keras-hub-nightly 0.21.0.dev202505280410__py3-none-any.whl → 0.22.0.dev202505300409__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -444,6 +444,15 @@ from keras_hub.src.models.qwen.qwen_tokenizer import (
444
444
  from keras_hub.src.models.qwen.qwen_tokenizer import (
445
445
  QwenTokenizer as QwenTokenizer,
446
446
  )
447
+ from keras_hub.src.models.qwen3.qwen3_backbone import (
448
+ Qwen3Backbone as Qwen3Backbone,
449
+ )
450
+ from keras_hub.src.models.qwen3.qwen3_causal_lm_preprocessor import (
451
+ Qwen3CausalLMPreprocessor as Qwen3CausalLMPreprocessor,
452
+ )
453
+ from keras_hub.src.models.qwen3.qwen3_tokenizer import (
454
+ Qwen3Tokenizer as Qwen3Tokenizer,
455
+ )
447
456
  from keras_hub.src.models.qwen_moe.qwen_moe_backbone import (
448
457
  QwenMoeBackbone as QwenMoeBackbone,
449
458
  )
@@ -4,8 +4,8 @@ backbone_presets = {
4
4
  "mixtral_8_7b_en": {
5
5
  "metadata": {
6
6
  "description": (
7
- "32-layer Mixtral MoE model with 7 billion",
8
- "active parameters and 8 experts per MoE layer.",
7
+ "32-layer Mixtral MoE model with 7 billion"
8
+ "active parameters and 8 experts per MoE layer."
9
9
  ),
10
10
  "params": 46702792704,
11
11
  "path": "mixtral",
@@ -15,8 +15,8 @@ backbone_presets = {
15
15
  "mixtral_8_instruct_7b_en": {
16
16
  "metadata": {
17
17
  "description": (
18
- "Instruction fine-tuned 32-layer Mixtral MoE model",
19
- "with 7 billion active parameters and 8 experts per MoE layer.",
18
+ "Instruction fine-tuned 32-layer Mixtral MoE model"
19
+ "with 7 billion active parameters and 8 experts per MoE layer."
20
20
  ),
21
21
  "params": 46702792704,
22
22
  "path": "mixtral",
@@ -28,8 +28,8 @@ backbone_presets = {
28
28
  "qwen2.5_instruct_0.5b_en": {
29
29
  "metadata": {
30
30
  "description": (
31
- "Instruction fine-tuned 24-layer Qwen model with 0.5 ",
32
- "billion parameters.",
31
+ "Instruction fine-tuned 24-layer Qwen model with 0.5 "
32
+ "billion parameters."
33
33
  ),
34
34
  "params": 494032768,
35
35
  "path": "qwen",
@@ -39,8 +39,8 @@ backbone_presets = {
39
39
  "qwen2.5_instruct_32b_en": {
40
40
  "metadata": {
41
41
  "description": (
42
- "Instruction fine-tuned 64-layer Qwen model with 32 ",
43
- "billion parameters.",
42
+ "Instruction fine-tuned 64-layer Qwen model with 32 "
43
+ "billion parameters."
44
44
  ),
45
45
  "params": 32763876352,
46
46
  "path": "qwen",
@@ -50,8 +50,8 @@ backbone_presets = {
50
50
  "qwen2.5_instruct_72b_en": {
51
51
  "metadata": {
52
52
  "description": (
53
- "Instruction fine-tuned 80-layer Qwen model with 72 ",
54
- "billion parameters.",
53
+ "Instruction fine-tuned 80-layer Qwen model with 72 "
54
+ "billion parameters."
55
55
  ),
56
56
  "params": 72706203648,
57
57
  "path": "qwen",
@@ -0,0 +1,369 @@
1
+ import math
2
+
3
+ import keras
4
+ from keras import ops
5
+
6
+ from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
+ from keras_hub.src.models.qwen3.qwen3_layernorm import Qwen3LayerNorm
8
+ from keras_hub.src.utils.keras_utils import clone_initializer
9
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
10
+
11
+
12
+ class Qwen3Attention(keras.layers.Layer):
13
+ """A multi-head attention layer for Qwen3 models
14
+
15
+ This attention implementation supports grouped-query attention (GQA) where
16
+ the number of key-value heads can be less than the number of query heads.
17
+
18
+ Args:
19
+ num_query_heads: Number of query heads.
20
+ num_key_value_heads: Number of key/value heads (for GQA).
