keras-hub 0.21.1.dev0__py3-none-any.whl → 0.22.0.dev0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (94) hide show
  1. keras_hub/layers/__init__.py +9 -0
  2. keras_hub/models/__init__.py +47 -0
  3. keras_hub/src/layers/modeling/transformer_encoder.py +6 -3
  4. keras_hub/src/layers/preprocessing/multi_segment_packer.py +17 -3
  5. keras_hub/src/layers/preprocessing/start_end_packer.py +24 -6
  6. keras_hub/src/models/backbone.py +13 -10
  7. keras_hub/src/models/clip/clip_backbone.py +3 -102
  8. keras_hub/src/models/clip/clip_layers.py +295 -0
  9. keras_hub/src/models/clip/clip_preprocessor.py +57 -48
  10. keras_hub/src/models/clip/clip_text_encoder.py +2 -2
  11. keras_hub/src/models/clip/clip_vision_encoder.py +3 -3
  12. keras_hub/src/models/deit/__init__.py +5 -0
  13. keras_hub/src/models/deit/deit_backbone.py +154 -0
  14. keras_hub/src/models/deit/deit_image_classifier.py +171 -0
  15. keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +12 -0
  16. keras_hub/src/models/deit/deit_image_converter.py +8 -0
  17. keras_hub/src/models/deit/deit_layers.py +519 -0
  18. keras_hub/src/models/deit/deit_presets.py +49 -0
  19. keras_hub/src/models/dinov2/__init__.py +5 -0
  20. keras_hub/src/models/dinov2/dinov2_backbone.py +228 -0
  21. keras_hub/src/models/dinov2/dinov2_image_converter.py +8 -0
  22. keras_hub/src/models/dinov2/dinov2_layers.py +886 -0
  23. keras_hub/src/models/dinov2/dinov2_presets.py +89 -0
  24. keras_hub/src/models/esm/__init__.py +5 -0
  25. keras_hub/src/models/esm/esm_attention.py +95 -0
  26. keras_hub/src/models/esm/esm_backbone.py +229 -0
  27. keras_hub/src/models/esm/esm_classifier.py +184 -0
  28. keras_hub/src/models/esm/esm_classifier_preprocessor.py +135 -0
  29. keras_hub/src/models/esm/esm_encoder.py +134 -0
  30. keras_hub/src/models/esm/esm_masked_plm.py +117 -0
  31. keras_hub/src/models/esm/esm_masked_plm_preprocessor.py +143 -0
  32. keras_hub/src/models/esm/esm_presets.py +53 -0
  33. keras_hub/src/models/esm/esm_tokenizer.py +82 -0
  34. keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +6 -2
  35. keras_hub/src/models/gemma/gemma_attention.py +1 -1
  36. keras_hub/src/models/gemma3/gemma3_backbone.py +2 -2
  37. keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +1 -1
  38. keras_hub/src/models/hgnetv2/__init__.py +5 -0
  39. keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +193 -0
  40. keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +148 -0
  41. keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +216 -0
  42. keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +14 -0
  43. keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +8 -0
  44. keras_hub/src/models/hgnetv2/hgnetv2_layers.py +918 -0
  45. keras_hub/src/models/hgnetv2/hgnetv2_presets.py +58 -0
  46. keras_hub/src/models/llama3/llama3_presets.py +3 -3
  47. keras_hub/src/models/mistral/mistral_presets.py +17 -1
  48. keras_hub/src/models/mixtral/mixtral_presets.py +2 -2
  49. keras_hub/src/models/mobilenet/mobilenet_presets.py +4 -4
  50. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +2 -2
  51. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +2 -2
  52. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +17 -17
  53. keras_hub/src/models/qwen3/__init__.py +5 -0
  54. keras_hub/src/models/qwen3/qwen3_attention.py +369 -0
  55. keras_hub/src/models/qwen3/qwen3_backbone.py +191 -0
  56. keras_hub/src/models/qwen3/qwen3_causal_lm.py +390 -0
  57. keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +10 -0
  58. keras_hub/src/models/qwen3/qwen3_decoder.py +309 -0
  59. keras_hub/src/models/qwen3/qwen3_layernorm.py +38 -0
  60. keras_hub/src/models/qwen3/qwen3_presets.py +73 -0
  61. keras_hub/src/models/qwen3/qwen3_tokenizer.py +48 -0
  62. keras_hub/src/models/qwen_moe/qwen_moe_attention.py +1 -0
  63. keras_hub/src/models/qwen_moe/qwen_moe_presets.py +2 -2
  64. keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -2
  65. keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +16 -7
  66. keras_hub/src/models/stable_diffusion_3/mmdit.py +61 -4
  67. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +31 -32
  68. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +1 -0
  69. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +1 -0
  70. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +1 -0
  71. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +6 -2
  72. keras_hub/src/models/vit/vit_backbone.py +31 -11
  73. keras_hub/src/models/vit/vit_image_converter.py +0 -70
  74. keras_hub/src/models/vit/vit_layers.py +33 -18
  75. keras_hub/src/models/vit/vit_presets.py +11 -11
  76. keras_hub/src/utils/keras_utils.py +17 -0
  77. keras_hub/src/utils/preset_utils.py +19 -4
  78. keras_hub/src/utils/tensor_utils.py +14 -0
  79. keras_hub/src/utils/transformers/convert_deit.py +155 -0
  80. keras_hub/src/utils/transformers/convert_dinov2.py +180 -0
  81. keras_hub/src/utils/transformers/convert_esm.py +159 -0
  82. keras_hub/src/utils/transformers/convert_llama3.py +6 -0
  83. keras_hub/src/utils/transformers/convert_qwen3.py +145 -0
  84. keras_hub/src/utils/transformers/export/gemma.py +89 -0
  85. keras_hub/src/utils/transformers/export/hf_exporter.py +98 -0
  86. keras_hub/src/utils/transformers/preset_loader.py +14 -2
  87. keras_hub/src/version.py +1 -1
  88. keras_hub/tokenizers/__init__.py +1 -0
  89. {keras_hub-0.21.1.dev0.dist-info → keras_hub-0.22.0.dev0.dist-info}/METADATA +4 -4
  90. {keras_hub-0.21.1.dev0.dist-info → keras_hub-0.22.0.dev0.dist-info}/RECORD +92 -48
  91. keras_hub/src/models/clip/clip_encoder_block.py +0 -111
  92. keras_hub/src/models/clip/clip_vision_embedding.py +0 -101
  93. {keras_hub-0.21.1.dev0.dist-info → keras_hub-0.22.0.dev0.dist-info}/WHEEL +0 -0
  94. {keras_hub-0.21.1.dev0.dist-info → keras_hub-0.22.0.dev0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,89 @@
1
+ import keras.ops as ops
2
+
3
+
4
+ def get_gemma_config(backbone):
5
+ hf_config = {
6
+ "vocab_size": backbone.vocabulary_size,
7
+ "num_hidden_layers": backbone.num_layers,
8
+ "num_attention_heads": backbone.num_query_heads,
9
+ "num_key_value_heads": backbone.num_key_value_heads,
10
