keras-hub 0.21.1.dev0__py3-none-any.whl → 0.22.0.dev0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (94) hide show
  1. keras_hub/layers/__init__.py +9 -0
  2. keras_hub/models/__init__.py +47 -0
  3. keras_hub/src/layers/modeling/transformer_encoder.py +6 -3
  4. keras_hub/src/layers/preprocessing/multi_segment_packer.py +17 -3
  5. keras_hub/src/layers/preprocessing/start_end_packer.py +24 -6
  6. keras_hub/src/models/backbone.py +13 -10
  7. keras_hub/src/models/clip/clip_backbone.py +3 -102
  8. keras_hub/src/models/clip/clip_layers.py +295 -0
  9. keras_hub/src/models/clip/clip_preprocessor.py +57 -48
  10. keras_hub/src/models/clip/clip_text_encoder.py +2 -2
  11. keras_hub/src/models/clip/clip_vision_encoder.py +3 -3
  12. keras_hub/src/models/deit/__init__.py +5 -0
  13. keras_hub/src/models/deit/deit_backbone.py +154 -0
  14. keras_hub/src/models/deit/deit_image_classifier.py +171 -0
  15. keras_hub/src/models/deit/deit_image_classifier_preprocessor.py +12 -0
  16. keras_hub/src/models/deit/deit_image_converter.py +8 -0
  17. keras_hub/src/models/deit/deit_layers.py +519 -0
  18. keras_hub/src/models/deit/deit_presets.py +49 -0
  19. keras_hub/src/models/dinov2/__init__.py +5 -0
  20. keras_hub/src/models/dinov2/dinov2_backbone.py +228 -0
  21. keras_hub/src/models/dinov2/dinov2_image_converter.py +8 -0
  22. keras_hub/src/models/dinov2/dinov2_layers.py +886 -0
  23. keras_hub/src/models/dinov2/dinov2_presets.py +89 -0
  24. keras_hub/src/models/esm/__init__.py +5 -0
  25. keras_hub/src/models/esm/esm_attention.py +95 -0
  26. keras_hub/src/models/esm/esm_backbone.py +229 -0
  27. keras_hub/src/models/esm/esm_classifier.py +184 -0
  28. keras_hub/src/models/esm/esm_classifier_preprocessor.py +135 -0
  29. keras_hub/src/models/esm/esm_encoder.py +134 -0
  30. keras_hub/src/models/esm/esm_masked_plm.py +117 -0
  31. keras_hub/src/models/esm/esm_masked_plm_preprocessor.py +143 -0
  32. keras_hub/src/models/esm/esm_presets.py +53 -0
  33. keras_hub/src/models/esm/esm_tokenizer.py +82 -0
  34. keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +6 -2
  35. keras_hub/src/models/gemma/gemma_attention.py +1 -1
  36. keras_hub/src/models/gemma3/gemma3_backbone.py +2 -2
  37. keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +1 -1
  38. keras_hub/src/models/hgnetv2/__init__.py +5 -0
  39. keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +193 -0
  40. keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +148 -0
  41. keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py +216 -0
  42. keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py +14 -0
  43. keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py +8 -0
  44. keras_hub/src/models/hgnetv2/hgnetv2_layers.py +918 -0
  45. keras_hub/src/models/hgnetv2/hgnetv2_presets.py +58 -0
  46. keras_hub/src/models/llama3/llama3_presets.py +3 -3
  47. keras_hub/src/models/mistral/mistral_presets.py +17 -1
  48. keras_hub/src/models/mixtral/mixtral_presets.py +2 -2
  49. keras_hub/src/models/mobilenet/mobilenet_presets.py +4 -4
  50. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +2 -2
  51. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +2 -2
  52. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +17 -17
  53. keras_hub/src/models/qwen3/__init__.py +5 -0
  54. keras_hub/src/models/qwen3/qwen3_attention.py +369 -0
  55. keras_hub/src/models/qwen3/qwen3_backbone.py +191 -0
  56. keras_hub/src/models/qwen3/qwen3_causal_lm.py +390 -0
  57. keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +10 -0
  58. keras_hub/src/models/qwen3/qwen3_decoder.py +309 -0