21
+ rope_max_wavelength: Maximum wavelength for RoPE (Rotary Position
22
+ Embedding).
23
+ rope_scaling_factor: Scaling factor for RoPE, used for extending
24
+ context length.
25
+ kernel_initializer: Initializer for the kernel weights.
26
+ dropout: Dropout rate for attention weights.
27
+ sliding_window_size: Size of the sliding window for attention.
28
+ **kwargs: Additional keyword arguments to pass to the Layer.
29
+ """
30
+
31
+ def __init__(
32
+ self,
33
+ num_query_heads,
34
+ num_key_value_heads,
35
+ head_dim,
36
+ rope_max_wavelength=10000,
37
+ rope_scaling_factor=1,
38
+ kernel_initializer="glorot_uniform",
39
+ dropout=0.0,
40
+ layer_norm_epsilon=1e-5,
41
+ sliding_window_size=None,
42
+ **kwargs,
43
+ ):
44
+ super().__init__(
45
+ **kwargs,
46
+ )
47
+ self.num_query_heads = num_query_heads
48
+ self.num_key_value_heads = num_key_value_heads
49
+ self.head_dim = head_dim
50
+ self.dropout = dropout
51
+
52
+ self.layer_norm_epsilon = layer_norm_epsilon
53
+
54
+ self.num_key_value_groups = num_query_heads // num_key_value_heads
55
+ self.rope_max_wavelength = rope_max_wavelength
56
+
57
+ self.kernel_initializer = keras.initializers.get(
58
+ clone_initializer(kernel_initializer)
59
+ )
60
+
61
+ self.rope_scaling_factor = rope_scaling_factor
62
+ self.sliding_window_size = sliding_window_size
63
+
64
+ def build(self, inputs_shape):
65
+ # Einsum variables:
66
+ # b = batch size
67
+ # q = query length
68
+ # k = key/value length
69
+ # m = model dim
70
+ # u = num query heads
71
+ # v = num key/value heads
72
+ # h = head dim
73
+ hidden_dim = inputs_shape[-1]
74
+ if not self.head_dim:
75
+ self.head_dim = hidden_dim // self.num_query_heads
76
+
77
+ self._inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
78
+ self._query_dense = keras.layers.EinsumDense(
79
+ equation="bqm,muh->bquh",
80
+ output_shape=(None, self.num_query_heads, self.head_dim),
81
+ kernel_initializer=self.kernel_initializer,
82
+ dtype=self.dtype_policy,
83
+ name="query",
84
+ )
85
+ self._query_dense.build(inputs_shape)
86
+
87
+ self._query_dense_layer_norm = Qwen3LayerNorm(
88
+ epsilon=self.layer_norm_epsilon,
89
+ dtype=self.dtype_policy,
90
+ head_dim=self.head_dim,
91
+ name="query_dense_layernorm",
92
+ )
93
+ self._query_dense_layer_norm.build(inputs_shape)
94
+
95
+ self._key_dense = keras.layers.EinsumDense(
96
+ equation="bkm,mvh->bkvh",
97
+ output_shape=(
98
+ None,
99
+ self.num_key_value_heads,
100
+ self.head_dim,
101
+ ),
102
+ kernel_initializer=self.kernel_initializer,
103
+ dtype=self.dtype_policy,
104
+ name="key",
105
+ )
106
+ self._key_dense.build(inputs_shape)
107
+
108
+ self._key_dense_layer_norm = Qwen3LayerNorm(
109
+ epsilon=self.layer_norm_epsilon,
110
+ dtype=self.dtype_policy,
111
+ head_dim=self.head_dim,
112
+ name="key_dense_layernorm",
113
+ )
114
+ self._key_dense_layer_norm.build(inputs_shape)
115
+
116
+ self._value_dense = keras.layers.EinsumDense(
117
+ equation="bkm,mvh->bkvh",
118
+ output_shape=(
119
+ None,
120
+ self.num_key_value_heads,
121
+ self.head_dim,
122
+ ),
123
+ kernel_initializer=self.kernel_initializer,
124
+ dtype=self.dtype_policy,
125
+ name="value",
126
+ )
127
+ self._value_dense.build(inputs_shape)
128
+
129
+ self._softmax = keras.layers.Softmax(
130
+ axis=-1,
131
+ dtype="float32",
132
+ name="attention_softmax",
133
+ )
134
+
135
+ self._dropout_layer = keras.layers.Dropout(
136
+ rate=self.dropout,
137
+ dtype=self.dtype_policy,
138
+ )
139
+
140
+ self._output_dense = keras.layers.EinsumDense(
141
+ equation="bquh,uhm->bqm",
142
+ output_shape=(None, hidden_dim),
143
+ kernel_initializer=self.kernel_initializer,
144
+ dtype=self.dtype_policy,
145
+ name="attention_output",
146
+ )
147
+ self._output_dense.build(
148
+ (None, None, self.num_query_heads, self.head_dim)
149
+ )
150
+
151
+ self.rotary_embedding_layer = RotaryEmbedding(
152
+ max_wavelength=self.rope_max_wavelength,
153
+ scaling_factor=self.rope_scaling_factor,
154
+ dtype=self.dtype_policy,
155
+ )
156
+
157
+ self._dot_product_equation = "bquh,bkuh->buqk"
158
+ self._combine_equation = "buqk,bkuh->bquh"
159
+
160
+ self.built = True
161
+
162
+ def call(
163
+ self,
164
+ hidden_states,
165
+ attention_mask=None,
166
+ cache=None,
167
+ cache_update_index=None,
168
+ training=None,
169
+ ):
170
+ """Applies attention mechanism to the input hidden states.
