformers/convert_gemma3.py +68 -22
- keras_hub/src/utils/transformers/convert_qwen3_moe.py +4 -1
- keras_hub/src/utils/transformers/convert_sam3.py +472 -0
- keras_hub/src/utils/transformers/export/gemma3.py +196 -0
- keras_hub/src/utils/transformers/export/hf_exporter.py +86 -25
- keras_hub/src/utils/transformers/export/qwen.py +136 -0
- keras_hub/src/utils/transformers/preset_loader.py +15 -1
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +6 -0
- {keras_hub-0.25.1.dist-info → keras_hub-0.26.0.dev0.dist-info}/METADATA +6 -13
- {keras_hub-0.25.1.dist-info → keras_hub-0.26.0.dev0.dist-info}/RECORD +108 -76
- {keras_hub-0.25.1.dist-info → keras_hub-0.26.0.dev0.dist-info}/WHEEL +1 -1
- keras_hub/src/models/gemma3/rms_normalization.py +0 -26
- {keras_hub-0.25.1.dist-info → keras_hub-0.26.0.dev0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,641 @@
|
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
from keras import layers
|
|
4
|
+
from keras import ops
|
|
5
|
+
|
|
6
|
+
from keras_hub.src.api_export import keras_hub_export
|
|
7
|
+
from keras_hub.src.models.sam3.sam3_layers import SAM3MLP
|
|
8
|
+
from keras_hub.src.models.sam3.sam3_layers import SAM3Attention
|
|
9
|
+
from keras_hub.src.models.sam3.sam3_layers import SAM3DecoderMLP
|
|
10
|
+
from keras_hub.src.models.sam3.sam3_layers import SAM3SinePositionEmbedding
|
|
11
|
+
from keras_hub.src.models.sam3.sam3_utils import box_cxcywh_to_xyxy
|
|
12
|
+
from keras_hub.src.models.sam3.sam3_utils import create_bidirectional_mask
|
|
13
|
+
from keras_hub.src.models.sam3.sam3_utils import inverse_sigmoid
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class SAM3DetrDecoderLayer(layers.Layer):
|
|
17
|
+
def __init__(
|
|
18
|
+
self,
|
|
19
|
+
hidden_dim,
|
|
20
|
+
intermediate_dim,
|
|
21
|
+
num_heads,
|
|
22
|
+
hidden_activation="relu",
|
|
23
|
+
dropout_rate=0.0,
|
|
24
|
+
layer_norm_epsilon=1e-6,
|
|
25
|
+
**kwargs,
|
|
26
|
+
):
|
|
27
|
+
super().__init__(**kwargs)
|
|
28
|
+
self.hidden_dim = int(hidden_dim)
|
|
29
|
+
self.intermediate_dim = int(intermediate_dim)
|
|
30
|
+
self.num_heads = int(num_heads)
|
|
31
|
+
self.dropout_rate = float(dropout_rate)
|
|
32
|
+
self.hidden_activation = hidden_activation
|
|
33
|
+
self.layer_norm_epsilon = float(layer_norm_epsilon)
|
|
34
|
+
|
|
35
|
+
self.self_attn = SAM3Attention(
|
|
36
|
+
hidden_dim=self.hidden_dim,
|
|
37
|
+
num_heads=self.num_heads,
|
|
38
|
+
dtype=self.dtype_policy,
|
|
39
|
+
name="self_attn",
|
|
40
|
+
)
|
|
41
|
+
self.self_attn_dropout = layers.Dropout(
|
|
42
|
+
rate=self.dropout_rate,
|
|
43
|
+
dtype=self.dtype_policy,
|
|
44
|
+
name="self_attn_dropout",
|
|
45
|
+
)
|
|
46
|
+
self.self_attn_layer_norm = layers.LayerNormalization(
|
|
47
|
+
epsilon=self.layer_norm_epsilon,
|
|
48
|
+
dtype=self.dtype_policy,
|
|
49
|
+
name="self_attn_layer_norm",
|
|
50
|
+
)
|
|
51
|
+
self.text_cross_attn = SAM3Attention(
|
|
52
|
+
hidden_dim=self.hidden_dim,
|
|
53
|
+
num_heads=self.num_heads,
|
|
54
|
+
dtype=self.dtype_policy,
|
|
55
|
+
name="text_cross_attn",
|
|
56
|
+
)
|
|
57
|
+
self.text_cross_attn_dropout = layers.Dropout(
|
|
58
|
+