+ "hidden_size": backbone.hidden_dim,
11
+ "intermediate_size": backbone.intermediate_dim // 2,
12
+ "head_dim": backbone.head_dim,
13
+ "max_position_embeddings": 8192,
14
+ }
15
+ return hf_config
16
+
17
+
18
+ def get_gemma_weights_map(backbone):
19
+ weights_dict = {}
20
+
21
+ # Map token embedding
22
+ token_embedding_layer = backbone.get_layer("token_embedding")
23
+ weights_dict["model.embed_tokens.weight"] = token_embedding_layer.weights[0]
24
+
25
+ for i in range(backbone.num_layers):
26
+ decoder_layer = backbone.get_layer(f"decoder_block_{i}")
27
+
28
+ # Pre-attention normalization
29
+ weights_dict[f"model.layers.{i}.input_layernorm.weight"] = (
30
+ decoder_layer.pre_attention_norm.weights[0]
31
+ )
32
+
33
+ # Attention query projection
34
+ query_kernel = decoder_layer.attention.query_dense.weights[0]
35
+ query_kernel = ops.transpose(query_kernel, axes=(1, 0, 2))
36
+ query_kernel = ops.reshape(query_kernel, (-1, backbone.hidden_dim))
37
+ query_kernel = ops.transpose(query_kernel)
38
+ weights_dict[f"model.layers.{i}.self_attn.q_proj.weight"] = query_kernel
39
+
40
+ # Attention key projection
41
+ key_kernel = decoder_layer.attention.key_dense.weights[0][0]
42
+ weights_dict[f"model.layers.{i}.self_attn.k_proj.weight"] = (
43
+ ops.transpose(key_kernel)
44
+ )
45
+
46
+ # Attention value projection
47
+ value_kernel = decoder_layer.attention.value_dense.weights[0][0]
48
+ weights_dict[f"model.layers.{i}.self_attn.v_proj.weight"] = (
49
+ ops.transpose(value_kernel)
50
+ )
51
+
52
+ # Attention output projection
53
+ out_kernel = decoder_layer.attention.output_dense.weights[0]
54
+ out_kernel = ops.transpose(out_kernel, axes=(2, 0, 1))
55
+ out_kernel = ops.reshape(out_kernel, (backbone.hidden_dim, -1))
56
+ weights_dict[f"model.layers.{i}.self_attn.o_proj.weight"] = out_kernel
57
+
58
+ # Post-attention normalization
59
+ weights_dict[f"model.layers.{i}.post_attention_layernorm.weight"] = (
60
+ decoder_layer.pre_ffw_norm.weights[0]
61
+ )
62
+
63
+ # MLP gate projection
64
+ gate_kernel = decoder_layer.gating_ffw.weights[0]
65
+ weights_dict[f"model.layers.{i}.mlp.gate_proj.weight"] = ops.transpose(
66
+ gate_kernel
67
+ )
68
+
69
+ # MLP up projection
70
+ up_kernel = decoder_layer.gating_ffw_2.weights[0]
71
+ weights_dict[f"model.layers.{i}.mlp.up_proj.weight"] = ops.transpose(
72
+ up_kernel
73
+ )
74
+
75
+ # MLP down projection
76
+ down_kernel = decoder_layer.ffw_linear.weights[0]
77
+ weights_dict[f"model.layers.{i}.mlp.down_proj.weight"] = ops.transpose(
78
+ down_kernel
79
+ )
80
+
81
+ # Map final normalization
82
+ weights_dict["model.norm.weight"] = backbone.get_layer(
83
+ "final_normalization"
84
+ ).weights[0]
85
+
86
+ # Tie weights, but clone to avoid sharing memory issues
87
+ weights_dict["lm_head.weight"] = ops.copy(token_embedding_layer.weights[0])
88
+
89
+ return weights_dict
@@ -0,0 +1,98 @@
1
+ import json
2
+ import os
3
+ import shutil
4
+ import warnings
5
+
6
+ import keras
7
+
8
+ from keras_hub.src.utils.transformers.export.gemma import get_gemma_config
9
+ from keras_hub.src.utils.transformers.export.gemma import get_gemma_weights_map
10
+
11
+ MODEL_CONFIGS = {
12
+ "GemmaBackbone": get_gemma_config,
13
+ # Add future models here, e.g., "LlamaBackbone": get_llama_config,
14
+ }
15
+
16
+ MODEL_EXPORTERS = {
17
+ "GemmaBackbone": get_gemma_weights_map,
18
+ # Add future models here, e.g., "LlamaBackbone": get_llama_weights_map,
19
+ }
20
+
21
+
22
+ def export_to_safetensors(keras_model, path):
23
+ """Converts a Keras model to Hugging Face safetensor format.
24
+
25
+ It does the following:
26
+ - Extracts and maps weights from the Keras backbone to safetensors.
27
+ - Saves the configuration as 'config.json'.
28
+ - Saves weights in 'model.safetensors'.
29
+ - Saves tokenizer assets.
30
+
31
+ Args:
32
+ keras_model: The Keras model to convert.
33
+ path: str. Path of the directory to which the safetensors file,
34
+ config and tokenizer will be saved.
35
+ """
36
+ backend = keras.config.backend()
37
+ backbone = keras_model.backbone
38
+ model_type = backbone.__class__.__name__
39
+
40
+ if model_type not in MODEL_CONFIGS:
41
+ raise ValueError(f"Config not implemented for {model_type}")
42
+
43
+ if model_type not in MODEL_EXPORTERS:
44
+ raise ValueError(f"Exporter not implemented for {model_type}")
45
+
46
+ get_config_fn = MODEL_CONFIGS[model_type]
47
+ hf_config = get_config_fn(backbone)
48
+
49
+ get_weights_fn = MODEL_EXPORTERS[model_type]
50
+ weights_dict = get_weights_fn(backbone)
51
+
52
+ if not weights_dict:
53
+ raise ValueError("No weights to save.")
54
+
55
+ # Save config
56
+ os.makedirs(path, exist_ok=True)
57
+ config_path = os.path.join(path, "config.json")
58
+ with open(config_path, "w") as f:
59
+ json.dump(hf_config, f)
60
+
61
+ # Save weights based on backend
62
+ weights_path = os.path.join(path, "model.safetensors")
63
+ if backend == "torch":
64
+ from safetensors.torch import save_file
65
+
66
+ weights_dict_contiguous = {
67
+ k: v.value.contiguous() if hasattr(v, "value") else v.contiguous()
68
+ for k, v in weights_dict.items()
69
+ }
70
+ save_file(
71
+ weights_dict_contiguous, weights_path, metadata={"format": "pt"}
72
+ )
73
+ elif backend == "tensorflow":
74
+ from safetensors.tensorflow import save_file
75
+
76
+ save_file(weights_dict, weights_path, metadata={"format": "pt"})
77
+ elif backend == "jax":
78
+ from safetensors.flax import save_file
79
+
80
+ save_file(weights_dict, weights_path, metadata={"format": "pt"})
81
+ else:
82
+ raise ValueError(f"Unsupported backend: {backend}")
83
+
84
+ # Save tokenizer assets
85
+ keras_model.preprocessor.tokenizer.save_assets(path)
86
+
87
+ # Rename vocabulary file
88
+ vocab_spm_path = os.path.join(path, "vocabulary.spm")
89
+ tokenizer_model_path = os.path.join(path, "tokenizer.model")
90
+ if os.path.exists(vocab_spm_path):
91
+ shutil.move(vocab_spm_path, tokenizer_model_path)
92
+ else:
93
+ warnings.warn(
94
+ f"{vocab_spm_path} not found. Tokenizer may not load "
95
+ "correctly. Ensure that the tokenizer configuration "
96
+ "is correct and that the vocabulary file is present "
97
+ "in the original model."