171
+
172
+ Args:
173
+ hidden_states: Input tensor of shape [batch_size, seq_length,
174
+ hidden_size].
175
+ attention_mask: Mask tensor of shape [batch_size, seq_length,
176
+ seq_length].
177
+ cache: Optional cached key and value tensors.
178
+ cache_update_index: Index at which to update the cache.
179
+ training: Boolean indicating whether in training mode.
180
+
181
+ Returns:
182
+ attention_output: Output tensor after applying attention.
183
+ cache: Updated cache tensors (if cache is provided).
184
+ """
185
+ start_index = (
186
+ cache_update_index if cache_update_index is not None else 0
187
+ )
188
+
189
+ query = self._query_dense(hidden_states)
190
+ query = self._query_dense_layer_norm(query)
191
+
192
+ # Compute RoPE for queries
193
+ query = self.rotary_embedding_layer(query, start_index=start_index)
194
+
195
+ def _compute_key_value(x):
196
+ key = self._key_dense(x)
197
+ key = self._key_dense_layer_norm(key)
198
+ key = self.rotary_embedding_layer(key, start_index=start_index)
199
+
200
+ value = self._value_dense(x)
201
+
202
+ return key, value
203
+
204
+ if cache is not None:
205
+ key_cache = cache[:, 0, ...]
206
+ value_cache = cache[:, 1, ...]
207
+ if cache_update_index is None:
208
+ key = key_cache
209
+ value = value_cache
210
+ else:
211
+ key_update, value_update = _compute_key_value(hidden_states)
212
+ start = [0, cache_update_index, 0, 0]
213
+ key = ops.slice_update(key_cache, start, key_update)
214
+ value = ops.slice_update(value_cache, start, value_update)
215
+ cache = ops.stack((key, value), axis=1)
216
+ else:
217
+ if cache_update_index is not None:
218
+ raise ValueError(
219
+ "`cache_update_index` should not be set if `cache` is "
220
+ f"`None`. Received: cache={cache}, "
221
+ f"cache_update_index={cache_update_index}"
222
+ )
223
+ key, value = _compute_key_value(hidden_states)
224
+
225
+ # [batch_shape, seq_len, num_key_value_heads, head_dim]
226
+ # -> [batch_shape, seq_len, num_heads, head_dim]
227
+ key = ops.repeat(key, repeats=self.num_key_value_groups, axis=2)
228
+ value = ops.repeat(value, repeats=self.num_key_value_groups, axis=2)
229
+
230
+ attention_output = self._compute_attention(
231
+ query,
232
+ key,
233
+ value,
234
+ attention_mask,
235
+ cache_update_index=cache_update_index,
236
+ )
237
+
238
+ attention_output = self._dropout_layer(
239
+ attention_output, training=training
240
+ )
241
+
242
+ attention_output = self._output_dense(attention_output)
243
+
244
+ if cache is not None:
245
+ return attention_output, cache
246
+ return attention_output
247
+
248
+ def _masked_softmax(self, attention_scores, attention_mask=None):
249
+ """Applies softmax with optional masking.
250
+
251
+ Args:
252
+ attention_scores: Attention score tensor.
253
+ attention_mask: Optional mask tensor.