rate=self.dropout_rate,
|
|
59
|
+
dtype=self.dtype_policy,
|
|
60
|
+
name="text_cross_attn_dropout",
|
|
61
|
+
)
|
|
62
|
+
self.text_cross_attn_layer_norm = layers.LayerNormalization(
|
|
63
|
+
epsilon=self.layer_norm_epsilon,
|
|
64
|
+
dtype=self.dtype_policy,
|
|
65
|
+
name="text_cross_attn_layer_norm",
|
|
66
|
+
)
|
|
67
|
+
self.vision_cross_attn = SAM3Attention(
|
|
68
|
+
hidden_dim=self.hidden_dim,
|
|
69
|
+
num_heads=self.num_heads,
|
|
70
|
+
dtype=self.dtype_policy,
|
|
71
|
+
name="vision_cross_attn",
|
|
72
|
+
)
|
|
73
|
+
self.vision_cross_attn_dropout = layers.Dropout(
|
|
74
|
+
rate=self.dropout_rate,
|
|
75
|
+
dtype=self.dtype_policy,
|
|
76
|
+
name="vision_cross_attn_dropout",
|
|
77
|
+
)
|
|
78
|
+
self.vision_cross_attn_layer_norm = layers.LayerNormalization(
|
|
79
|
+
epsilon=self.layer_norm_epsilon,
|
|
80
|
+
dtype=self.dtype_policy,
|
|
81
|
+
name="vision_cross_attn_layer_norm",
|
|
82
|
+
)
|
|
83
|
+
self.mlp = SAM3MLP(
|
|
84
|
+
hidden_dim=self.hidden_dim,
|
|
85
|
+
intermediate_dim=self.intermediate_dim,
|
|
86
|
+
activation=self.hidden_activation,
|
|
87
|
+
dropout_rate=self.dropout_rate,
|
|
88
|
+
dtype=self.dtype_policy,
|
|
89
|
+
name="mlp",
|
|
90
|
+
)
|
|
91
|
+
self.mlp_dropout = layers.Dropout(
|
|
92
|
+
rate=self.dropout_rate,
|
|
93
|
+
dtype=self.dtype_policy,
|
|
94
|
+
name="mlp_dropout",
|
|
95
|
+
)
|
|
96
|
+
self.mlp_layer_norm = layers.LayerNormalization(
|
|
97
|
+
epsilon=self.layer_norm_epsilon,
|
|
98
|
+
dtype=self.dtype_policy,
|
|
99
|
+
name="mlp_layer_norm",
|
|
100
|
+
)
|
|
101
|
+
|
|
102
|
+
def build(
|
|
103
|
+
self,
|
|
104
|
+
hidden_states_shape,
|
|
105
|
+
query_pos_shape,
|
|
106
|
+
text_features_shape,
|
|
107
|
+
vision_features_shape,
|
|
108
|
+
vision_pos_encodings_shape,
|
|
109
|
+
text_cross_attn_masks_shape,
|
|
110
|
+
vision_cross_attn_masks_shape,
|
|
111
|
+
):
|
|
112
|
+
self.self_attn.build(
|
|
113
|
+
hidden_states_shape, hidden_states_shape, hidden_states_shape
|
|
114
|
+
)
|
|
115
|
+
self.self_attn_dropout.build(hidden_states_shape)
|
|
116
|
+
self.self_attn_layer_norm.build(hidden_states_shape)
|
|
117
|
+
self.text_cross_attn.build(
|
|
118
|
+
hidden_states_shape, text_features_shape, text_features_shape
|
|
119
|
+
)
|
|
120
|
+
self.text_cross_attn_dropout.build(hidden_states_shape)
|
|
121
|
+
self.text_cross_attn_layer_norm.build(hidden_states_shape)
|
|
122
|
+
self.vision_cross_attn.build(
|
|
123
|
+
hidden_states_shape, hidden_states_shape, vision_features_shape
|
|
124
|
+
)
|
|
125
|
+
self.vision_cross_attn_dropout.build(hidden_states_shape)
|
|
126
|
+
self.vision_cross_attn_layer_norm.build(hidden_states_shape)
|
|
127
|
+
self.mlp.build(hidden_states_shape)
|
|
128
|
+
self.mlp_dropout.build(hidden_states_shape)
|
|
129
|
+
self.mlp_layer_norm.build(hidden_states_shape)
|
|
130
|
+
|
|
131
|
+
def call(
|
|
132
|
+
self,
|
|
133
|
+
hidden_states,
|
|
134
|
+
query_pos,
|
|
135
|
+
text_features,
|
|
136
|
+
vision_features,
|
|
137
|
+
vision_pos_encodings,
|
|
138
|
+
text_cross_attn_masks,
|
|
139
|
+
vision_cross_attn_masks,
|
|
140
|
+
training=None,
|
|
141
|
+
):
