keras-hub-nightly 0.21.0.dev202505280410__py3-none-any.whl → 0.22.0.dev202505300409__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/models/__init__.py +9 -0
- keras_hub/src/models/mixtral/mixtral_presets.py +4 -4
- keras_hub/src/models/qwen/qwen_presets.py +6 -6
- keras_hub/src/models/qwen3/qwen3_attention.py +369 -0
- keras_hub/src/models/qwen3/qwen3_backbone.py +191 -0
- keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py +10 -0
- keras_hub/src/models/qwen3/qwen3_decoder.py +309 -0
- keras_hub/src/models/qwen3/qwen3_layernorm.py +38 -0
- keras_hub/src/models/qwen3/qwen3_tokenizer.py +48 -0
- keras_hub/src/models/qwen_moe/qwen_moe_presets.py +2 -2
- keras_hub/src/models/vit/vit_backbone.py +31 -11
- keras_hub/src/models/vit/vit_image_converter.py +0 -70
- keras_hub/src/models/vit/vit_layers.py +33 -18
- keras_hub/src/models/vit/vit_presets.py +11 -11
- keras_hub/src/utils/transformers/convert_qwen3.py +145 -0
- keras_hub/src/utils/transformers/preset_loader.py +3 -0
- keras_hub/src/version.py +1 -1
- {keras_hub_nightly-0.21.0.dev202505280410.dist-info → keras_hub_nightly-0.22.0.dev202505300409.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.21.0.dev202505280410.dist-info → keras_hub_nightly-0.22.0.dev202505300409.dist-info}/RECORD +21 -14
- {keras_hub_nightly-0.21.0.dev202505280410.dist-info → keras_hub_nightly-0.22.0.dev202505300409.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.21.0.dev202505280410.dist-info → keras_hub_nightly-0.22.0.dev202505300409.dist-info}/top_level.txt +0 -0
@@ -11,7 +11,7 @@ backbone_presets = {
|
|
11
11
|
"params": 85798656,
|
12
12
|
"path": "vit",
|
13
13
|
},
|
14
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet/
|
14
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet/3",
|
15
15
|
},
|
16
16
|
"vit_base_patch16_384_imagenet": {
|
17
17
|
"metadata": {
|
@@ -22,7 +22,7 @@ backbone_presets = {
|
|
22
22
|
"params": 86090496,
|
23
23
|
"path": "vit",
|
24
24
|
},
|
25
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_384_imagenet/
|
25
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_384_imagenet/3",
|
26
26
|
},
|
27
27
|
"vit_large_patch16_224_imagenet": {
|
28
28
|
"metadata": {
|
@@ -33,7 +33,7 @@ backbone_presets = {
|
|
33
33
|
"params": 303301632,
|
34
34
|
"path": "vit",
|
35
35
|
},
|
36
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet/
|
36
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet/3",
|
37
37
|
},
|
38
38
|
"vit_large_patch16_384_imagenet": {
|
39
39
|
"metadata": {
|
@@ -44,7 +44,7 @@ backbone_presets = {
|
|
44
44
|
"params": 303690752,
|
45
45
|
"path": "vit",
|
46
46
|
},
|
47
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_384_imagenet/
|
47
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_384_imagenet/3",
|
48
48
|
},
|
49
49
|
"vit_base_patch32_384_imagenet": {
|
50
50
|
"metadata": {
|
@@ -55,7 +55,7 @@ backbone_presets = {
|
|
55
55
|
"params": 87528192,
|
56
56
|
"path": "vit",
|
57
57
|
},
|
58
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_384_imagenet/
|
58
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_384_imagenet/2",
|
59
59
|
},
|
60
60
|
"vit_large_patch32_384_imagenet": {
|
61
61
|
"metadata": {
|
@@ -66,7 +66,7 @@ backbone_presets = {
|
|
66
66
|
"params": 305607680,
|
67
67
|
"path": "vit",
|
68
68
|
},
|
69
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_384_imagenet/
|
69
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_384_imagenet/2",
|
70
70
|
},
|
71
71
|
"vit_base_patch16_224_imagenet21k": {
|
72
72
|
"metadata": {
|