254
+
255
+ Returns:
256
+ Masked softmax attention weights.
257
+ """
258
+ if attention_mask is not None:
259
+ return self._softmax(
260
+ attention_scores, attention_mask[:, None, :, :]
261
+ )
262
+ return self._softmax(attention_scores)
263
+
264
+ def _compute_attention(
265
+ self, query, key, value, attention_mask=None, cache_update_index=None
266
+ ):
267
+ """Computes attention using query, key, and value tensors.
268
+
269
+ Uses Flash Attention when available for better performance.
270
+
271
+ Args:
272
+ query: Query tensor.
273
+ key: Key tensor.
274
+ value: Value tensor.
275
+ attention_mask: Optional mask tensor.
276
+ cache_update_index: Index for sliding window computation.
277
+
278
+ Returns:
279
+ attention_output: Output tensor after applying attention.
280
+ """
281
+ if fused_attention_op_available():
282
+ # Use `dot_product_attention` with Flash Attention support if
283
+ # available.
284
+ if attention_mask is not None:
285
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
286
+ attention_mask = ops.cast(attention_mask, dtype="bool")
287
+ attention_output = ops.dot_product_attention(
288
+ query,
289
+ key,
290
+ value,
291
+ mask=attention_mask,
292
+ scale=self._inv_norm_factor,
293
+ )
294
+ return attention_output
295
+
296
+ attention_scores = ops.einsum(self._dot_product_equation, query, key)
297
+
298
+ attention_scores = ops.multiply(
299
+ attention_scores,
300
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
301
+ )
302
+ if not self.sliding_window_size:
303
+ attention_mask = self._mask_sliding_window(
304
+ attention_mask,
305
+ cache_update_index=cache_update_index
306
+ if cache_update_index
307
+ else 0,
308
+ )
309
+ attention_scores = self._masked_softmax(
310
+ attention_scores, attention_mask
311
+ )
312
+ attention_scores = ops.cast(attention_scores, self.compute_dtype)
313
+ attention_output = ops.einsum(
314
+ self._combine_equation, attention_scores, value
315
+ )
316
+
317
+ return attention_output
318
+
319
+ def _mask_sliding_window(
320
+ self,
321
+ attention_mask,
322
+ cache_update_index=0,
323
+ ):
324
+ """Creates and combines a sliding window mask with the attention mask.
325
+
326
+ Args:
327
+ attention_mask: Original attention mask.
328
+ cache_update_index: Starting index for the sliding window.
329
+
330
+ Returns:
331
+ Combined attention mask with sliding window constraints.
332
+ """
333
+ _, query_len, key_len = ops.shape(attention_mask)
334
+ # Compute the sliding window for square attention.
335
+ all_ones = ops.ones((key_len, key_len), "bool")
336
+ if keras.config.backend() == "tensorflow":
337
+ # TODO: trui/tril has issues with dynamic shape on the tensorflow
338
+ # backend. We should fix, but use `band_part` for now.
339
+ import tensorflow as tf
340
+
341
+ band_size = ops.minimum(key_len, self.sliding_window_size - 1)
342
+ band_size = ops.cast(band_size, "int32")
343
+ sliding_mask = tf.linalg.band_part(all_ones, band_size, band_size)
344
+ else:
345
+ sliding_mask = ops.triu(
346
+ all_ones, -1 * self.sliding_window_size + 1
347
+ ) * ops.tril(all_ones, self.sliding_window_size - 1)
348
+ # Slice the window for short queries during generation.
349
+ start = (cache_update_index, 0)
350
+ sliding_mask = ops.slice(sliding_mask, start, (query_len, key_len))
351
+ sliding_mask = ops.expand_dims(sliding_mask, 0)
352
+ return ops.logical_and(attention_mask, ops.cast(sliding_mask, "bool"))
353
+
354
+ def get_config(self):
355
+ config = super().get_config()
356
+ config.update(
357
+ {
358
+ "num_query_heads": self.num_query_heads,
359
+ "num_key_value_heads": self.num_key_value_heads,
360
+ "rope_max_wavelength": self.rope_max_wavelength,
361
+ "rope_scaling_factor": self.rope_scaling_factor,
362
+ "kernel_initializer": keras.initializers.serialize(
363
+ self.kernel_initializer
364
+ ),
365
+ "dropout": self.dropout,
366
+ "sliding_window_size": self.sliding_window_size,
367
+ }
368
+ )
369
+ return config
@@ -0,0 +1,191 @@
1
+ import keras
2
+ from keras import ops
3
+
4
+ from keras_hub.src.api_export import keras_hub_export
5
+ from keras_hub.src.layers.modeling.reversible_embedding import (
6
+ ReversibleEmbedding,
7
+ )
8
+ from keras_hub.src.models.backbone import Backbone
9
+ from keras_hub.src.models.qwen3.qwen3_decoder import Qwen3TransformerDecoder
10
+ from keras_hub.src.models.qwen3.qwen3_layernorm import Qwen3LayerNorm
11
+
12
+
13
+ def _qwen3_kernel_initializer(stddev=0.02):
14
+ return keras.initializers.RandomNormal(stddev=stddev)
15
+
16
+
17
+ @keras_hub_export("keras_hub.models.Qwen3Backbone")
18
+ class Qwen3Backbone(Backbone):
19
+ """The Qwen3 Transformer core architecture with hyperparameters.