|
|
142
|
+
# Prepend zeros to query_pos for presence token.
|
|
143
|
+
query_pos = ops.pad(query_pos, [[0, 0], [1, 0], [0, 0]])
|
|
144
|
+
|
|
145
|
+
# Self-attention with query position encoding.
|
|
146
|
+
residual = hidden_states
|
|
147
|
+
query_with_pos = ops.add(hidden_states, query_pos)
|
|
148
|
+
attn_output = self.self_attn(
|
|
149
|
+
query=query_with_pos,
|
|
150
|
+
key=query_with_pos,
|
|
151
|
+
value=hidden_states,
|
|
152
|
+
attention_mask=None,
|
|
153
|
+
training=training,
|
|
154
|
+
)
|
|
155
|
+
hidden_states = ops.add(
|
|
156
|
+
residual, self.self_attn_dropout(attn_output, training=training)
|
|
157
|
+
)
|
|
158
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
159
|
+
|
|
160
|
+
# Text cross-attention: queries attend to text features.
|
|
161
|
+
residual = hidden_states
|
|
162
|
+
query_with_pos = ops.add(hidden_states, query_pos)
|
|
163
|
+
attn_output = self.text_cross_attn(
|
|
164
|
+
query=query_with_pos,
|
|
165
|
+
key=text_features,
|
|
166
|
+
value=text_features,
|
|
167
|
+
attention_mask=text_cross_attn_masks,
|
|
168
|
+
training=training,
|
|
169
|
+
)
|
|
170
|
+
hidden_states = ops.add(
|
|
171
|
+
residual,
|
|
172
|
+
self.text_cross_attn_dropout(attn_output, training=training),
|
|
173
|
+
)
|
|
174
|
+
hidden_states = self.text_cross_attn_layer_norm(hidden_states)
|
|
175
|
+
|
|
176
|
+
# Vision cross-attention: queries attend to vision features (with RPB)
|
|
177
|
+
residual = hidden_states
|
|
178
|
+
query_with_pos = ops.add(hidden_states, query_pos)
|
|
179
|
+
key_with_pos = ops.add(vision_features, vision_pos_encodings)
|
|
180
|
+
attn_output = self.vision_cross_attn(
|
|
181
|
+
query=query_with_pos,
|
|
182
|
+
key=key_with_pos,
|
|
183
|
+
value=vision_features,
|
|
184
|
+
attention_bias=vision_cross_attn_masks,
|
|
185
|
+
training=training,
|
|
186
|
+
)
|
|
187
|
+
hidden_states = ops.add(
|
|
188
|
+
residual,
|
|
189
|
+
self.vision_cross_attn_dropout(attn_output, training=training),
|
|
190
|
+
)
|
|
191
|
+
hidden_states = self.vision_cross_attn_layer_norm(hidden_states)
|
|
192
|
+
|
|
193
|
+
# MLP.
|
|
194
|
+
residual = hidden_states
|
|
195
|
+
hidden_states = self.mlp(hidden_states, training=training)
|
|
196
|
+
hidden_states = ops.add(
|
|
197
|
+
residual, self.mlp_dropout(hidden_states, training=training)
|
|
198
|
+
)
|
|
199
|
+
hidden_states = self.mlp_layer_norm(hidden_states)
|
|
200
|
+
return hidden_states
|
|
201
|
+
|
|
202
|
+
def get_config(self):
|
|
203
|
+
config = super().get_config()
|
|
204
|
+
config.update(
|
|
205
|
+
{
|
|
206
|
+
"hidden_dim": self.hidden_dim,
|
|
207
|
+
"intermediate_dim": self.intermediate_dim,
|
|
208
|
+
"num_heads": self.num_heads,
|
|
209
|
+
"hidden_activation": self.hidden_activation,
|
|
210
|
+
"dropout_rate": self.dropout_rate,
|
|
211
|
+
"layer_norm_epsilon": self.layer_norm_epsilon,
|
|
212
|
+
}
|
|
213
|
+
)
|
|
214
|
+
return config
|
|
215
|
+
|
|
216
|
+
def compute_output_shape(
|
|
217
|
+
self,
|
|
218
|
+
hidden_states_shape,
|
|
219
|
+
query_pos_shape,
|
|
220
|
+
text_features_shape,
|
|
221
|
+
vision_features_shape,
|
|
222
|
+
vision_pos_encodings_shape,
|
|
223
|
+
text_cross_attn_masks_shape,
|
|
224
|
+
vision_cross_attn_masks_shape,
|
|
225
|
+
):
|
|
226
|
+
return hidden_states_shape
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
@keras_hub_export("keras_hub.layers.SAM3DetrDecoder")
|
|
230
|
+
class SAM3DetrDecoder(layers.Layer):
|
|
231
|
+
"""A DETR decoder for the Segment Anything Model 3 (SAM3).