@@ -77,7 +77,7 @@ backbone_presets = {
|
|
77
77
|
"params": 85798656,
|
78
78
|
"path": "vit",
|
79
79
|
},
|
80
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet21k/
|
80
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet21k/2",
|
81
81
|
},
|
82
82
|
"vit_base_patch32_224_imagenet21k": {
|
83
83
|
"metadata": {
|
@@ -88,7 +88,7 @@ backbone_presets = {
|
|
88
88
|
"params": 87455232,
|
89
89
|
"path": "vit",
|
90
90
|
},
|
91
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_224_imagenet21k/
|
91
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_224_imagenet21k/2",
|
92
92
|
},
|
93
93
|
"vit_huge_patch14_224_imagenet21k": {
|
94
94
|
"metadata": {
|
@@ -99,7 +99,7 @@ backbone_presets = {
|
|
99
99
|
"params": 630764800,
|
100
100
|
"path": "vit",
|
101
101
|
},
|
102
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_huge_patch14_224_imagenet21k/
|
102
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_huge_patch14_224_imagenet21k/2",
|
103
103
|
},
|
104
104
|
"vit_large_patch16_224_imagenet21k": {
|
105
105
|
"metadata": {
|
@@ -110,7 +110,7 @@ backbone_presets = {
|
|
110
110
|
"params": 303301632,
|
111
111
|
"path": "vit",
|
112
112
|
},
|
113
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet21k/
|
113
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet21k/2",
|
114
114
|
},
|
115
115
|
"vit_large_patch32_224_imagenet21k": {
|
116
116
|
"metadata": {
|
@@ -121,6 +121,6 @@ backbone_presets = {
|
|
121
121
|
"params": 305510400,
|
122
122
|
"path": "vit",
|
123
123
|
},
|
124
|
-
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_224_imagenet21k/
|
124
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_224_imagenet21k/2",
|
125
125
|
},
|
126
126
|
}
|
@@ -0,0 +1,145 @@
|
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
from keras_hub.src.models.qwen3.qwen3_backbone import Qwen3Backbone
|
4
|
+
from keras_hub.src.utils.preset_utils import load_json
|
5
|
+
|
6
|
+
backbone_cls = Qwen3Backbone
|
7
|
+
|
8
|
+
|
9
|
+
def convert_backbone_config(transformers_config):
|
10
|
+
return {
|
11
|
+
"vocabulary_size": transformers_config["vocab_size"],
|
12
|
+
"head_dim": transformers_config["head_dim"],
|
13
|
+
"hidden_dim": transformers_config["hidden_size"],
|
14
|
+
"num_layers": transformers_config["num_hidden_layers"],
|
15
|
+
"num_query_heads": transformers_config["num_attention_heads"],
|
16
|
+
"num_key_value_heads": transformers_config["num_key_value_heads"],
|
17
|
+
"intermediate_dim": transformers_config["intermediate_size"],
|
18
|
+
"layer_norm_epsilon": transformers_config["rms_norm_eps"],
|
19
|
+
"rope_max_wavelength": transformers_config["rope_theta"],
|
20
|
+
"sliding_window_size": transformers_config["sliding_window"]
|
21
|
+
if transformers_config["use_sliding_window"]
|
22
|
+
else None,
|
23
|
+
"tie_word_embeddings": transformers_config["tie_word_embeddings"],
|
24
|
+
}
|
25
|
+
|
26
|
+
|
27
|
+
def convert_weights(backbone, loader, transformers_config):
|
28
|
+
loader.port_weight(
|
29
|
+
keras_variable=backbone.get_layer("token_embedding").embeddings,
|
30
|
+
hf_weight_key="model.embed_tokens.weight",
|
31
|
+
)
|
32
|
+
if not backbone.tie_word_embeddings:
|
33
|
+
loader.port_weight(
|
34
|
+
keras_variable=backbone.get_layer(
|
35
|
+
"token_embedding"
|
36
|
+
).reverse_embeddings,
|
37
|
+
hf_weight_key="lm_head.weight",
|
38
|
+
# rearrange_pattern="b a -> a b",
|
39
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
40
|
+
)
|
41
|
+
|
42
|
+
def transpose_and_reshape(x, shape):
|
43
|
+
return np.reshape(np.transpose(x), shape)