20
+
21
+ This network implements a Transformer-based decoder network,
22
+ Qwen3, as described in the Qwen3 model architecture.
23
+ It includes the embedding lookups and transformer layers.
24
+
25
+ The default constructor gives a fully customizable, randomly initialized
26
+ Qwen3 model with any number of layers, heads, and embedding
27
+ dimensions. To load preset architectures and weights, use the `from_preset`
28
+ constructor.
29
+
30
+ Args:
31
+ vocabulary_size (int): The size of the token vocabulary.
32
+ num_layers (int): The number of transformer layers.
33
+ num_query_heads (int): The number of query attention heads for
34
+ each transformer.
35
+ hidden_dim (int): The size of the transformer encoding and pooling
36
+ layers.
37
+ intermediate_dim (int): The output dimension of the first Dense layer in
38
+ a three-layer feedforward network for each transformer.
39
+ num_key_value_heads (int): The number of key and value attention heads
40
+ for each transformer.
41
+ rope_max_wavelength (int, optional): The maximum angular wavelength of
42
+ the sine/cosine curves, for rotary embeddings. Defaults to `10000`.
43
+ rope_scaling_factor (float, optional): The scaling factor for
44
+ calculation of rotary embedding. Defaults to `1.0`.
45
+ layer_norm_epsilon (float, optional): Epsilon for the layer
46
+ normalization layers in the transformer decoder. Defaults to `1e-6`.
47
+ dropout (float, optional): Dropout rate for attention and hidden layers.
48
+ Defaults to `0`.
49
+ dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
50
+ for model computations and weights. Note that some computations,
51
+ such as softmax and layer normalization, will always be done at
52
+ float32 precision regardless of dtype.
53
+ tie_word_embeddings (bool, optional): Whether to tie input and output
54
+ embeddings. Defaults to `True`.
55
+ sliding_window_size (int, optional): Size of the sliding window for
56
+ attention when enabled. Defaults to `32768`.
57
+
58
+ Examples:
59
+
60
+ ```python
61
+ input_data = {
62
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
63
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
64
+ }
65
+
66
+ # Pretrained Qwen3 decoder.
67
+ model = keras_hub.models.Qwen3Backbone.from_preset("qwen32.5_0.5b_en")
68
+ model(input_data)
69
+
70
+ # Randomly initialized Qwen3 decoder with custom config.