|
|
232
|
+
|
|
233
|
+
This layer implements a transformer-based decoder that predicts object
|
|
234
|
+
queries. It processes object queries and fused features through multiple
|
|
235
|
+
layers of self-attention and cross-attention.
|
|
236
|
+
|
|
237
|
+
Args:
|
|
238
|
+
image_shape: tuple. The shape of the input image
|
|
239
|
+
(height, width, channels).
|
|
240
|
+
patch_size: int. The size of the patches to be extracted from the image.
|
|
241
|
+
num_layers: int. The number of transformer layers.
|
|
242
|
+
hidden_dim: int. The hidden dimension of the transformer layers.
|
|
243
|
+
intermediate_dim: int. The dimension of the intermediate layer in the
|
|
244
|
+
transformer's MLP.
|
|
245
|
+
num_heads: int. The number of attention heads.
|
|
246
|
+
num_queries: int. The number of object queries.
|
|
247
|
+
hidden_activation: str. The activation function for the transformer
|
|
248
|
+
layers. Defaults to `"relu"`.
|
|
249
|
+
dropout_rate: float. The dropout rate for the MLP and attention.
|
|
250
|
+
Defaults to `0.0`.
|
|
251
|
+
layer_norm_epsilon: float. The epsilon value for layer normalization.
|
|
252
|
+
Defaults to `1e-6`.
|
|
253
|
+
"""
|
|
254
|
+
|
|
255
|
+
def __init__(
|
|
256
|
+
self,
|
|
257
|
+
image_shape,
|
|
258
|
+
patch_size,
|
|
259
|
+
num_layers,
|
|
260
|
+
hidden_dim,
|
|
261
|
+
intermediate_dim,
|
|
262
|
+
num_heads,
|
|
263
|
+
num_queries,
|
|
264
|
+
hidden_activation="relu",
|
|
265
|
+
dropout_rate=0.0,
|
|
266
|
+
layer_norm_epsilon=1e-6,
|
|
267
|
+
**kwargs,
|
|
268
|
+
):
|
|
269
|
+
super().__init__(**kwargs)
|
|
270
|
+
self.image_shape = (
|
|
271
|
+
int(image_shape[0]),
|
|
272
|
+
int(image_shape[1]),
|
|
273
|
+
int(image_shape[2]),
|
|
274
|
+
)
|
|
275
|
+
self.patch_size = int(patch_size)
|
|
276
|
+
self.num_layers = int(num_layers)
|
|
277
|
+
self.hidden_dim = int(hidden_dim)
|
|
278
|
+
self.intermediate_dim = int(intermediate_dim)
|
|
279
|
+
self.num_heads = int(num_heads)
|
|
280
|
+
self.num_queries = int(num_queries)
|
|
281
|
+
self.hidden_activation = hidden_activation
|
|
282
|
+
self.dropout_rate = float(dropout_rate)
|
|
283
|
+
self.layer_norm_epsilon = float(layer_norm_epsilon)
|
|
284
|
+
self.height = self.image_shape[0] // self.patch_size
|
|
285
|
+
self.width = self.image_shape[1] // self.patch_size
|
|
286
|
+
|
|
287
|
+
self.layers = [
|
|
288
|
+
SAM3DetrDecoderLayer(
|
|
289
|
+
hidden_dim=self.hidden_dim,
|
|
290
|
+
intermediate_dim=self.intermediate_dim,
|
|
291
|
+
num_heads=self.num_heads,
|
|
292
|
+
hidden_activation=self.hidden_activation,
|
|
293
|
+
dropout_rate=self.dropout_rate,
|
|
294
|
+
layer_norm_epsilon=self.layer_norm_epsilon,
|
|
295
|
+
dtype=self.dtype_policy,
|
|
296
|
+
name=f"layer_{i}",
|
|
297
|
+
)
|
|
298
|
+
for i in range(self.num_layers)
|
|
299
|
+
]
|
|
300
|
+
self.output_layer_norm = layers.LayerNormalization(
|
|
301
|
+
epsilon=self.layer_norm_epsilon,
|
|
302
|
+
dtype=self.dtype_policy,
|
|
303
|
+
name="output_layer_norm",
|
|
304
|
+
)
|
|
305
|
+
self.box_head = SAM3DecoderMLP(
|
|
306
|
+