|
44
|
+
|
45
|
+
for i in range(backbone.num_layers):
|
46
|
+
decoder_layer = backbone.get_layer(f"transformer_layer_{i}")
|
47
|
+
|
48
|
+
# Input layernorm
|
49
|
+
loader.port_weight(
|
50
|
+
keras_variable=decoder_layer._self_attention_layernorm.scale,
|
51
|
+
hf_weight_key=f"model.layers.{i}.input_layernorm.weight",
|
52
|
+
)
|
53
|
+
|
54
|
+
# Attention layers
|
55
|
+
|
56
|
+
## Query
|
57
|
+
loader.port_weight(
|
58
|
+
keras_variable=decoder_layer._self_attention_layer._query_dense.kernel,
|
59
|
+
hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight",
|
60
|
+
hook_fn=transpose_and_reshape,
|
61
|
+
)
|
62
|
+
loader.port_weight(
|
63
|
+
keras_variable=decoder_layer._self_attention_layer._query_dense_layer_norm.scale,
|
64
|
+
hf_weight_key=f"model.layers.{i}.self_attn.q_norm.weight",
|
65
|
+
)
|
66
|
+
## Key
|
67
|
+
loader.port_weight(
|
68
|
+
keras_variable=decoder_layer._self_attention_layer._key_dense.kernel,
|
69
|
+
hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight",
|
70
|
+
hook_fn=transpose_and_reshape,
|
71
|
+
)
|
72
|
+
loader.port_weight(
|
73
|
+
keras_variable=decoder_layer._self_attention_layer._key_dense_layer_norm.scale,
|
74
|
+
hf_weight_key=f"model.layers.{i}.self_attn.k_norm.weight",
|
75
|
+
)
|
76
|
+
## Value
|
77
|
+
loader.port_weight(
|
78
|
+
keras_variable=decoder_layer._self_attention_layer._value_dense.kernel,
|
79
|
+
hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight",
|
80
|
+
hook_fn=transpose_and_reshape,
|
81
|
+
)
|
82
|
+
## Output
|
83
|
+
loader.port_weight(
|
84
|
+
keras_variable=decoder_layer._self_attention_layer._output_dense.kernel,
|
85
|
+
hf_weight_key=f"model.layers.{i}.self_attn.o_proj.weight",
|
86
|
+
# rearrange_patterns="c (a b) -> a b c",
|
87
|
+
# rearrange_dims={"a": backbone.num_query_heads},
|
88
|
+
hook_fn=transpose_and_reshape,
|
89
|
+
)
|
90
|
+
|
91
|
+
# MLP layers
|
92
|
+
loader.port_weight(
|
93
|
+
keras_variable=decoder_layer._feedforward_intermediate_dense.kernel,
|
94
|
+
hf_weight_key=f"model.layers.{i}.mlp.up_proj.weight",
|
95
|
+
# rearrange_patterns="b a -> a b",
|
96
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
97
|
+
)
|
98
|
+
loader.port_weight(
|
99
|
+
keras_variable=decoder_layer._feedforward_output_dense.kernel,
|
100
|
+
hf_weight_key=f"model.layers.{i}.mlp.down_proj.weight",
|
101
|
+
# rearrange_patterns="b a -> a b",
|
102
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
103
|
+
)
|
104
|
+
loader.port_weight(
|
105
|
+
keras_variable=decoder_layer._feedforward_gate_dense.kernel,
|
106
|
+
hf_weight_key=f"model.layers.{i}.mlp.gate_proj.weight",
|
107
|
+
# rearrange_patterns="b a -> a b",
|
108
|
+
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
|
109
|
+
)
|
110
|
+
|
111
|
+
# Feedforward layernorm
|
112
|
+
loader.port_weight(
|
113
|
+
keras_variable=decoder_layer._feedforward_layernorm.scale,
|
114
|
+
hf_weight_key=f"model.layers.{i}.post_attention_layernorm.weight",
|
115
|
+
)
|
116
|
+
|
117
|
+
# Final normalization layer
|
118
|
+
loader.port_weight(
|
119
|
+
keras_variable=backbone.get_layer("sequence_output_layernorm").scale,
|
120
|
+
hf_weight_key="model.norm.weight",
|
121
|
+
)
|
122
|
+
|
123
|
+
return backbone
|
124
|
+
|
125
|
+
|
126
|
+
def convert_tokenizer(cls, preset, **kwargs):
|
127
|
+
tokenizer_config = load_json(preset, "tokenizer.json")
|
128
|
+
vocab = tokenizer_config["model"]["vocab"]
|
129
|
+
merges = tokenizer_config["model"]["merges"]
|
130
|
+
merges = [" ".join(item) for item in merges]