98
+ )
@@ -6,7 +6,10 @@ from keras_hub.src.utils.preset_utils import jax_memory_cleanup
6
6
  from keras_hub.src.utils.transformers import convert_albert
7
7
  from keras_hub.src.utils.transformers import convert_bart
8
8
  from keras_hub.src.utils.transformers import convert_bert
9
+ from keras_hub.src.utils.transformers import convert_deit
10
+ from keras_hub.src.utils.transformers import convert_dinov2
9
11
  from keras_hub.src.utils.transformers import convert_distilbert
12
+ from keras_hub.src.utils.transformers import convert_esm
10
13
  from keras_hub.src.utils.transformers import convert_gemma
11
14
  from keras_hub.src.utils.transformers import convert_gpt2
12
15
  from keras_hub.src.utils.transformers import convert_llama3
@@ -14,6 +17,7 @@ from keras_hub.src.utils.transformers import convert_mistral
14
17
  from keras_hub.src.utils.transformers import convert_mixtral
15
18
  from keras_hub.src.utils.transformers import convert_pali_gemma
16
19
  from keras_hub.src.utils.transformers import convert_qwen
20
+ from keras_hub.src.utils.transformers import convert_qwen3
17
21
  from keras_hub.src.utils.transformers import convert_qwen_moe
18
22
  from keras_hub.src.utils.transformers import convert_vit
19
23
  from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader
@@ -29,9 +33,15 @@ class TransformersPresetLoader(PresetLoader):
29
33
  self.converter = convert_bart
30
34
  elif model_type == "bert":
31
35
  self.converter = convert_bert
36
+ elif model_type == "deit":
37
+ self.converter = convert_deit
32
38
  elif model_type == "distilbert":
33
39
  self.converter = convert_distilbert
34
- elif model_type == "gemma" or model_type == "gemma2":
40
+ elif model_type in ("dinov2", "dinov2_with_registers"):
41
+ self.converter = convert_dinov2
42
+ elif model_type == "esm":
43
+ self.converter = convert_esm
44
+ elif model_type in ("gemma", "gemma2"):
35
45
  self.converter = convert_gemma
36
46
  elif model_type == "gpt2":
37
47
  self.converter = convert_gpt2
@@ -50,6 +60,8 @@ class TransformersPresetLoader(PresetLoader):
50
60
  self.converter = convert_mixtral
51
61
  elif model_type == "qwen2_moe":
52
62
  self.converter = convert_qwen_moe
63
+ elif model_type == "qwen3":
64
+ self.converter = convert_qwen3
53
65
  else:
54
66
  raise ValueError(
55
67
  "KerasHub has no converter for huggingface/transformers models "
@@ -79,7 +91,7 @@ class TransformersPresetLoader(PresetLoader):
79
91
  cls, load_weights, load_task_weights, **kwargs
80
92
  )
81
93
  # Support loading the classification head for classifier models.
82
- if architecture == "ViTForImageClassification":
94
+ if "ForImageClassification" in architecture:
83
95
  kwargs["num_classes"] = len(self.config["id2label"])
84
96
  task = super().load_task(cls, load_weights, load_task_weights, **kwargs)
85
97
  if load_task_weights:
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.21.1.dev0"
4
+ __version__ = "0.22.0.dev0"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -28,6 +28,7 @@ from keras_hub.src.models.distil_bert.distil_bert_tokenizer import (
28
28
  from keras_hub.src.models.electra.electra_tokenizer import (
29
29
  ElectraTokenizer as ElectraTokenizer,
30
30
  )
31
+ from keras_hub.src.models.esm.esm_tokenizer import ESMTokenizer as ESMTokenizer
31
32
  from keras_hub.src.models.f_net.f_net_tokenizer import (
32
33
  FNetTokenizer as FNetTokenizer,
33
34
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub
3
- Version: 0.21.1.dev0
3
+ Version: 0.22.0.dev0
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -18,9 +18,9 @@ Classifier: Operating System :: MacOS
18
18
  Classifier: Intended Audience :: Science/Research
19
19
  Classifier: Topic :: Scientific/Engineering
20
20
  Classifier: Topic :: Software Development
21
- Requires-Python: >=3.9
21
+ Requires-Python: >=3.10
22
22
  Description-Content-Type: text/markdown
23
- Requires-Dist: keras>=3.5
23
+ Requires-Dist: keras>=3.8
24
24
  Requires-Dist: absl-py
25
25
  Requires-Dist: numpy
26
26
  Requires-Dist: packaging
@@ -31,7 +31,7 @@ Requires-Dist: tensorflow-text; platform_system != "Windows"
31
31
 
32
32
  # KerasHub: Multi-framework Pretrained Models
33
33
  [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
34
- ![Python](https://img.shields.io/badge/python-v3.9.0+-success.svg)
34
+ ![Python](https://img.shields.io/badge/python-v3.10.0+-success.svg)
35
35
  [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/keras-team/keras-hub/issues)
36
36
 
37
37
  > [!IMPORTANT]
@@ -1,11 +1,11 @@
1
1
  keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
2
- keras_hub/layers/__init__.py,sha256=gnvT-GuASB1hZwY4zrRkLs5yohSQu9Pp1SHDxsWPLY8,5081
2
+ keras_hub/layers/__init__.py,sha256=SMkchjCbNydCBULOFC1pzZRaD-KWZ2CaH6CEVf1MRWE,5428
3
3
  keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
4
- keras_hub/models/__init__.py,sha256=itSzodVUeuX6HQnmsSXY0Wv-5Htbu397410R-SFW_4I,26411
4
+ keras_hub/models/__init__.py,sha256=UXMwKVZ7bg-AOrq2xsl8M0idUAS89pkdCvQKhzL-D3I,28439
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=9-4pakvS-20qqoJLPAxs1MpQcXpHuTo0hZidVMHPOG0,211
8
+ keras_hub/src/version.py,sha256=dvS7_pZSOD1VISZuD4cqYlEHVG0T9alhzm5Og63Eg2g,211
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -22,17 +22,17 @@ keras_hub/src/layers/modeling/rotary_embedding.py,sha256=BuMD2dCyZi73Eokddx8Q9cF
22
22
  keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=NAPW9HaVTMNZgUJNzA3l1B3C_FNvaY7IW-5tQgFgnNg,3453
23
23
  keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=Q-MhVHZSd_W2eWjDCj-s7wo3z8UHmgZ-7j7hElkaXBQ,5263
24
24
  keras_hub/src/layers/modeling/transformer_decoder.py,sha256=50KLxaZwaQglWIcFotx3BFh6RwCMXRvGZNXHQBrJ5KM,21172
25
- keras_hub/src/layers/modeling/transformer_encoder.py,sha256=Qe19_aR6w4PTFbzvBmSP8-ggiAuOJcgCzaJWcjdzA9c,10625
25
+ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=kKPGfjpdhqGJs4MmRyx7fk9xU_2TAS-gLGhq9FZdU0w,10828
26
26
  keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
27
27
  keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