  59. keras_hub/src/models/qwen3/qwen3_layernorm.py +38 -0
  60. keras_hub/src/models/qwen3/qwen3_presets.py +73 -0
  61. keras_hub/src/models/qwen3/qwen3_tokenizer.py +48 -0
  62. keras_hub/src/models/qwen_moe/qwen_moe_attention.py +1 -0
  63. keras_hub/src/models/qwen_moe/qwen_moe_presets.py +2 -2
  64. keras_hub/src/models/roformer_v2/roformer_v2_attention.py +0 -2
  65. keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +16 -7
  66. keras_hub/src/models/stable_diffusion_3/mmdit.py +61 -4
  67. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +31 -32
  68. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +1 -0
  69. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +1 -0
  70. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +1 -0
  71. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +6 -2
  72. keras_hub/src/models/vit/vit_backbone.py +31 -11
  73. keras_hub/src/models/vit/vit_image_converter.py +0 -70
  74. keras_hub/src/models/vit/vit_layers.py +33 -18
  75. keras_hub/src/models/vit/vit_presets.py +11 -11
  76. keras_hub/src/utils/keras_utils.py +17 -0
  77. keras_hub/src/utils/preset_utils.py +19 -4
  78. keras_hub/src/utils/tensor_utils.py +14 -0
  79. keras_hub/src/utils/transformers/convert_deit.py +155 -0
  80. keras_hub/src/utils/transformers/convert_dinov2.py +180 -0
  81. keras_hub/src/utils/transformers/convert_esm.py +159 -0
  82. keras_hub/src/utils/transformers/convert_llama3.py +6 -0
  83. keras_hub/src/utils/transformers/convert_qwen3.py +145 -0
  84. keras_hub/src/utils/transformers/export/gemma.py +89 -0
  85. keras_hub/src/utils/transformers/export/hf_exporter.py +98 -0
  86. keras_hub/src/utils/transformers/preset_loader.py +14 -2
  87. keras_hub/src/version.py +1 -1
  88. keras_hub/tokenizers/__init__.py +1 -0
  89. {keras_hub-0.21.1.dev0.dist-info → keras_hub-0.22.0.dev0.dist-info}/METADATA +4 -4
  90. {keras_hub-0.21.1.dev0.dist-info → keras_hub-0.22.0.dev0.dist-info}/RECORD +92 -48
  91. keras_hub/src/models/clip/clip_encoder_block.py +0 -111
  92. keras_hub/src/models/clip/clip_vision_embedding.py +0 -101
  93. {keras_hub-0.21.1.dev0.dist-info → keras_hub-0.22.0.dev0.dist-info}/WHEEL +0 -0
  94. {keras_hub-0.21.1.dev0.dist-info → keras_hub-0.22.0.dev0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,58 @@
1
+ # Metadata for loading pretrained model weights.
2
+ backbone_presets = {
3
+ "hgnetv2_b4_ssld_stage2_ft_in1k": {
4
+ "metadata": {
5
+ "description": (
6
+ "HGNetV2 B4 model with 2-stage SSLD training, fine-tuned on "
7
+ "ImageNet-1K."
8
+ ),
9
+ "params": 13599072,
10
+ "path": "hgnetv2",
11
+ },
12
+ "kaggle_handle": "kaggle://keras/hgnetv2/keras/hgnetv2_b4_ssld_stage2_ft_in1k/1",
13
+ },
14
+ "hgnetv2_b5_ssld_stage1_in22k_in1k": {
15
+ "metadata": {
16
+ "description": (
17
+ "HGNetV2 B5 model with 1-stage SSLD training, pre-trained on "
18
+ "ImageNet-22K and fine-tuned on ImageNet-1K."
19
+ ),
20
+ "params": 33419680,
21
+ "path": "hgnetv2",
22
+ },
23
+ "kaggle_handle": "kaggle://keras/hgnetv2/keras/hgnetv2_b5_ssld_stage1_in22k_in1k/1",
24
+ },
25
+ "hgnetv2_b5_ssld_stage2_ft_in1k": {
26
+ "metadata": {
27
+ "description": (
28
+ "HGNetV2 B5 model with 2-stage SSLD training, fine-tuned on "
29
+ "ImageNet-1K."
30
+ ),
31
+ "params": 33419680,
32
+ "path": "hgnetv2",
33
+ },
34
+ "kaggle_handle": "kaggle://keras/hgnetv2/keras/hgnetv2_b5_ssld_stage2_ft_in1k/1",
35
+ },
36
+ "hgnetv2_b6_ssld_stage1_in22k_in1k": {
37
+ "metadata": {
38
+ "description": (
39
+ "HGNetV2 B6 model with 1-stage SSLD training, pre-trained on "
40
+ "ImageNet-22K and fine-tuned on ImageNet-1K."