|
131
|
+
|
132
|
+
# Load all special tokens with the exception of "reserved" ones.
|
133
|
+
special_tokens = set()
|
134
|
+
for token in tokenizer_config["added_tokens"]:
|
135
|
+
if not token["content"].startswith("<|reserved_special_token_"):
|
136
|
+
vocab[token["content"]] = token["id"]
|
137
|
+
special_tokens.add(token["content"])
|
138
|
+
|
139
|
+
kwargs.update(
|
140
|
+
{
|
141
|
+
"unsplittable_tokens": list(special_tokens),
|
142
|
+
}
|
143
|
+
)
|
144
|
+
|
145
|
+
return cls(vocabulary=vocab, merges=merges, **kwargs)
|
@@ -14,6 +14,7 @@ from keras_hub.src.utils.transformers import convert_mistral
|
|
14
14
|
from keras_hub.src.utils.transformers import convert_mixtral
|
15
15
|
from keras_hub.src.utils.transformers import convert_pali_gemma
|
16
16
|
from keras_hub.src.utils.transformers import convert_qwen
|
17
|
+
from keras_hub.src.utils.transformers import convert_qwen3
|
17
18
|
from keras_hub.src.utils.transformers import convert_qwen_moe
|
18
19
|
from keras_hub.src.utils.transformers import convert_vit
|
19
20
|
from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader
|
@@ -50,6 +51,8 @@ class TransformersPresetLoader(PresetLoader):
|
|
50
51
|
self.converter = convert_mixtral
|
51
52
|
elif model_type == "qwen2_moe":
|
52
53
|
self.converter = convert_qwen_moe
|
54
|
+
elif model_type == "qwen3":
|
55
|
+
self.converter = convert_qwen3
|
53
56
|
else:
|
54
57
|
raise ValueError(
|
55
58
|
"KerasHub has no converter for huggingface/transformers models "
|
keras_hub/src/version.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1
1
|
keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
|
2
2
|
keras_hub/layers/__init__.py,sha256=gnvT-GuASB1hZwY4zrRkLs5yohSQu9Pp1SHDxsWPLY8,5081
|
3
3
|
keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
|
4
|
-
keras_hub/models/__init__.py,sha256=
|
4
|
+
keras_hub/models/__init__.py,sha256=1ZKgLK4AZ44s_cH7vu6FvmVocxf0biLAnY_lEh3dgxw,26734
|
5
5
|
keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
|
6
6
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
7
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
8
|
-
keras_hub/src/version.py,sha256=
|
8
|
+
keras_hub/src/version.py,sha256=hJyx_F3-Sy3RRaPET6xBnbg7QRtPkFgRHC4_SaxL3bw,222
|
9
9
|
keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
|
@@ -259,7 +259,7 @@ keras_hub/src/models/mixtral/mixtral_causal_lm.py,sha256=JA1t6xTeaYX_fNo9ftRyvzd
|
|
259
259
|
keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py,sha256=q2qXa9QAUWBvOWv9DeNvwsBNXSORJAbQFoQsWQ7e8V8,3079
|
260
260
|
keras_hub/src/models/mixtral/mixtral_decoder.py,sha256=CvOjhTxPnGQ_HNknZXRI6Cx1kpuHG99_TiOh-mNcsDw,18190
|
261
261
|
keras_hub/src/models/mixtral/mixtral_layer_norm.py,sha256=zfbDKZEb45FTwP0zQd7WPPp8tuiGoSNfS-DRYWkZyWw,1031
|
262
|
-
keras_hub/src/models/mixtral/mixtral_presets.py,sha256=
|
262
|
+
keras_hub/src/models/mixtral/mixtral_presets.py,sha256=pi5hHcwVSqr7ytf4dSnU_ew_t7NYw7EsZrmklQDqDVo,852
|
263
263
|
keras_hub/src/models/mixtral/mixtral_tokenizer.py,sha256=Kc233k879QMyX164X_CzWbqpnqEkKWNqa648guTGkBk,661
|