num_layers=3,
|
|
307
|
+
hidden_dim=self.hidden_dim,
|
|
308
|
+
output_dim=4,
|
|
309
|
+
dtype=self.dtype_policy,
|
|
310
|
+
name="box_head",
|
|
311
|
+
)
|
|
312
|
+
self.query_embed = layers.Embedding(
|
|
313
|
+
self.num_queries,
|
|
314
|
+
self.hidden_dim,
|
|
315
|
+
dtype=self.dtype_policy,
|
|
316
|
+
name="query_embed",
|
|
317
|
+
)
|
|
318
|
+
self.reference_points = layers.Embedding(
|
|
319
|
+
self.num_queries,
|
|
320
|
+
4,
|
|
321
|
+
dtype=self.dtype_policy,
|
|
322
|
+
name="reference_points",
|
|
323
|
+
)
|
|
324
|
+
self.presence_token = layers.Embedding(
|
|
325
|
+
1,
|
|
326
|
+
self.hidden_dim,
|
|
327
|
+
dtype=self.dtype_policy,
|
|
328
|
+
name="presence_token",
|
|
329
|
+
)
|
|
330
|
+
self.presence_head = SAM3DecoderMLP(
|
|
331
|
+
num_layers=3,
|
|
332
|
+
hidden_dim=self.hidden_dim,
|
|
333
|
+
output_dim=1,
|
|
334
|
+
dtype=self.dtype_policy,
|
|
335
|
+
name="presence_head",
|
|
336
|
+
)
|
|
337
|
+
self.presence_layer_norm = layers.LayerNormalization(
|
|
338
|
+
epsilon=self.layer_norm_epsilon,
|
|
339
|
+
dtype=self.dtype_policy,
|
|
340
|
+
name="presence_layer_norm",
|
|
341
|
+
)
|
|
342
|
+
self.clamp_presence_logit_max_val = 10.0
|
|
343
|
+
self.ref_point_head = SAM3DecoderMLP(
|
|
344
|
+
num_layers=2,
|
|
345
|
+
hidden_dim=self.hidden_dim,
|
|
346
|
+
output_dim=self.hidden_dim,
|
|
347
|
+
dtype=self.dtype_policy,
|
|
348
|
+
name="ref_point_head",
|
|
349
|
+
)
|
|
350
|
+
self.box_rpb_embed_x = SAM3DecoderMLP(
|
|
351
|
+
num_layers=2,
|
|
352
|
+
hidden_dim=self.hidden_dim,
|
|
353
|
+
output_dim=self.num_heads,
|
|
354
|
+
dtype=self.dtype_policy,
|
|
355
|
+
name="box_rpb_embed_x",
|
|
356
|
+
)
|
|
357
|
+
self.box_rpb_embed_y = SAM3DecoderMLP(
|
|
358
|
+
num_layers=2,
|
|
359
|
+
hidden_dim=self.hidden_dim,
|
|
360
|
+
output_dim=self.num_heads,
|
|
361
|
+
dtype=self.dtype_policy,
|
|
362
|
+
name="box_rpb_embed_y",
|
|
363
|
+
)
|
|
364
|
+
self.position_encoding = SAM3SinePositionEmbedding(
|
|
365
|
+
num_pos_feats=self.hidden_dim // 2,
|
|
366
|
+
normalize=False,
|
|
367
|
+
dtype=self.dtype_policy,
|
|
368
|
+
name="position_encoding",
|
|
369
|
+
)
|
|
370
|
+
|
|
371
|
+
def build(
|
|
372
|
+
self,
|
|
373
|
+
vision_features_shape,
|
|
374
|
+
text_features_shape,
|
|
375
|
+
vision_pos_encodings_shape,
|
|
376
|
+
text_masks_shape,
|
|
377
|
+
):
|
|
378
|
+
self.query_embed.build()
|
|
379
|
+
self.reference_points.build()
|
|
380
|
+
self.presence_token.build()
|
|
381
|
+
self.position_encoding.build()
|
|
382
|
+
batch_size = vision_features_shape[0]
|
|
383
|
+
vision_len = vision_features_shape[1]
|
|
384
|
+
hidden_states_shape = [
|
|
385
|
+
batch_size,
|
|
386
|
+
1 + self.num_queries,
|
|
387
|
+
self.hidden_dim,
|
|
388
|
+
]
|
|
389
|
+
text_cross_attn_masks_shape = [
|
|
390
|
+
batch_size,
|
|
391
|
+
1,
|
|
392
|
+
1 + self.num_queries,
|
|
393
|
+
text_masks_shape[-1],
|
|
394
|
+
]
|
|
395
|
+
query_pos_shape = [batch_size, self.num_queries, self.hidden_dim]
|
|
396
|
+
vision_cross_attn_masks_shape = [
|
|
397
|
+
batch_size,
|
|
398
|
+