28
  keras_hub/src/layers/preprocessing/audio_converter.py,sha256=YGh_kQw65a1Z6S5zzSNVP-ChyLYHq3-eOYpOS53xIN8,4156
29
29
  keras_hub/src/layers/preprocessing/image_converter.py,sha256=p2CoSV_zfHIVZqLo1hQk2BdOL_RtBlr5wUtgpAmtwwY,15926
30
30
  keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
31
- keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
31
+ keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=APP62tF9Tw4zah7oL5maSYRXMwcR4RwicZMhQq2wRxY,12509
32
32
  keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
33
33
  keras_hub/src/layers/preprocessing/random_deletion.py,sha256=_EmBt4d8TTPLF3OQhA8HoBmej-BX_BocbjeW6jzi6Wo,9768
34
34
  keras_hub/src/layers/preprocessing/random_swap.py,sha256=cV7HqMwu_JHTbhe9UMVAsZdOTLsukyZDteEBYp0idiM,9509
35
- keras_hub/src/layers/preprocessing/start_end_packer.py,sha256=lY2K937z6JucxNe7VknynhhjrcUfFigU6mqIdv2gS-Y,7973
35
+ keras_hub/src/layers/preprocessing/start_end_packer.py,sha256=F_yCyI6yyxAfunb37C0AzFX3lKjaZg08HMjUXOpjgwc,8642
36
36
  keras_hub/src/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
37
  keras_hub/src/metrics/bleu.py,sha256=pnid5azpAxO6vKEfUtAby3nH29OGbwYKgVGOGeoaA3I,13694
38
38
  keras_hub/src/metrics/edit_distance.py,sha256=kjhe8uNjvv8aN49RyrKAbNi7a8_OlB8fMza0J_CfNQg,6353
@@ -43,7 +43,7 @@ keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemu
43
43
  keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
44
  keras_hub/src/models/audio_to_text.py,sha256=XoOjXtKBX6K1fz-zOXcdVo3FpjuxCMnJZh2LQcYXb_0,2726
45
45
  keras_hub/src/models/audio_to_text_preprocessor.py,sha256=GS-WWyJ6aSsPRxi_0bxvxA00h2mT2FEwSdAoQXAUYVI,3249
46
- keras_hub/src/models/backbone.py,sha256=KS2x3HFWKhEYhroUFT3uZgSkeW_48zPGqUNvxCDDIQQ,11534
46
+ keras_hub/src/models/backbone.py,sha256=utZP09_u5FpMGiq8jl3W98TCW8CysndwLw2VCs3BHz8,11780
47
47
  keras_hub/src/models/causal_lm.py,sha256=ReaF-i3SHsCkHh4c28jM72QjMQ8x7yiCwG39FRb-7KE,16786
48
48
  keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
49
49
  keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
@@ -102,15 +102,14 @@ keras_hub/src/models/bloom/bloom_decoder.py,sha256=fda8iX4wzx2M8AoLX7fDHkyoir89K
102
102
  keras_hub/src/models/bloom/bloom_presets.py,sha256=7RptuZi__oJyiX6X4xE5ToANcEwsmLDqhuEKwFyKIPU,3215
103
103
  keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=6Konh7B_L9BqgjkA0z8-APFpr9sQmQPuAJFZSsCIClU,2574
104
104
  keras_hub/src/models/clip/__init__.py,sha256=NcjBkTNWxLY4Ss9wV-NW9iS8k6AwMiS2ARMcxr6KEps,245
105
- keras_hub/src/models/clip/clip_backbone.py,sha256=AyVhLwFg5nLFSaoaL8mLuNkK9uBPJ9y5FMQu4psTGvo,9877
106
- keras_hub/src/models/clip/clip_encoder_block.py,sha256=4Jxqb0Pq3Joh-lHDq-Y2c8v-gcMm1sDjPID4eRGK0DE,3823
105
+ keras_hub/src/models/clip/clip_backbone.py,sha256=DRAXEJFVPcgf1-AeVDDmuoxplwTCl4Xt7-D4whM4w04,6619
107
106
  keras_hub/src/models/clip/clip_image_converter.py,sha256=XyHEDB4RbYiveMN1hLQxHgGADb_goyWyE0TceAd2owM,330
108
- keras_hub/src/models/clip/clip_preprocessor.py,sha256=nUYu8Bgf3TU7jrR10kr0BIe7ph3aABvGtIqnjqrIb9k,4752
107
+ keras_hub/src/models/clip/clip_layers.py,sha256=ns3Zzm5UzMpm-ynyU3aJu2d4i3HmzNiZKdAea624ako,10184
108
+ keras_hub/src/models/clip/clip_preprocessor.py,sha256=xj-FzK7gLIUyvTo2iM1zHh9f2Ff25tZCYFxsPE3dwFU,4771
109
109
  keras_hub/src/models/clip/clip_presets.py,sha256=b9Azial1dUtuNV96Q0Ahz-bcBRmlIjnZPUzMvAMb8OY,3348
110
- keras_hub/src/models/clip/clip_text_encoder.py,sha256=BCIE24eKZJ3yc4T0sjD6-Msjr1FQRKpdTP7vpGEn_7M,5456
110
+ keras_hub/src/models/clip/clip_text_encoder.py,sha256=lZa9Ditvn4DH9As3NEML_Wl6g2qeYer_LzRHGu1hqCM,5449
111
111
  keras_hub/src/models/clip/clip_tokenizer.py,sha256=6gIm_LWRbCeBQUI9M2gA8-OXb4tXGygixkbcL6joV1c,7444
112
- keras_hub/src/models/clip/clip_vision_embedding.py,sha256=6_qC7T1dqKd-39EreGmHZj-YfjOLEDDKjWnEKcKIyuY,3667
113
- keras_hub/src/models/clip/clip_vision_encoder.py,sha256=q62MXySZN38uCsjqq8cttfBxD7P5abaKQV2i8_u4N6E,6385
112
+ keras_hub/src/models/clip/clip_vision_encoder.py,sha256=C5grKgIgFF8ls-kkGdYorpw5tbfgbmBQe6VJg_3yWII,6368
114
113
  keras_hub/src/models/cspnet/__init__.py,sha256=TOpvk2cfOVv1bPA1BOGZj0mhmhc6E98zZmW9e0PIvhk,257
115
114
  keras_hub/src/models/cspnet/cspnet_backbone.py,sha256=meHzxubG_9vHQHSelDfrROaQERkDiWkjTtk_gKaWsDc,42457
116
115
  keras_hub/src/models/cspnet/cspnet_image_classifier.py,sha256=JqfBHIBTFxaLOyAWx6TdXs0aAOMbcCx1oo47RoQnytc,510
@@ -135,12 +134,24 @@ keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256
135
134
  keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=mz9nG55gdXSTDE96AXgeTCwUFB95DIpTuqrvWIt5Lco,7840
136
135
  keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=ZKYY8A7mV2QvwXwjDUd9xAbVHo58-Hgj_IqNUbuyCIU,625
137
136
  keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=pubi30sPJKLOpz9fRQff2FZt_53KBvwf2uyaJ5YL7J8,3726
137
+ keras_hub/src/models/deit/__init__.py,sha256=5XUICYa-poqErbmMLArBKCrSxC7wsIiQwUpuCnvGt_E,245
138
+ keras_hub/src/models/deit/deit_backbone.py,sha256=R5pBOqe8vcvD8VaRnsy_zIRIz6BLnUbkTeKUOoGNHPA,5942
139
+ keras_hub/src/models/deit/deit_image_classifier.py,sha256=pUS2638yBAxEBxcJoHyLABsgjCWv_Y0Mj_8u0YgDPdI,5758
140
+ keras_hub/src/models/deit/deit_image_classifier_preprocessor.py,sha256=s5pTcsUjlt1oIXFWIu-9gf2-sBesAyrjJIYmFOB96Xs,514
141
+ keras_hub/src/models/deit/deit_image_converter.py,sha256=wEGCLHS_i4wF9WA4m7uUXcHNbwf6TYgvPoM6C_t0rpM,330
142
+ keras_hub/src/models/deit/deit_layers.py,sha256=A80-UTHEUV8g5rEG-fr8OQpGe3HeoYlYwpoDCtq71ZU,17278
143
+ keras_hub/src/models/deit/deit_presets.py,sha256=5VwMAEg16RLWOjcdZ-BCYVlUlEzBfHz-6wCSOIhWGVQ,1786
138
144
  keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
139
145
  keras_hub/src/models/densenet/densenet_backbone.py,sha256=f2nfsXyXQert2aYHq-L-JZtp8inq1fs1K47rzZQ9nTI,6744
140
146
  keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ye-Ix3oU42pfsDoh-h1PG4di1kzldO0ZO7Nj304p_X4,544
141
147
  keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
142
148
  keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
143
149