264
264
|
keras_hub/src/models/mobilenet/__init__.py,sha256=hxkNGGj_iAMu62iooUDEPA818sNOIgjG7pXMLEMOsAE,275
|
265
265
|
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=aZBSFeLUObYYoi3od9DI1KfgPCqh5GHTcAI8Y2ZHShA,29536
|
@@ -311,8 +311,14 @@ keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=_f-UHaKHp0ncxknpkpEJiW3jlng3E
|
|
311
311
|
keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va-4TLJD3ycEnkS41rF3dVj4_6K0j-gxLTrREFRcyr0,609
|
312
312
|
keras_hub/src/models/qwen/qwen_decoder.py,sha256=utmAvZlU7_nP-6pjGPDinK4JaMzsQSwOARG0ote-jAg,11771
|
313
313
|
keras_hub/src/models/qwen/qwen_layernorm.py,sha256=DS35r3qd6g5ocL7Nhf_vNzLLMo1aI9VCSmL64dgNOYI,924
|
314
|
-
keras_hub/src/models/qwen/qwen_presets.py,sha256=
|
314
|
+
keras_hub/src/models/qwen/qwen_presets.py,sha256=1FkKV6M3yqJz4EP1xa7bEvfIQ721xXT-_ikjWX0xvww,1992
|
315
315
|
keras_hub/src/models/qwen/qwen_tokenizer.py,sha256=LCv3IyiDDHqVnM9N3lf5-BE3iwicIh0nKS1hjoPw9lE,1532
|
316
|
+
keras_hub/src/models/qwen3/qwen3_attention.py,sha256=sewLjli290XvJ1efGZJEAYqUZfRll7cmhu0258s4C48,13042
|
317
|
+
keras_hub/src/models/qwen3/qwen3_backbone.py,sha256=Ylpk_rRWWRxy8irlAPjJU-YrxYGpo8c9lSEO1zZl4gU,7456
|
318
|
+
keras_hub/src/models/qwen3/qwen3_causal_lm_preprocessor.py,sha256=H4g-bgvuhAUnDwjJovydK16Kes38ZFZWPvflrgHqZis,458
|
319
|
+
keras_hub/src/models/qwen3/qwen3_decoder.py,sha256=68s9jQj53zFmXE4-SGXKYHu546fXOyi9LUbnKk-HGYY,11595
|
320
|
+
keras_hub/src/models/qwen3/qwen3_layernorm.py,sha256=EJxjf7Pr6ufPQnNeuYQxkExzPjPk4PQxqMsoBeSEkDo,1073
|
321
|
+
keras_hub/src/models/qwen3/qwen3_tokenizer.py,sha256=LmPtg0vprMchDvYfTj8m5PraXI2QS3-YgdIIpIm5iAs,1448
|
316
322
|
keras_hub/src/models/qwen_moe/__init__.py,sha256=5D8GUmVDsJs0J4sVZHcXOLkZf12U96l-WtwyVee4lu8,267
|
317
323
|
keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=pE79_iHUm2LGkoWL6zMJw_pNfzIvmyq3yJaiq47W2TY,13242
|
318
324
|
keras_hub/src/models/qwen_moe/qwen_moe_backbone.py,sha256=nrfELvIvRLmrgKrUNXci2CrecmeI6bWzJj7HH-RcWJA,15341
|
@@ -320,7 +326,7 @@ keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py,sha256=MeP60v7GcN_SmH5_ULRpq
|
|
320
326
|
keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py,sha256=uKaXRrJs02vkVudjdehzJPp0B84tPMkxNHlp166kceE,589
|
321
327
|
keras_hub/src/models/qwen_moe/qwen_moe_decoder.py,sha256=kmUjLpYTbJQ3J_31qWhLOd0Dg2_9cl_JX_zM8ZMH1Qo,23130
|
322
328
|
keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py,sha256=DbkWJo7U0-cwdZwHPeAnFznYwtao6o0fjpoDJ9UWnpc,927
|
323
|
-
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=
|
329
|
+
keras_hub/src/models/qwen_moe/qwen_moe_presets.py,sha256=LhOA3Ow-z3cNTan4AOrtyCXS58EgfvO_gtqiZt5cUQc,455
|
324
330
|
keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py,sha256=2c3X8jNGO0q0UL5NtUqSgHWLqhyJGi2ohNcTeOGhd84,1407
|
325
331
|
keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
|
326
332
|
keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
|
@@ -409,12 +415,12 @@ keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py,sha256=M7hBbDPws5Z
|
|
409
415
|
keras_hub/src/models/vgg/vgg_image_converter.py,sha256=FKVrSNNBxIkiKvApzf4TZxidBb1z917Xs9nooHCcRLM,324