self.num_heads,
|
|
399
|
+
1 + self.num_queries,
|
|
400
|
+
vision_len,
|
|
401
|
+
]
|
|
402
|
+
query_hidden_state_shape = [
|
|
403
|
+
batch_size,
|
|
404
|
+
self.num_queries,
|
|
405
|
+
self.hidden_dim,
|
|
406
|
+
]
|
|
407
|
+
presence_hidden_shape = [batch_size, 1, self.hidden_dim]
|
|
408
|
+
query_sine_embed_shape = [
|
|
409
|
+
batch_size,
|
|
410
|
+
self.num_queries,
|
|
411
|
+
self.hidden_dim // 2 * 4,
|
|
412
|
+
]
|
|
413
|
+
deltas_x_log_shape = [batch_size, self.num_queries, self.width, 2]
|
|
414
|
+
deltas_y_log_shape = [batch_size, self.num_queries, self.height, 2]
|
|
415
|
+
|
|
416
|
+
self.output_layer_norm.build(query_hidden_state_shape)
|
|
417
|
+
self.box_head.build(query_hidden_state_shape)
|
|
418
|
+
self.presence_layer_norm.build(presence_hidden_shape)
|
|
419
|
+
self.presence_head.build(presence_hidden_shape)
|
|
420
|
+
self.ref_point_head.build(query_sine_embed_shape)
|
|
421
|
+
self.box_rpb_embed_x.build(deltas_x_log_shape)
|
|
422
|
+
self.box_rpb_embed_y.build(deltas_y_log_shape)
|
|
423
|
+
for layer in self.layers:
|
|
424
|
+
layer.build(
|
|
425
|
+
hidden_states_shape,
|
|
426
|
+
query_pos_shape,
|
|
427
|
+
text_features_shape,
|
|
428
|
+
vision_features_shape,
|
|
429
|
+
vision_pos_encodings_shape,
|
|
430
|
+
text_cross_attn_masks_shape,
|
|
431
|
+
vision_cross_attn_masks_shape,
|
|
432
|
+
)
|
|
433
|
+
|
|
434
|
+
def _get_coords(self, height, width, dtype):
|
|
435
|
+
coords_h = ops.divide(ops.arange(height, dtype=dtype), height)
|
|
436
|
+
coords_w = ops.divide(ops.arange(width, dtype=dtype), width)
|
|
437
|
+
return coords_h, coords_w
|
|
438
|
+
|
|
439
|
+
def _get_rpb_matrix(self, reference_boxes):
|
|
440
|
+
boxes_xyxy = box_cxcywh_to_xyxy(reference_boxes)
|
|
441
|
+
|
|
442
|
+
# Generate coordinate grids.
|
|
443
|
+
coords_h, coords_w = self._get_coords(
|
|
444
|
+
self.height, self.width, reference_boxes.dtype
|
|
445
|
+
)
|
|
446
|
+
|
|
447
|
+
# Compute deltas between coordinates and box boundaries.
|
|
448
|
+
deltas_y = ops.subtract(
|
|
449
|
+
ops.reshape(coords_h, (1, -1, 1)),
|
|
450
|
+
ops.reshape(boxes_xyxy, (-1, 1, 4))[:, :, 1:4:2],
|
|
451
|
+
)
|
|
452
|
+
deltas_y = ops.reshape(deltas_y, (-1, self.num_queries, self.height, 2))
|
|
453
|
+
deltas_x = ops.subtract(
|
|
454
|
+
ops.reshape(coords_w, (1, -1, 1)),
|
|
455
|
+
ops.reshape(boxes_xyxy, (-1, 1, 4))[:, :, 0:3:2],
|
|
456
|
+
)
|
|
457
|
+
deltas_x = ops.reshape(deltas_x, (-1, self.num_queries, self.width, 2))
|
|
458
|
+
|
|
459
|
+
# Apply log-scale encoding.
|
|
460
|
+
deltas_x_log = ops.multiply(deltas_x, 8.0)
|
|
461
|
+
deltas_x_log = ops.divide(
|
|
462
|
+
ops.multiply(
|
|
463
|
+
ops.sign(deltas_x_log),
|
|
464
|
+
ops.log2(ops.add(ops.abs(deltas_x_log), 1.0)),
|
|
465
|
+
),
|
|
466
|
+
math.log2(8),
|
|
467
|
+
)
|
|
468
|
+
deltas_y_log = ops.multiply(deltas_y, 8.0)
|
|
469
|
+
deltas_y_log = ops.divide(
|
|
470
|
+
ops.multiply(
|
|
471
|
+
ops.sign(deltas_y_log),
|
|
472
|
+
ops.log2(ops.add(ops.abs(deltas_y_log), 1.0)),
|
|
473
|
+
),
|
|
474
|
+
math.log2(8),
|
|
475
|
+
)