  keras_hub/src/models/densenet/densenet_presets.py,sha256=d2GEB9cWYrzP8Qj1w8CWiRW976MibQBuk_YQYvgCzr4,1222
150
+ keras_hub/src/models/dinov2/__init__.py,sha256=qacZi82EfAloVND4gDLZjqgR5_yVdz_dc4mMKyCsjOA,257
151
+ keras_hub/src/models/dinov2/dinov2_backbone.py,sha256=kwzd5eqftMS0m5v1HB_4y7JiHxp13ECgG9dNsDoknWo,9491
152
+ keras_hub/src/models/dinov2/dinov2_image_converter.py,sha256=gfFROdYV5rOzo3kJFlRvRHYjek8z9YirKfrFwlVJO3g,342
153
+ keras_hub/src/models/dinov2/dinov2_layers.py,sha256=-G3elRWDy09_VPJDJa0qYS5P8vkBGgxPooMZhy2ifu0,33140
154
+ keras_hub/src/models/dinov2/dinov2_presets.py,sha256=ho493GPH98K4LH1E54UV2qZZ4h7Un9ylbBmMQjNoKh4,2937
144
155
  keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
145
156
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
146
157
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=axeZd5UcxFr3_Q8H4yG10CINh93wbcyjlPLauqe5N9E,4289
@@ -162,6 +173,16 @@ keras_hub/src/models/electra/__init__.py,sha256=vaXl_uQx_oLeKZWxmc1NRgCJfHpYJ35J
162
173
  keras_hub/src/models/electra/electra_backbone.py,sha256=h-QuFxACBvbMktkyGV2pIgn6dQ-kudJB1i14ekwEaL4,9004
163
174
  keras_hub/src/models/electra/electra_presets.py,sha256=6f0WAYtDx5To4gvi6btN8I8y7yfc9ANchTHRKgCyIkg,2697
164
175
  keras_hub/src/models/electra/electra_tokenizer.py,sha256=Ll_EW-14i-OZr6appQEt5ceMUCeEadF4yPJHMwaRfVs,2729
176
+ keras_hub/src/models/esm/__init__.py,sha256=_IlazeBwHkpetmLIZz3fFzC8CFcSnBRVQvw9nes4TN8,239
177
+ keras_hub/src/models/esm/esm_attention.py,sha256=T21MVs9QDUe_8a53mcW3dJvJfaNZOg5lkMdxGhQdmFQ,3327
178
+ keras_hub/src/models/esm/esm_backbone.py,sha256=ADIpeiYz16fw1PNvx2tX-51HsZ_AjR2wGLkXZHErWBg,8696
179
+ keras_hub/src/models/esm/esm_classifier.py,sha256=35-_3U725JhzspQAO_4ZkTJ0Tuy0XKMVkSrpmFz2CaE,6049
180
+ keras_hub/src/models/esm/esm_classifier_preprocessor.py,sha256=TXjGH8ttElEsfBLOMLrxP24uPCYVS78iCrnpsGwurII,5532
181
+ keras_hub/src/models/esm/esm_encoder.py,sha256=FxqfM_amKnmzNJoTq-LKouKaf_huklbjLiQ37ip85Tc,4499
182
+ keras_hub/src/models/esm/esm_masked_plm.py,sha256=FTNHrr0nRiuuO0Yqf5NSM48PehXWKMZvUVLBGET8X-8,3874
183
+ keras_hub/src/models/esm/esm_masked_plm_preprocessor.py,sha256=jfpehbd1KN_s48KCPSUpzQf1YYeriuR6a81wmXSG8bE,6272
184
+ keras_hub/src/models/esm/esm_presets.py,sha256=f3O0qhHoHGx-xXS4DuSw8fqxVEKmDaj45jput7OMz9M,1792
185
+ keras_hub/src/models/esm/esm_tokenizer.py,sha256=6hKDWanN4Hfl6eSNXHiHJUcwSMDRL4gHEWxenaMI3Os,3079
165
186
  keras_hub/src/models/f_net/__init__.py,sha256=a3OAwgEVy3Rv88ZlBE9RYLrPCNteImhGkW-lSAq5hyI,249
166
187
  keras_hub/src/models/f_net/f_net_backbone.py,sha256=6vZEq2UgoJxU2-aEesdXZnyRbACxpMZQ1akyVbGH8wg,8290
167
188
  keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GDRtPdF4K2tPtnM6NqmMeZs6PCRwtBN5Bo1qIMeqwCU,3978
@@ -184,9 +205,9 @@ keras_hub/src/models/flux/flux_maths.py,sha256=2pnHW8HW7V2JZ8HIrUwE-UU4klpFQaOko
184
205
  keras_hub/src/models/flux/flux_model.py,sha256=K92PyeFHIp8SwXuxhv__XCEaQ2wqSW1jOb97I4S24Rw,8991
185
206
  keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eBQy6Oks_X9W88,54
186
207
  keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEexS1kdraofIkxiZDjvc,4166
187
- keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
208
+ keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=2kI2vSZvTia5ISb4BVPgC_e1l5rkirLSjhm13P-UR_k,2362
188
209
  keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
189
- keras_hub/src/models/gemma/gemma_attention.py,sha256=iKSdBRkKEOnryXjz6K-thz70Dgp7LGXo5vYx8D-VMgY,10083
210
+ keras_hub/src/models/gemma/gemma_attention.py,sha256=wmU5FgQu1Ajg-KHKVXTLHWH7pXqN4_zVJTCp_FXMcAs,10095
190
211
  keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
191
212
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
192
213
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
@@ -196,12 +217,12 @@ keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3Bd
196
217
  keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
197
218
  keras_hub/src/models/gemma3/__init__.py,sha256=oPFadkdK5DRLD6sYx83iTetY5daWuSzmJilLjokHcbU,257
198
219
  keras_hub/src/models/gemma3/gemma3_attention.py,sha256=VstFCTVsplcDNSgnyBcSpLgKn-pktJ39D5Ri-Bb7BQA,13628
199
- keras_hub/src/models/gemma3/gemma3_backbone.py,sha256=xw6gbFZWZuREcN1iyPj-1Hm-3EmRglgFD5fQSzDp3zA,16439
220
+ keras_hub/src/models/gemma3/gemma3_backbone.py,sha256=CaVUQAKrBd1b_7gF7dyTWLjJebzzMd24_3oUipVu5gE,16445
200
221
  keras_hub/src/models/gemma3/gemma3_causal_lm.py,sha256=U3C9TWlIz8VefAxQ0wJ6bDz18wqHBie8B26Ub_nFZs4,13843
201
222
  keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=vjt4N-zr0Eb5kvkOR-WUgskDTNe64L_6tYnhyNb6xaE,29601
202
223
  keras_hub/src/models/gemma3/gemma3_decoder_block.py,sha256=6PLlpDxxF67stDv74fw9nNgUHBWmTLx6qGygJwyu5FY,10819
203
224
  keras_hub/src/models/gemma3/gemma3_image_converter.py,sha256=czi5JrTyKiK0nFzvonviBIX8jjvLHqvGNA9RyheB31k,536
204
- keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py,sha256=_Q5hvhA93HAJe-A2IBRKVu0_RDVht61lFQiYse_9Rm4,4597
225
+ keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py,sha256=CfYdudk5En9iU6vEnrcrEWIztloD1r8VzF2extqAhAM,4616
205
226
  keras_hub/src/models/gemma3/gemma3_presets.py,sha256=tVxug3rX3w_lqZlFfyqUlVdOrfBjN0GJY5ooBx1Fe0M,5124
206
227
  keras_hub/src/models/gemma3/gemma3_tokenizer.py,sha256=ZaBclFIwzJkSXDuZMBQLHUKV8RWEdZ_dsJMvMcc3qXw,3215
207
228
  keras_hub/src/models/gemma3/gemma3_vision_encoder.py,sha256=7XI0oBjIfJItV5w90t5bWb3C2KzjhvDnIC7wjIq4Cns,20850
@@ -220,6 +241,14 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=HriMXNVjGlFTjCIgfLR
220
241
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9qBHjQlwKgtUVrgBTFitHcX5pbmhhfHwaulyRxY,1957
221
242
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
222
243
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
244
+ keras_hub/src/models/hgnetv2/__init__.py,sha256=hGilfTnRPpVFS3YpRhJWEyK8CaPIzkRh6zUC1_5imaY,263
245
+ keras_hub/src/models/hgnetv2/hgnetv2_backbone.py,sha256=eqVrbU2EyB2ToxK1g2QRW90zd5GyvJ8I7PKVBgqRpfY,7966
246
+ keras_hub/src/models/hgnetv2/hgnetv2_encoder.py,sha256=VL6XCqyXieUPkqXS7fhsAT-EV6jzyN_i31EjsAizgVU,6464
247
+ keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py,sha256=62Xual9pRBkU6G_RUdCblx68Z827SCA_5q9utCXxwa0,7897
248
+ keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py,sha256=df7OKvJmz2UqOXrqECvI9QdVMVkVMWhK0go9sltajnI,553
249
+ keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py,sha256=qaGRtDeQwmC0PR69KWC7GzYNdWZ5cHu_exhNzdYyYzM,348
250
+ keras_hub/src/models/hgnetv2/hgnetv2_layers.py,sha256=OMUKW5VWL0xkEQl7RJYGAbTTB7qeqH3FHtMMuiQ0QmI,36418
251
+ keras_hub/src/models/hgnetv2/hgnetv2_presets.py,sha256=kbwxp8Nh4jdDN6egSmSxxwpY7CP5AklINXlWI0K3ZYA,2078
223
252
  keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
224
253
  keras_hub/src/models/llama/llama_attention.py,sha256=UFHOWr69vTkOxLdgSUckGaSuUUyqlJ_xYoswWHVnTOU,8977
225
254
  keras_hub/src/models/llama/llama_backbone.py,sha256=AT8kUPHEn6DT-aGY838_sZkBhByIdh82DWW8y-Sp3mE,13614
@@ -234,7 +263,7 @@ keras_hub/src/models/llama3/__init__.py,sha256=Vqvr2E10cnANkrRQGNBJtVLNAu-Bg9Lx6
234
263
  keras_hub/src/models/llama3/llama3_backbone.py,sha256=TEocD8X7GihQFGJAz3jPwLCqDb86nyeZ1DqBF7RgQLE,3366
235
264
  keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=qk_onuf7S6d7rxAntilq2Q2orggMbPEJbNHJNVe2G0U,1541
236
265
  keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgGxDAoQhEQuVm2udnEybI4fAQTJzXAuBs,3064
237
- keras_hub/src/models/llama3/llama3_presets.py,sha256=m5WEWOKm58wp7w_SDhYFVv3XhdY6d0GfSwxlbH07rwM,4302
266
+ keras_hub/src/models/llama3/llama3_presets.py,sha256=n_FFfYycZd_BiealnY6EL16haMtyGwPCQ7CAT-_Ctbg,4302
238
267
  keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
239
268
  keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
240
269
  keras_hub/src/models/mistral/mistral_attention.py,sha256=nGDlD4NcIwIGlfbt3ArxdT5QAvamY7yiNEGDlTgWirU,8609
@@ -242,7 +271,7 @@ keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0D
242
271
  keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
243
272
  keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
244
273
  keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=nimMZ5CTPK8v9eflfrGuzqmv-2vd2rGlPvcHOMwYZyg,1063
245
- keras_hub/src/models/mistral/mistral_presets.py,sha256=ggWQwKGDMFPzUWkQIJ6Tlk7NS-dClRO95WoSTaImL9s,939
274
+ keras_hub/src/models/mistral/mistral_presets.py,sha256=AmLzczVpsz12nCQ0BCY5zNnCb9KOu0LuoaOJxD3OMHg,1507
246
275
  keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
247
276
  keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=z5FCh9TEaznvhW3JOSKmFTotRbiuQhzJTZClW2m9sEw,9556
248
277
  keras_hub/src/models/mit/__init__.py,sha256=F70_0PR_nPzPdMI8XOpXDRR_nxclGjcHv3iWSWUX3w8,316
@@ -259,14 +288,14 @@ keras_hub/src/models/mixtral/mixtral_causal_lm.py,sha256=JA1t6xTeaYX_fNo9ftRyvzd
259
288
  keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py,sha256=q2qXa9QAUWBvOWv9DeNvwsBNXSORJAbQFoQsWQ7e8V8,3079
260
289
  keras_hub/src/models/mixtral/mixtral_decoder.py,sha256=CvOjhTxPnGQ_HNknZXRI6Cx1kpuHG99_TiOh-mNcsDw,18190
261
290
  keras_hub/src/models/mixtral/mixtral_layer_norm.py,sha256=zfbDKZEb45FTwP0zQd7WPPp8tuiGoSNfS-DRYWkZyWw,1031
262
- keras_hub/src/models/mixtral/mixtral_presets.py,sha256=pi5hHcwVSqr7ytf4dSnU_ew_t7NYw7EsZrmklQDqDVo,852
291
+ keras_hub/src/models/mixtral/mixtral_presets.py,sha256=JzEbR0j3iK82GDWCzH58e6lwMc7IOnj-EnibsynfGCU,852
263
292
  keras_hub/src/models/mixtral/mixtral_tokenizer.py,sha256=Kc233k879QMyX164X_CzWbqpnqEkKWNqa648guTGkBk,661
264
293
  keras_hub/src/models/mobilenet/__init__.py,sha256=hxkNGGj_iAMu62iooUDEPA818sNOIgjG7pXMLEMOsAE,275
265
294
  keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=aZBSFeLUObYYoi3od9DI1KfgPCqh5GHTcAI8Y2ZHShA,29536
266
295
  keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=rgPVJeSRqyp3-Fgf5ERbg_97c4cSawRmAtoJpdBN8WA,2437
267
296
  keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py,sha256=yqM4wQ3ae7wXTBO0aMuvJx6XqllA7Psqzjvpm2NABXM,573
268
297
  keras_hub/src/models/mobilenet/mobilenet_image_converter.py,sha256=a3Ka0UYYK5wHSOjf2oMHSgofRazTAeUfttklVefq14w,360
269
- keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=--nhaM6LmaiCtQlZPDwoQTHW7ciU0igzS4f9ssdD9Lo,1903
298
+ keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=hR_3xxI_PigE8UprXW4lAuKRa3LFGdidBaN8LklxwRQ,1895
270
299
  keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOyUQiEjcbzQ,721
271
300
  keras_hub/src/models/moonshine/__init__.py,sha256=WK_9Cy1dp5KplNAaTsaJbd-2DGLsiHQsIL5ZnXuCbDQ,275
272
301
  keras_hub/src/models/moonshine/moonshine_audio_converter.py,sha256=FnvR7SP44uVOsA3g9azUhQjsVg809eJ5nqoJZQ-DAq0,11854
@@ -286,12 +315,12 @@ keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=xHfslVMOZlAIj2V2jI
286
315
  keras_hub/src/models/opt/opt_presets.py,sha256=LrjgI5gbq4Cvfl_pmeCnKn4hS_V_0GYTeJaDc9tbeZM,1745
287
316
  keras_hub/src/models/opt/opt_tokenizer.py,sha256=oDHeed4xf07tm14hj_C78BkzMuuRwRP2cRHmqYnObrs,2557
288
317
  keras_hub/src/models/pali_gemma/__init__.py,sha256=uODWTlttOOchcTLpiYHCEWMXnDxIz8ZVIeYFQN2bd8o,288
289
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=_Sa22j4jk_7400h33S22w0S8Dh8Lzzl6A5WeEp55zSk,13637
290
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7J02JkXcanBgLSdwZwF56TVr8gc,11345
318
+ keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=e1KAg4bmK1PrmYW-Ewx3vD7S2DlX9K8LmbRwv30VEkA,13643
319
+ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=aT075qRyFmuo5JwphKkjLt7iJ8BK8NGt-5mqfgIXYqs,11351
291
320
  keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
292
321
  keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
293
322
  keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
294
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=DAaSzquR4_AnSjToDjgXj2zbrT5skUpXmzKoyATwwHk,13006
323
+ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Q_zfHEjGTtXEiCwjoJc2g6HjmoNoLgSDRNfRvIsf0dA,12989
295
324
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
296
325
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
297
326
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
@@ -313,14 +342,23 @@ keras_hub/src/models/qwen/qwen_decoder.py,sha256=utmAvZlU7_nP-6pjGPDinK4JaMzsQSw