41
+ ),
42
+ "params": 69179888,
43
+ "path": "hgnetv2",
44
+ },
45
+ "kaggle_handle": "kaggle://keras/hgnetv2/keras/hgnetv2_b6_ssld_stage1_in22k_in1k/1",
46
+ },
47
+ "hgnetv2_b6_ssld_stage2_ft_in1k": {
48
+ "metadata": {
49
+ "description": (
50
+ "HGNetV2 B6 model with 2-stage SSLD training, fine-tuned on "
51
+ "ImageNet-1K."
52
+ ),
53
+ "params": 69179888,
54
+ "path": "hgnetv2",
55
+ },
56
+ "kaggle_handle": "kaggle://keras/hgnetv2/keras/hgnetv2_b6_ssld_stage2_ft_in1k/1",
57
+ },
58
+ }
@@ -53,7 +53,7 @@ backbone_presets = {
53
53
  "params": 8030261248,
54
54
  "path": "llama3",
55
55
  },
56
- "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.1_8b/1"),
56
+ "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.1_8b/2"),
57
57
  },
58
58
  "llama3.1_instruct_8b": {
59
59
  "metadata": {
@@ -63,7 +63,7 @@ backbone_presets = {
63
63
  "params": 8030261248,
64
64
  "path": "llama3",
65
65
  },
66
- "kaggle_handle": ("kaggle://keras/llama3/keras/lama3.1_instruct_8b/1"),
66
+ "kaggle_handle": ("kaggle://keras/llama3/keras/lama3.1_instruct_8b/2"),
67
67
  },
68
68
  "llama3.1_guard_8b": {
69
69
  "metadata": {
@@ -74,7 +74,7 @@ backbone_presets = {
74
74
  "params": 8030261248,
75
75
  "path": "llama3",
76
76
  },
77
- "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.1_guard_8b/1"),
77
+ "kaggle_handle": ("kaggle://keras/llama3/keras/llama3.1_guard_8b/2"),
78
78
  },
79
79
  "llama3.2_1b": {
80
80
  "metadata": {
@@ -10,6 +10,14 @@ backbone_presets = {
10
10
  },
11
11
  "kaggle_handle": "kaggle://keras/mistral/keras/mistral_7b_en/8",
12
12
  },
13
+ "mistral_0.3_7b_en": {
14
+ "metadata": {
15
+ "description": "Mistral 7B base version 0.3 model",
16
+ "params": 7248023552,
17
+ "path": "mistral",
18
+ },
19
+ "kaggle_handle": "kaggle://keras/mistral/keras/mistral_0.3_7b_en/1",
20
+ },
13
21
  "mistral_instruct_7b_en": {
14
22
  "metadata": {
15
23
  "description": "Mistral 7B instruct model",
@@ -20,10 +28,18 @@ backbone_presets = {
20
28
  },
21
29
  "mistral_0.2_instruct_7b_en": {
22
30
  "metadata": {
23
- "description": "Mistral 7B instruct Version 0.2 model",
31
+ "description": "Mistral 7B instruct version 0.2 model",
24
32
  "params": 7241732096,
25
33
  "path": "mistral",
26
34
  },
27
35
  "kaggle_handle": "kaggle://keras/mistral/keras/mistral_0.2_instruct_7b_en/3",
28
36
  },
37
+ "mistral_0.3_instruct_7b_en": {
38
+ "metadata": {
39
+ "description": "Mistral 7B instruct version 0.3 model",
40
+ "params": 7248023552,
41
+ "path": "mistral",
42
+ },
43
+ "kaggle_handle": "kaggle://keras/mistral/keras/mistral_0.3_instruct_7b_en/1",
44
+ },
29
45
  }
@@ -10,7 +10,7 @@ backbone_presets = {
10
10
  "params": 46702792704,
11
11
  "path": "mixtral",
12
12
  },
13
- "kaggle_handle": "kaggle://keras/mixtral/keras/mixtral_8_7b_en/3",
13
+ "kaggle_handle": "kaggle://keras/mixtral/keras/mixtral_8_7b_en/4",
14
14
  },
15
15
  "mixtral_8_instruct_7b_en": {
16
16
  "metadata": {
@@ -21,6 +21,6 @@ backbone_presets = {
21
21
  "params": 46702792704,
22
22
  "path": "mixtral",
23
23
  },
24
- "kaggle_handle": "kaggle://keras/mixtral/keras/mixtral_8_instruct_7b_en/3",
24
+ "kaggle_handle": "kaggle://keras/mixtral/keras/mixtral_8_instruct_7b_en/4",
25
25
  },
26
26
  }
@@ -8,7 +8,7 @@ backbone_presets = {
8
8
  "dataset at a 224x224 resolution. Has half channel multiplier."