|
|
476
|
+
|
|
477
|
+
# Embed deltas.
|
|
478
|
+
deltas_x = self.box_rpb_embed_x(deltas_x_log)
|
|
479
|
+
deltas_y = self.box_rpb_embed_y(deltas_y_log)
|
|
480
|
+
|
|
481
|
+
# Combine into 2D bias matrix.
|
|
482
|
+
rpb_matrix = ops.add(
|
|
483
|
+
ops.expand_dims(deltas_y, axis=3),
|
|
484
|
+
ops.expand_dims(deltas_x, axis=2),
|
|
485
|
+
)
|
|
486
|
+
rpb_matrix = ops.reshape(
|
|
487
|
+
rpb_matrix,
|
|
488
|
+
(-1, self.num_queries, self.height * self.width, self.num_heads),
|
|
489
|
+
)
|
|
490
|
+
rpb_matrix = ops.transpose(rpb_matrix, (0, 3, 1, 2))
|
|
491
|
+
return rpb_matrix
|
|
492
|
+
|
|
493
|
+
def call(
|
|
494
|
+
self,
|
|
495
|
+
vision_features,
|
|
496
|
+
text_features,
|
|
497
|
+
vision_pos_encodings,
|
|
498
|
+
text_masks,
|
|
499
|
+
training=None,
|
|
500
|
+
):
|
|
501
|
+
batch_size = ops.shape(vision_features)[0]
|
|
502
|
+
query_embeds = ops.tile(
|
|
503
|
+
ops.expand_dims(self.query_embed.embeddings, axis=0),
|
|
504
|
+
[batch_size, 1, 1],
|
|
505
|
+
)
|
|
506
|
+
query_embeds = ops.cast(query_embeds, vision_features.dtype)
|
|
507
|
+
reference_boxes = ops.tile(
|
|
508
|
+
ops.expand_dims(self.reference_points.embeddings, axis=0),
|
|
509
|
+
[batch_size, 1, 1],
|
|
510
|
+
)
|
|
511
|
+
reference_boxes = ops.cast(reference_boxes, vision_features.dtype)
|
|
512
|
+
reference_boxes = ops.sigmoid(reference_boxes)
|
|
513
|
+
presence_token = ops.tile(
|
|
514
|
+
ops.expand_dims(self.presence_token.embeddings, axis=0),
|
|
515
|
+
[batch_size, 1, 1],
|
|
516
|
+
)
|
|
517
|
+
presence_token = ops.cast(presence_token, vision_features.dtype)
|
|
518
|
+
|
|
519
|
+
# Concatenate presence token with query embeddings
|
|
520
|
+
hidden_states = ops.concatenate([presence_token, query_embeds], axis=1)
|
|
521
|
+
text_cross_attn_masks = create_bidirectional_mask(
|
|
522
|
+
hidden_states, text_masks
|
|
523
|
+
)
|
|
524
|
+
|
|
525
|
+
intermediate_outputs = []
|
|
526
|
+
intermediate_boxes = [reference_boxes]
|
|
527
|
+
intermediate_presence_logits = []
|
|
528
|
+
for layer in self.layers:
|
|
529
|
+
# Generate sine embeddings for conditional queries.
|
|
530
|
+
reference_points_input = ops.expand_dims(reference_boxes, axis=2)
|
|
531
|
+
query_sine_embed = self.position_encoding.encode_boxes(
|
|
532
|
+
reference_points_input[:, :, 0, :]
|
|
533
|
+
)
|
|
534
|
+
query_pos = self.ref_point_head(query_sine_embed)
|
|
535
|
+
|
|
536
|
+
# Compute box relative position bias (RPB) attention mask.
|
|
537
|
+
rpb_matrix = self._get_rpb_matrix(reference_boxes)
|
|
538
|
+
vision_cross_attn_masks = ops.pad(
|
|
539
|
+
rpb_matrix, [[0, 0], [0, 0], [1, 0], [0, 0]]
|
|
540
|
+
)
|
|
541
|
+
|
|
542
|
+
hidden_states = layer(
|
|
543
|
+
hidden_states,
|
|
544
|
+
query_pos,
|
|
545
|
+
text_features,
|
|
546
|
+
vision_features,
|
|
547
|
+
vision_pos_encodings,
|
|
548
|
+
text_cross_attn_masks,
|
|
549
|
+
vision_cross_attn_masks,
|
|
550
|
+
training=training,
|
|
551
|
+
)