|
410
416
|
keras_hub/src/models/vgg/vgg_presets.py,sha256=UL7a8hdZ22duMADXwVypGnc20ME-ywI4QjtXu15usEI,1491
|
411
417
|
keras_hub/src/models/vit/__init__.py,sha256=GH7x3VjEXZLm-4F-c9-55QZE0lP2OLVICH0Hr5YCp9A,239
|
412
|
-
keras_hub/src/models/vit/vit_backbone.py,sha256=
|
418
|
+
keras_hub/src/models/vit/vit_backbone.py,sha256=VnypiTAf0ORaBTVzdDOXsnKnQxKbrIlX9z9qOumZH50,6699
|
413
419
|
keras_hub/src/models/vit/vit_image_classifier.py,sha256=lMVxiD1_6drx7XQ7P7YzlqnFP7kT1zlMe84f-T3SDQI,6332
|
414
420
|
keras_hub/src/models/vit/vit_image_classifier_preprocessor.py,sha256=wu6YcBlXMWB9sKCPvmNdGBZKTLQt_HyHWS6P9nyDwsk,504
|
415
|
-
keras_hub/src/models/vit/vit_image_converter.py,sha256=
|
416
|
-
keras_hub/src/models/vit/vit_layers.py,sha256=
|
417
|
-
keras_hub/src/models/vit/vit_presets.py,sha256=
|
421
|
+
keras_hub/src/models/vit/vit_image_converter.py,sha256=JhdXcbfKu9pKSJZiaKk7FKf_CjSXztSa2rsBFQvlgAo,324
|
422
|
+
keras_hub/src/models/vit/vit_layers.py,sha256=c0ApxF7cMqeEEa0LcWrBhc6zIolwOFVb2HjzLV-q98k,13940
|
423
|
+
keras_hub/src/models/vit/vit_presets.py,sha256=mlLBJxxonru14fBiMnMF4ud-JgbJHclpVV3FsoIubrk,4479
|
418
424
|
keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
419
425
|
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=DOZ5J7c1t5PAZ6y0pMmBoQTMOUup7UoUrYVfCs69ltY,7697
|
420
426
|
keras_hub/src/models/vit_det/vit_layers.py,sha256=mnwu56chMc6zxmfp_hsLdR7TXYy1_YsWy1KwGX9M5Ic,19840
|
@@ -496,13 +502,14 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
|
|
496
502
|
keras_hub/src/utils/transformers/convert_mixtral.py,sha256=PxeCY8Xe7U_caICugwOCEjuSZ51ZUtmef6rUxh-Wt54,5508
|
497
503
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
|
498
504
|
keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_ev4yf02R1xFVliMvTQqg,5886
|
505
|
+
keras_hub/src/utils/transformers/convert_qwen3.py,sha256=LIormvCMWPq6X9Wo2eNbADjtFZ0nI7tFGZFBxmo4GKw,5700
|
499
506
|
keras_hub/src/utils/transformers/convert_qwen_moe.py,sha256=a7R28aln-PdAcNuKAXdrtzvslho2Co6GypChxLMKPpc,10618
|
500
507
|
keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
|
501
|
-
keras_hub/src/utils/transformers/preset_loader.py,sha256=
|
508
|
+
keras_hub/src/utils/transformers/preset_loader.py,sha256=7tFnbyAiUCMcTG8VQ7Wpi-J7cvRoSZn-ZYE_l0xuh0M,4363
|
502
509
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
|
503
510
|
keras_hub/tokenizers/__init__.py,sha256=uMjjm0mzUkRb0e4Ac_JK8aJ9cKGUi5UqmzWoWAFJprE,4164
|
504
511
|
keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
|
505
|
-
keras_hub_nightly-0.
|
506
|
-
keras_hub_nightly-0.
|
507
|
-
keras_hub_nightly-0.
|
508
|
-
keras_hub_nightly-0.
|
512
|
+
keras_hub_nightly-0.22.0.dev202505300409.dist-info/METADATA,sha256=hH3xqnggYJvyKQ7DG5U0pJyM8umkP1oRPj32GKEu1E8,7393
|
513
|
+
keras_hub_nightly-0.22.0.dev202505300409.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
514
|
+
keras_hub_nightly-0.22.0.dev202505300409.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
515
|
+
keras_hub_nightly-0.22.0.dev202505300409.dist-info/RECORD,,
|
File without changes
|