9
9
  ),
10
10
  "params": 278784,
11
- "path": "mobilenetv3",
11
+ "path": "mobilenet",
12
12
  },
13
13
  "kaggle_handle": "kaggle://keras/mobilenetv3/keras/mobilenet_v3_small_050_imagenet/1",
14
14
  },
@@ -20,7 +20,7 @@ backbone_presets = {
20
20
  "multiplier."
21
21
  ),
22
22
  "params": 939120,
23
- "path": "mobilenetv3",
23
+ "path": "mobilenet",
24
24
  },
25
25
  "kaggle_handle": "kaggle://keras/mobilenetv3/keras/mobilenet_v3_small_100_imagenet/1",
26
26
  },
@@ -32,7 +32,7 @@ backbone_presets = {
32
32
  "multiplier."
33
33
  ),
34
34
  "params": 2996352,
35
- "path": "mobilenetv3",
35
+ "path": "mobilenet",
36
36
  },
37
37
  "kaggle_handle": "kaggle://keras/mobilenetv3/keras/mobilenet_v3_large_100_imagenet/1",
38
38
  },
@@ -44,7 +44,7 @@ backbone_presets = {
44
44
  "multiplier."
45
45
  ),
46
46
  "params": 2996352,
47
- "path": "mobilenetv3",
47
+ "path": "mobilenet",
48
48
  },
49
49
  "kaggle_handle": "kaggle://keras/mobilenetv3/keras/mobilenet_v3_large_100_imagenet_21k/1",
50
50
  },
@@ -274,8 +274,8 @@ class PaliGemmaBackbone(Backbone):
274
274
  # Keep the image_sequence_length as a backbone property for easy access.
275
275
  self.image_sequence_length = self.vit_encoder.image_sequence_length
276
276
 
277
- def get_lora_target_names(self):
278
- target_names = super().get_lora_target_names()
277
+ def default_lora_layer_names(self):
278
+ target_names = super().default_lora_layer_names()
279
279
 
280
280
  # Add these for `PaliGemmaVITAttention`.
281
281
  target_names += ["query_proj", "value_proj"]
@@ -48,7 +48,7 @@ class PaliGemmaCausalLM(CausalLM):
48
48
  pali_gemma_lm.generate(
49
49
  {
50
50
  "images": image,
51
- "text": ["answer en where is the cow standing?\\n"]
51
+ "prompts": ["answer en where is the cow standing?\\n"]
52
52
  }
53
53
  )
54
54
 
@@ -56,7 +56,7 @@ class PaliGemmaCausalLM(CausalLM):
56
56
  pali_gemma_lm.generate(
57
57
  {
58
58
  "images": [image, image],
59
- "text": ["answer en where is the cow standing?\\n", "caption en\\n"]
59
+ "prompts": ["answer en where is the cow standing?\\n", "caption en\\n"]
60
60
  }
61
61
  )
62
62
  ```
@@ -63,7 +63,7 @@ backbone_presets = {
63
63
  ),
64
64
  "params": 3032979696,
65
65
  "official_name": "PaliGemma2",
66
- "path": "pali_gemma2",
66
+ "path": "pali_gemma",
67
67
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
68
68
  },
69
69
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma_2_ft_docci_3b_448/2",
@@ -78,7 +78,7 @@ backbone_presets = {
78
78
  ),
79
79
  "params": 9663294192,
80
80
  "official_name": "PaliGemma2",
81
- "path": "pali_gemma2",
81
+ "path": "pali_gemma",
82
82
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
83
83
  },
84
84
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_ft_docci_10b_448/3",
@@ -93,7 +93,7 @@ backbone_presets = {
93
93
  ),
94
94
  "params": 3032094960,
95
95
  "official_name": "PaliGemma2",
96
- "path": "pali_gemma2",
96
+ "path": "pali_gemma",
97
97
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
98
98
  },
99
99
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_3b_224/2",
@@ -108,7 +108,7 @@ backbone_presets = {
108
108
  ),
109
109
  "params": 3032979696,
110
110
  "official_name": "PaliGemma2",
111
- "path": "pali_gemma2",
111
+ "path": "pali_gemma",
112
112
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
113
113
  },
114
114
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_3b_448/2",
@@ -123,7 +123,7 @@ backbone_presets = {
123
123
  ),
124
124
  "params": 9662409456,
125
125
  "official_name": "PaliGemma2",
126
- "path": "pali_gemma2",
126
+ "path": "pali_gemma",
127
127
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
128
128
  },
129
129
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_224/3",
@@ -138,7 +138,7 @@ backbone_presets = {
138
138
  ),
139
139
  "params": 9663294192,
140
140
  "official_name": "PaliGemma2",
141
- "path": "pali_gemma2",
141
+ "path": "pali_gemma",
142
142
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
143
143
  },
144
144