|
|
552
|
+
|
|
553
|
+
# Extract query hidden states (without presence token) for box
|
|
554
|
+
# refinement.
|
|
555
|
+
query_hidden_states = hidden_states[:, 1:]
|
|
556
|
+
|
|
557
|
+
# Box refinement: predict delta and update reference boxes.
|
|
558
|
+
reference_boxes_before_sigmoid = inverse_sigmoid(reference_boxes)
|
|
559
|
+
output_hidden_states = self.output_layer_norm(
|
|
560
|
+
query_hidden_states, training=training
|
|
561
|
+
)
|
|
562
|
+
delta_boxes = self.box_head(output_hidden_states, training=training)
|
|
563
|
+
new_reference_boxes = ops.sigmoid(
|
|
564
|
+
ops.add(delta_boxes, reference_boxes_before_sigmoid)
|
|
565
|
+
)
|
|
566
|
+
# For next layer.
|
|
567
|
+
reference_boxes = ops.stop_gradient(new_reference_boxes)
|
|
568
|
+
|
|
569
|
+
intermediate_outputs.append(output_hidden_states)
|
|
570
|
+
intermediate_boxes.append(reference_boxes)
|
|
571
|
+
|
|
572
|
+
# Process presence token.
|
|
573
|
+
presence_hidden = hidden_states[:, :1]
|
|
574
|
+
presence_logits = self.presence_head(
|
|
575
|
+
self.presence_layer_norm(presence_hidden, training=training),
|
|
576
|
+
training=training,
|
|
577
|
+
)
|
|
578
|
+
presence_logits = ops.squeeze(presence_logits, axis=-1)
|
|
579
|
+
presence_logits = ops.clip(
|
|
580
|
+
presence_logits,
|
|
581
|
+
-self.clamp_presence_logit_max_val,
|
|
582
|
+
self.clamp_presence_logit_max_val,
|
|
583
|
+
)
|
|
584
|
+
intermediate_presence_logits.append(presence_logits)
|
|
585
|
+
|
|
586
|
+
# Stack outputs from all layers.
|
|
587
|
+
intermediate_outputs = ops.stack(intermediate_outputs, axis=1)
|
|
588
|
+
intermediate_boxes = ops.stack(intermediate_boxes[:-1], axis=1)
|
|
589
|
+
intermediate_presence_logits = ops.stack(
|
|
590
|
+
intermediate_presence_logits, axis=1
|
|
591
|
+
)
|
|
592
|
+
return (
|
|
593
|
+
intermediate_outputs,
|
|
594
|
+
intermediate_boxes,
|
|
595
|
+
intermediate_presence_logits,
|
|
596
|
+
)
|
|
597
|
+
|
|
598
|
+
def get_config(self):
|
|
599
|
+
config = super().get_config()
|
|
600
|
+
config.update(
|
|
601
|
+
{
|
|
602
|
+
"image_shape": self.image_shape,
|
|
603
|
+
"patch_size": self.patch_size,
|
|
604
|
+
"num_layers": self.num_layers,
|
|
605
|
+
"hidden_dim": self.hidden_dim,
|
|
606
|
+
"intermediate_dim": self.intermediate_dim,
|
|
607
|
+
"num_heads": self.num_heads,
|
|
608
|
+
"num_queries": self.num_queries,
|
|
609
|
+
"hidden_activation": self.hidden_activation,
|
|
610
|
+
"dropout_rate": self.dropout_rate,
|
|
611
|
+
"layer_norm_epsilon": self.layer_norm_epsilon,
|
|
612
|
+
}
|
|
613
|
+
)
|
|
614
|
+
return config
|
|
615
|
+
|
|
616
|
+
def compute_output_shape(
|
|
617
|
+
self,
|
|
618
|
+
vision_features_shape,
|
|
619
|
+
text_features_shape,
|
|
620
|
+
vision_pos_encodings_shape,
|
|
621
|
+
text_masks_shape,
|
|
622
|
+
):
|
|
623
|
+
batch_size = vision_features_shape[0]
|
|
624
|
+
intermediate_output_shape = [
|
|
625
|
+
batch_size,
|
|
626
|
+
self.num_layers,
|
|
627
|
+
self.num_queries,
|
|
628
|
+
self.hidden_dim,
|
|
629
|
+
]
|
|
630
|
+
intermediate_boxes_shape = [
|
|
631
|
+
batch_size,
|
|
632
|
+
self.num_layers,
|
|
633
|
+
self.num_queries,
|
|
634
|
+
4,
|
|
635
|
+
]
|
|
636
|
+
intermediate_presence_logits_shape = [batch_size, self.num_layers, 1]
|
|
637
|
+
return (
|
|
638
|
+
intermediate_output_shape,
|
|
639
|
+
intermediate_boxes_shape,
|
|
640
|
+
intermediate_presence_logits_shape,
|
|
641
|
+
)
|