313
342
  keras_hub/src/models/qwen/qwen_layernorm.py,sha256=DS35r3qd6g5ocL7Nhf_vNzLLMo1aI9VCSmL64dgNOYI,924
314
343
  keras_hub/src/models/qwen/qwen_presets.py,sha256=1FkKV6M3yqJz4EP1xa7bEvfIQ721xXT-_ikjWX0xvww,1992
315
344
  keras_hub/src/models/qwen/qwen_tokenizer.py,sha256=LCv3IyiDDHqVnM9N3lf5-BE3iwicIh0nKS1hjoPw9lE,1532
345
+ keras_hub/src/models/qwen3/__init__.py,sha256=fdndQouGmfNhB_Rj76A8my5FvpxOvRJ24DoUha-wlgw,251
346
+ keras_hub/src/models/qwen3/qwen3_attention.py,sha256=9zjuzGZa6TzaFgO4ShNCEHMPVb3r6mFZW7vzutbwUGg,13050
347
+ keras_hub/src/models/qwen3/qwen3_backbone.py,sha256=Ylpk_rRWWRxy8irlAPjJU-YrxYGpo8c9lSEO1zZl4gU,7456
348
+ keras_hub/src/models/qwen3/qwen3_causal_lm.py,sha256=cn_4WFVxhlOArtIGAaqkNzIz9Rx8IEWwCVMRFKKk26k,15531
349
+ keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py,sha256=H4g-bgvuhAUnDwjJovydK16Kes38ZFZWPvflrgHqZis,458
350
+ keras_hub/src/models/qwen3/qwen3_decoder.py,sha256=68s9jQj53zFmXE4-SGXKYHu546fXOyi9LUbnKk-HGYY,11595
351
+ keras_hub/src/models/qwen3/qwen3_layernorm.py,sha256=EJxjf7Pr6ufPQnNeuYQxkExzPjPk4PQxqMsoBeSEkDo,1073
352
+ keras_hub/src/models/qwen3/qwen3_presets.py,sha256=eAqRbjLyRTSXcN-jnGHqoCHejKm2gmt8_zL4EPoE-JA,2518
353
+ keras_hub/src/models/qwen3/qwen3_tokenizer.py,sha256=LmPtg0vprMchDvYfTj8m5PraXI2QS3-YgdIIpIm5iAs,1448
316
354
  keras_hub/src/models/qwen_moe/__init__.py,sha256=5D8GUmVDsJs0J4sVZHcXOLkZf12U96l-WtwyVee4lu8,267
317
- keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=pE79_iHUm2LGkoWL6zMJw_pNfzIvmyq3yJaiq47W2TY,13242
355
+ keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=o0mcVTDMtElMYq3NSYRCfuYVdF-W8YDSU5ogensrVJg,13277
318
356
  keras_hub/src/models/qwen_moe/qwen_moe_backbone.py,sha256=nrfELvIvRLmrgKrUNXci2CrecmeI6bWzJj7HH-RcWJA,15341
319
357
  keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py,sha256=MeP60v7GcN_SmH5_ULRpqgmFVgaYAosSecZiSQVlJvU,13256
320
358
  keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py,sha256=9P6TT7W_fqf4HsXcmlHF-DW_anR-XoDrRN2ZFGA7Ai4,3168
321
359
  keras_hub/src/models/qwen_moe/qwen_moe_decoder.py,sha256=kmUjLpYTbJQ3J_31qWhLOd0Dg2_9cl_JX_zM8ZMH1Qo,23130
322
360
  keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py,sha256=DbkWJo7U0-cwdZwHPeAnFznYwtao6o0fjpoDJ9UWnpc,927
323
- keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=LhOA3Ow-z3cNTan4AOrtyCXS58EgfvO_gtqiZt5cUQc,455
361
+ keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=nGQ0azaOJAjBorR_6_Qtb1yCSXPdFJdRp0_ULYT4_04,451
324
362
  keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py,sha256=2c3X8jNGO0q0UL5NtUqSgHWLqhyJGi2ohNcTeOGhd84,1407
325
363
  keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
326
364
  keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
@@ -346,7 +384,7 @@ keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=x36hU84P-ROReZniU
346
384
  keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa8JdPUmT1N7nxBqtaIbnfXV-xlNjTtkEevQhfjNU,5993
347
385
  keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
348
386
  keras_hub/src/models/roformer_v2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
349
- keras_hub/src/models/roformer_v2/roformer_v2_attention.py,sha256=RvDxuh0eZ6QEhyU_SzVcCbadSFWtNtsbHfYfWtBU7r0,7166
387
+ keras_hub/src/models/roformer_v2/roformer_v2_attention.py,sha256=C8wwCw0FpmOWQq8H1IeTn25-6_EzDRD-8UXAN77-5gk,7060
350
388
  keras_hub/src/models/roformer_v2/roformer_v2_backbone.py,sha256=a5gG47Gvo-dFoToMe6Q3oOYJz8HypPZWIhY-cGwS9_c,7187
351
389
  keras_hub/src/models/roformer_v2/roformer_v2_encoder.py,sha256=o_M3dDtebBtXRAxwhiRmdWA59tu1_MNKLINf4GQYfeA,4218
352
390
  keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py,sha256=4uQ6DKFDdBOu0bHaL45bqtpL-CMZw59inXirD9zWFlI,5950
@@ -382,14 +420,14 @@ keras_hub/src/models/siglip/siglip_text_encoder.py,sha256=xOVvzyQHLX9ne30y4ussar
382
420
  keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6lp3_0_JdnfroZ90G18,2579
383
421
  keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
384
422
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
385
- keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
386
- keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=jkO7uP3fNrbuFLiOJV-7_S8hz-DqkasZNkoJIdsg58Q,40859
387
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=M1e8G83CzwOgFvtDVYbm8HKSODa9keN2Jan18EWpWU0,24370
388
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
389
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=t4uw920Jn1k80air3WRGimKf71aMVu6q73oWFH348vk,6384
423
+ keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=1K_B3d3fNn50eY84OgxVHyIHHZhmlJY03b71pMSmE9s,3246
424
+ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=emyDmtpJiFU_9crSDBC5CaXoZnM1Eti8uAQtwv2v8B0,42794
425
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=BEtMwYaxrJxHpNT_E1wK-SPCBCp4hgbnX-UjgqGrQ7g,24362
426
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=uNsNSQ4EFceGfIMzgjYWFMuL0XdfM58rubTcrCVPrts,5532
427
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=2UIRz11DRbHJ7IVbkjpBjtbkZGC3-eYhMtVUWTmWMH8,6437
390
428
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=x7Ez4L955MJE4ABtBy-63YpU9XpR0Ro8QWPzYYJs1yE,2167
391
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=Yt-UIatVKANjjKFCFEj1rIHhOrt8hqefKKQJIAWcTLc,4567
392
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=sQvrhuWvC4hM99cxFiI5532QLeiW4YXpH0zAvnnCXQA,2801
429
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=-xmmCaoPc1ixJvyIBwVTW1yKBA-rP4nWReovcs7OLKE,4620
430
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=crUT82moaPx8RVKrLtUHx1zry602f8DWItek9aFkojg,2903
393
431
  keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
394
432
  keras_hub/src/models/t5/__init__.py,sha256=OWyoUeDY3v4DnO8Ry02DWV1bNSVGcC89PF9oCftyi1s,233
395
433
  keras_hub/src/models/t5/t5_backbone.py,sha256=MUmabugPx5_BkAHkuJXr2-8z_yZfKD19SO0KJtlcHhA,10331
@@ -409,12 +447,12 @@ keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py,sha256=M7hBbDPws5Z
409
447
  keras_hub/src/models/vgg/vgg_image_converter.py,sha256=FKVrSNNBxIkiKvApzf4TZxidBb1z917Xs9nooHCcRLM,324