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_mix_10b_448/3",
@@ -153,7 +153,7 @@ backbone_presets = {
153
153
  ),
154
154
  "params": 27650192112,
155
155
  "official_name": "PaliGemma2",
156
- "path": "pali_gemma2",
156
+ "path": "pali_gemma",
157
157
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
158
158
  },
159
159
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_224/3",
@@ -168,7 +168,7 @@ backbone_presets = {
168
168
  ),
169
169
  "params": 27650192112,
170
170
  "official_name": "PaliGemma2",
171
- "path": "pali_gemma2",
171
+ "path": "pali_gemma",
172
172
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
173
173
  },
174
174
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_28b_mix_448/3",
@@ -183,7 +183,7 @@ backbone_presets = {
183
183
  ),
184
184
  "params": 3032094960,
185
185
  "official_name": "PaliGemma2",
186
- "path": "pali_gemma2",
186
+ "path": "pali_gemma",
187
187
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
188
188
  },
189
189
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_3b_224/2",
@@ -198,7 +198,7 @@ backbone_presets = {
198
198
  ),
199
199
  "params": 3032979696,
200
200
  "official_name": "PaliGemma2",
201
- "path": "pali_gemma2",
201
+ "path": "pali_gemma",
202
202
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
203
203
  },
204
204
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_3b_448/2",
@@ -213,7 +213,7 @@ backbone_presets = {
213
213
  ),
214
214
  "params": 3036518640,
215
215
  "official_name": "PaliGemma2",
216
- "path": "pali_gemma2",
216
+ "path": "pali_gemma",
217
217
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
218
218
  },
219
219
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_3b_896/2",
@@ -228,7 +228,7 @@ backbone_presets = {
228
228
  ),
229
229
  "params": 9662409456,
230
230
  "official_name": "PaliGemma2",
231
- "path": "pali_gemma2",
231
+ "path": "pali_gemma",
232
232
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
233
233
  },
234
234
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_224/3",
@@ -243,7 +243,7 @@ backbone_presets = {
243
243
  ),
244
244
  "params": 9663294192,
245
245
  "official_name": "PaliGemma2",
246
- "path": "pali_gemma2",
246
+ "path": "pali_gemma",
247
247
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
248
248
  },
249
249
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_448/3",
@@ -258,7 +258,7 @@ backbone_presets = {
258
258
  ),
259
259
  "params": 9666833136,
260
260
  "official_name": "PaliGemma2",
261
- "path": "pali_gemma2",
261
+ "path": "pali_gemma",
262
262
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
263
263
  },
264
264
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_10b_896/3",
@@ -273,7 +273,7 @@ backbone_presets = {
273
273
  ),
274
274
  "params": 27650192112,
275
275
  "official_name": "PaliGemma2",
276
- "path": "pali_gemma2",
276
+ "path": "pali_gemma",
277
277
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
278
278
  },
279
279
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_224/4",
@@ -288,7 +288,7 @@ backbone_presets = {
288
288
  ),
289
289
  "params": 27650192112,
290
290
  "official_name": "PaliGemma2",
291
- "path": "pali_gemma2",
291
+ "path": "pali_gemma",
292
292
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
293
293
  },
294
294
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_448/3",
@@ -303,7 +303,7 @@ backbone_presets = {
303
303
  ),
304
304
  "params": 27650192112,
305
305
  "official_name": "PaliGemma2",
306
- "path": "pali_gemma2",
306
+ "path": "pali_gemma",
307
307
  "model_card": "https://www.kaggle.com/models/google/paligemma-2",
308
308
  },
309
309
  "kaggle_handle": "kaggle://keras/paligemma2/keras/pali_gemma2_pt_28b_896/3",
@@ -0,0 +1,5 @@
1
+ from keras_hub.src.models.qwen3.qwen3_backbone import Qwen3Backbone
2
+ from keras_hub.src.models.qwen3.qwen3_presets import backbone_presets
3
+ from keras_hub.src.utils.preset_utils import register_presets
4
+
5
+ register_presets(backbone_presets, Qwen3Backbone)