71
+ model = keras_hub.models.Qwen3Backbone(
72
+ vocabulary_size=10,
73
+ hidden_dim=512,
74
+ num_layers=2,
75
+ num_query_heads=32,
76
+ num_key_value_heads=8,
77
+ intermediate_dim=1024,
78
+ layer_norm_epsilon=1e-6,
79
+ dtype="float32"
80
+ )
81
+ model(input_data)
82
+ ```
83
+ """
84
+
85
+ def __init__(
86
+ self,
87
+ vocabulary_size,
88
+ num_layers,
89
+ num_query_heads,
90
+ num_key_value_heads,
91
+ head_dim,
92
+ hidden_dim,
93
+ intermediate_dim,
94
+ rope_max_wavelength=10000,
95
+ rope_scaling_factor=1.0,
96
+ layer_norm_epsilon=1e-6,
97
+ dropout=0.0,
98
+ tie_word_embeddings=True,
99
+ sliding_window_size=32768,
100
+ dtype=None,
101
+ **kwargs,
102
+ ):
103
+ # === Layers ===
104
+ self.token_embedding = ReversibleEmbedding(
105
+ input_dim=vocabulary_size,
106
+ output_dim=hidden_dim,
107
+ tie_weights=tie_word_embeddings,
108
+ embeddings_initializer=_qwen3_kernel_initializer(stddev=0.01),
109
+ dtype=dtype,
110
+ name="token_embedding",
111
+ )
112
+ self.transformer_layers = []
113
+ for i in range(num_layers):
114
+ layer = Qwen3TransformerDecoder(
115
+ intermediate_dim=intermediate_dim,
116
+ head_dim=head_dim,
117
+ num_query_heads=num_query_heads,
118
+ num_key_value_heads=num_key_value_heads,
119
+ rope_max_wavelength=rope_max_wavelength,
120
+ rope_scaling_factor=rope_scaling_factor,
121
+ layer_norm_epsilon=layer_norm_epsilon,
122
+ activation=ops.silu,
123
+ kernel_initializer=_qwen3_kernel_initializer(stddev=0.02),
124
+ dropout=dropout,
125
+ sliding_window_size=sliding_window_size,
126
+ dtype=dtype,
127
+ name=f"transformer_layer_{i}",
128
+ )
129
+ self.transformer_layers.append(layer)
130
+ self.layer_norm = Qwen3LayerNorm(
131
+ epsilon=layer_norm_epsilon,
132
+ dtype=dtype,
133
+ name="sequence_output_layernorm",
134
+ )
135
+
136
+ # === Functional Model ===
137
+ token_id_input = keras.Input(
138
+ shape=(None,), dtype="int32", name="token_ids"
139
+ )
140
+ padding_mask_input = keras.Input(
141
+ shape=(None,), dtype="int32", name="padding_mask"
142
+ )
143
+ x = self.token_embedding(token_id_input)
144
+ for transformer_layer in self.transformer_layers:
145
+ x = transformer_layer(x, decoder_padding_mask=padding_mask_input)
146
+ sequence_output = self.layer_norm(x)
147
+ super().__init__(
148
+ inputs={
149
+ "token_ids": token_id_input,
150
+ "padding_mask": padding_mask_input,
151
+ },
152
+ outputs=sequence_output,
153
+ dtype=dtype,
154
+ **kwargs,
155
+ )
156
+
157
+ # === Config ===
158
+ self.vocabulary_size = vocabulary_size
159
+ self.num_layers = num_layers
160
+ self.num_query_heads = num_query_heads
161
+ self.hidden_dim = hidden_dim
162
+ self.head_dim = head_dim
163
+ self.intermediate_dim = intermediate_dim
164
+ self.rope_max_wavelength = rope_max_wavelength
165
+ self.num_key_value_heads = num_key_value_heads
166
+ self.rope_scaling_factor = rope_scaling_factor
167
+ self.layer_norm_epsilon = layer_norm_epsilon
168
+ self.dropout = dropout
169
+ self.tie_word_embeddings = tie_word_embeddings
170
+ self.sliding_window_size = sliding_window_size
171
+
172
+ def get_config(self):
173
+ config = super().get_config()
174
+ config.update(
175
+ {
176
+ "vocabulary_size": self.vocabulary_size,
177
+ "num_layers": self.num_layers,
178
+ "num_query_heads": self.num_query_heads,
179
+ "hidden_dim": self.hidden_dim,
180
+ "head_dim": self.head_dim,
181
+ "intermediate_dim": self.intermediate_dim,
182
+ "rope_max_wavelength": self.rope_max_wavelength,
183
+ "rope_scaling_factor": self.rope_scaling_factor,
184
+ "num_key_value_heads": self.num_key_value_heads,
185
+ "layer_norm_epsilon": self.layer_norm_epsilon,
186
+ "dropout": self.dropout,
187
+ "tie_word_embeddings": self.tie_word_embeddings,
188
+ "sliding_window_size": self.sliding_window_size,
189
+ }
190
+ )
191
+ return config
@@ -0,0 +1,10 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
3
+ from keras_hub.src.models.qwen3.qwen3_backbone import Qwen3Backbone
4
+ from keras_hub.src.models.qwen3.qwen3_tokenizer import Qwen3Tokenizer
5
+
6
+
7
+ @keras_hub_export("keras_hub.models.Qwen3CausalLMPreprocessor")
8
+ class Qwen3CausalLMPreprocessor(CausalLMPreprocessor):
9
+ backbone_cls = Qwen3Backbone
10
+ tokenizer_cls = Qwen3Tokenizer