410
448
  keras_hub/src/models/vgg/vgg_presets.py,sha256=UL7a8hdZ22duMADXwVypGnc20ME-ywI4QjtXu15usEI,1491
411
449
  keras_hub/src/models/vit/__init__.py,sha256=GH7x3VjEXZLm-4F-c9-55QZE0lP2OLVICH0Hr5YCp9A,239
412
- keras_hub/src/models/vit/vit_backbone.py,sha256=kGmRZO4u-1q4PBcbhJbiWVIEVYAcp2H4SPJgQimrJd0,5909
450
+ keras_hub/src/models/vit/vit_backbone.py,sha256=VnypiTAf0ORaBTVzdDOXsnKnQxKbrIlX9z9qOumZH50,6699
413
451
  keras_hub/src/models/vit/vit_image_classifier.py,sha256=lMVxiD1_6drx7XQ7P7YzlqnFP7kT1zlMe84f-T3SDQI,6332
414
452
  keras_hub/src/models/vit/vit_image_classifier_preprocessor.py,sha256=wu6YcBlXMWB9sKCPvmNdGBZKTLQt_HyHWS6P9nyDwsk,504
415
- keras_hub/src/models/vit/vit_image_converter.py,sha256=IQYgLOhnsXudZ_S344lzGvO6pbMOhXK6rW12Q3kHykI,2824
416
- keras_hub/src/models/vit/vit_layers.py,sha256=_cZ1FMYEXcnjwvNPVJXug3rEbatv89OzRTMuzx62dnA,13312
417
- keras_hub/src/models/vit/vit_presets.py,sha256=zZhxUleOom1ie3gn0Mi-_xhhdFEEsnqSQyKADV2L38k,4479
453
+ keras_hub/src/models/vit/vit_image_converter.py,sha256=JhdXcbfKu9pKSJZiaKk7FKf_CjSXztSa2rsBFQvlgAo,324
454
+ keras_hub/src/models/vit/vit_layers.py,sha256=c0ApxF7cMqeEEa0LcWrBhc6zIolwOFVb2HjzLV-q98k,13940
455
+ keras_hub/src/models/vit/vit_presets.py,sha256=mlLBJxxonru14fBiMnMF4ud-JgbJHclpVV3FsoIubrk,4479
418
456
  keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
419
457
  keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=DOZ5J7c1t5PAZ6y0pMmBoQTMOUup7UoUrYVfCs69ltY,7697
420
458
  keras_hub/src/models/vit_det/vit_layers.py,sha256=mnwu56chMc6zxmfp_hsLdR7TXYy1_YsWy1KwGX9M5Ic,19840
@@ -467,11 +505,11 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0Z
467
505
  keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
468
506
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
469
507
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
470
- keras_hub/src/utils/keras_utils.py,sha256=2qrh4F-rqceVFSx0-cbsFBfWae5hBXFb_sEtPPcImf4,4628
508
+ keras_hub/src/utils/keras_utils.py,sha256=IWsbg-p-XVLuOkba8PAYNf9zDo4G2RkINLr58p12MhA,5291
471
509
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
472
- keras_hub/src/utils/preset_utils.py,sha256=fx0gNqOTdvW-ZdP0Y3ZaCGE7frYBhwi3lG_GO0swG4w,34602
510
+ keras_hub/src/utils/preset_utils.py,sha256=dEOAGjkjnu69nhWuS1wnHVyMmkYnlzUQAUPzbLexLhY,35142
473
511
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
474
- keras_hub/src/utils/tensor_utils.py,sha256=vRbvvnFwA6FutJ7InC1w60HDTVNi87CniDGOLQ3hKPA,15855
512
+ keras_hub/src/utils/tensor_utils.py,sha256=WrohV6-hvxtLE6rRRhtN4hy8GkHikV-NrRnVEYUwJQo,16133
475
513
  keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
476
514
  keras_hub/src/utils/coco/coco_utils.py,sha256=x_QnUUvZ92zoFzMJugiInHORc4NrMdWVBkpp8BAYF6s,2586
477
515
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -488,21 +526,27 @@ keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
488
526
  keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
489
527
  keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
490
528
  keras_hub/src/utils/transformers/convert_bert.py,sha256=4gQqXCJzC9QWdLPDUAq741K8t_kjPIET050YjUnLeDA,5977
529
+ keras_hub/src/utils/transformers/convert_deit.py,sha256=ubcqYzMlhWTCE2S_TsXICCMmqjN9RsQPaw_70vArnjo,5306
530
+ keras_hub/src/utils/transformers/convert_dinov2.py,sha256=FvmB3ggEgowVFPSO5WOzC2hKkG2JvjSb-DeVffu78iU,6908
491
531
  keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGiDPiXa5XdOId_DbcnZO9lbwyZ8,6498
532
+ keras_hub/src/utils/transformers/convert_esm.py,sha256=rOgGnNY37ZbYnoVC3L-Y-yGGAxTRmYtQV0nJoandH2Y,6214
492
533
  keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
493
534
  keras_hub/src/utils/transformers/convert_gpt2.py,sha256=HCeHN_-GiQJRxLCM9OCJJ1watPVpIBF8ujS8pGbBOWc,5703
494
- keras_hub/src/utils/transformers/convert_llama3.py,sha256=c5phNl-QayQ_BS0s-lenbu6oHxqfwDShKJoh9DluxUU,6146
535
+ keras_hub/src/utils/transformers/convert_llama3.py,sha256=DjVUyQbl4AV-h8VqSIzmxiCd7cYOKIJTYoLM__NtyY0,6413
495
536
  keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS7eANJUXIsNy1RxWXy20Gqw,4760
496
537
  keras_hub/src/utils/transformers/convert_mixtral.py,sha256=PxeCY8Xe7U_caICugwOCEjuSZ51ZUtmef6rUxh-Wt54,5508
497
538
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
498
539
  keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_ev4yf02R1xFVliMvTQqg,5886
540
+ keras_hub/src/utils/transformers/convert_qwen3.py,sha256=LIormvCMWPq6X9Wo2eNbADjtFZ0nI7tFGZFBxmo4GKw,5700
499
541
  keras_hub/src/utils/transformers/convert_qwen_moe.py,sha256=a7R28aln-PdAcNuKAXdrtzvslho2Co6GypChxLMKPpc,10618
500
542
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
501
- keras_hub/src/utils/transformers/preset_loader.py,sha256=1nfS5xVsl-JROGXJXltTqV1fQdcUlZbGGcbf-n79pXM,4225
543
+ keras_hub/src/utils/transformers/preset_loader.py,sha256=YZVpeNhFITHdauY3MWESrZLNUIJt9ilHJ1jUhvITNT8,4781
502
544
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
503
- keras_hub/tokenizers/__init__.py,sha256=uMjjm0mzUkRb0e4Ac_JK8aJ9cKGUi5UqmzWoWAFJprE,4164
545
+ keras_hub/src/utils/transformers/export/gemma.py,sha256=NpTSgRUSWp3WXQil1CjYUVFVyyVhpO-4-3q2en2Wxwg,3264
546
+ keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=oTdRS8SalPCbi_cZPC55aZUBc-1_pdviUIp0XysA4cI,3234
547
+ keras_hub/tokenizers/__init__.py,sha256=gQIESc4erRLuwxHyxtYy_Z0ePQXw_uhXAa4GVHMffYk,4244
504
548
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
505
- keras_hub-0.21.1.dev0.dist-info/METADATA,sha256=hPQjOgZ3VecWAQ8VAKLvr8CyBwQA4zW53rlD-xJEGjM,7374
506
- keras_hub-0.21.1.dev0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
507
- keras_hub-0.21.1.dev0.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
508
- keras_hub-0.21.1.dev0.dist-info/RECORD,,
549
+ keras_hub-0.22.0.dev0.dist-info/METADATA,sha256=2rdYtZelBHCDm7AIZA2CkPMxiHO4H-WyLNH2uEtibjs,7376
550
+ keras_hub-0.22.0.dev0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
551
+ keras_hub-0.22.0.dev0.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
552
+ keras_hub-0.22.0.dev0.dist-info/RECORD,,