keras-hub-nightly 0.21.0.dev202505040408__py3-none-any.whl → 0.21.0.dev202505060405__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/models/__init__.py +21 -0
- keras_hub/src/models/backbone.py +5 -2
- keras_hub/src/models/mixtral/mixtral_attention.py +263 -0
- keras_hub/src/models/mixtral/mixtral_backbone.py +207 -0
- keras_hub/src/models/mixtral/mixtral_causal_lm.py +281 -0
- keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +76 -0
- keras_hub/src/models/mixtral/mixtral_decoder.py +494 -0
- keras_hub/src/models/mixtral/mixtral_layer_norm.py +34 -0
- keras_hub/src/models/mixtral/mixtral_tokenizer.py +21 -0
- keras_hub/src/models/qwen/qwen_attention.py +3 -1
- keras_hub/src/models/qwen/qwen_presets.py +61 -0
- keras_hub/src/models/qwen_moe/__init__.py +0 -0
- keras_hub/src/models/qwen_moe/qwen_moe_attention.py +377 -0
- keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +373 -0
- keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +350 -0
- keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +17 -0
- keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +625 -0
- keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +32 -0
- keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +46 -0
- keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -13
- keras_hub/src/models/retinanet/retinanet_presets.py +2 -2
- keras_hub/src/models/task.py +5 -2
- keras_hub/src/utils/keras_utils.py +11 -0
- keras_hub/src/utils/preset_utils.py +69 -9
- keras_hub/src/utils/tensor_utils.py +27 -1
- keras_hub/src/utils/transformers/convert_mixtral.py +139 -0
- keras_hub/src/utils/transformers/convert_qwen_moe.py +253 -0
- keras_hub/src/utils/transformers/preset_loader.py +6 -0
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +6 -0
- {keras_hub_nightly-0.21.0.dev202505040408.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.21.0.dev202505040408.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/RECORD +34 -16
- {keras_hub_nightly-0.21.0.dev202505040408.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/WHEEL +1 -1
- {keras_hub_nightly-0.21.0.dev202505040408.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,373 @@
|
|
1
|
+
import keras
|
2
|
+
from keras import ops
|
3
|
+
|
4
|
+
from keras_hub.src.api_export import keras_hub_export
|
5
|
+
from keras_hub.src.layers.modeling.reversible_embedding import (
|
6
|
+
ReversibleEmbedding,
|
7
|
+
)
|
8
|
+
from keras_hub.src.models.backbone import Backbone
|
9
|
+
from keras_hub.src.models.qwen.qwen_layernorm import QwenLayerNorm
|
10
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_decoder import (
|
11
|
+
QwenMoeTransformerDecoder,
|
12
|
+
)
|
13
|
+
|
14
|
+
|
15
|
+
def _qwen_moe_kernel_initializer(stddev=0.02):
|
16
|
+
return keras.initializers.RandomNormal(stddev=stddev)
|
17
|
+
|
18
|
+
|
19
|
+
@keras_hub_export(
|
20
|
+
"keras_hub.models.QwenMoeBackbone",
|
21
|
+
)
|
22
|
+
class QwenMoeBackbone(Backbone):
|
23
|
+
"""Qwen MoE core network with hyperparameters.
|
24
|
+
|
25
|
+
This backbone implements the base Transformer network for the Qwen MoE
|
26
|
+
model. It includes embedding lookups and transformer layers with a Mixture
|
27
|
+
of Experts (MoE) architecture, where each layer uses a sparse set of experts
|
28
|
+
for efficient computation. This backbone outputs the final hidden states for
|
29
|
+
each token, not generative predictions over the vocabulary space. For higher
|
30
|
+
-level object for text generation, see `keras_hub.models.QwenMoeCausalLM`.
|
31
|
+
|
32
|
+
The default constructor gives a fully customizable, randomly initialized
|
33
|
+
Qwen MoE model with any number of layers, heads, and embedding dimensions.
|
34
|
+
To load preset architectures and weights, use the `from_preset` constructor.
|
35
|
+
|
36
|
+
Args:
|
37
|
+
vocabulary_size: int. The size of the token vocabulary.
|
38
|
+
num_layers: int. The number of transformer layers.
|
39
|
+
num_query_heads: int. The number of heads for the query projections in
|
40
|
+
the attention layer.
|
41
|
+
num_key_value_heads: int. The number of heads for the key and value
|
42
|
+
projections in the attention layer.
|
43
|
+
hidden_dim: int. The size of the transformer hidden state at the end of
|
44
|
+
each transformer layer.
|
45
|
+
intermediate_dim: int. The output dimension of the first Dense layer in
|
46
|
+
the feedforward network for each transformer.
|
47
|
+
moe_intermediate_dim: int. The intermediate dimension for each expert
|
48
|
+
in the MoE feedforward network.
|
49
|
+
shared_expert_intermediate_dim: int. The intermediate dimension for the
|
50
|
+
shared expert in the MoE feedforward network.
|
51
|
+
num_experts: int. The number of experts in each MoE layer.
|
52
|
+
top_k: int. The number of top experts to select for each token in the
|
53
|
+
MoE layer.
|
54
|
+
head_dim: int. The size of each attention head.
|
55
|
+
layer_norm_epsilon: float. The epsilon value used for every layer norm
|
56
|
+
in the transformer model.
|
57
|
+
dropout: float. Dropout probability for the transformer encoder.
|
58
|
+
use_sliding_window_attention: bool. Whether to use sliding local window
|
59
|
+
attention. Defaults to False.
|
60
|
+
sliding_window_size: int. Size of the sliding local window. Defaults to
|
61
|
+
4096.
|
62
|
+
max_sequence_length: int. The maximum sequence length supported by the
|
63
|
+
model. Defaults to 4096.
|
64
|
+
dtype: str or `keras.mixed_precision.DTypePolicy`. The dtype to use for
|
65
|
+
the model's computations and weights. Note that some computations,
|
66
|
+
such as softmax and layer normalization, will always be done at
|
67
|
+
float32 precision regardless of dtype.
|
68
|
+
|
69
|
+
Example:
|
70
|
+
```python
|
71
|
+
input_data = {
|
72
|
+
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
|
73
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
|
74
|
+
}
|
75
|
+
|
76
|
+
# Pretrained Qwen MoE decoder.
|
77
|
+
model = keras_hub.models.QwenMoeBackbone.from_preset("qwen_moe_a2_7b")
|
78
|
+
model(input_data)
|
79
|
+
|
80
|
+
# Randomly initialized Qwen MoE decoder with custom config.
|
81
|
+
model = keras_hub.models.QwenMoeBackbone(
|
82
|
+
vocabulary_size=151936,
|
83
|
+
num_layers=28,
|
84
|
+
num_query_heads=16,
|
85
|
+
num_key_value_heads=8,
|
86
|
+
hidden_dim=2048,
|
87
|
+
intermediate_dim=4096,
|
88
|
+
moe_intermediate_dim=128,
|
89
|
+
shared_expert_intermediate_dim=4096,
|
90
|
+
num_experts=60,
|
91
|
+
top_k=4,
|
92
|
+
head_dim=128,
|
93
|
+
max_sequence_length=4096,
|
94
|
+
)
|
95
|
+
model(input_data)
|
96
|
+
"""
|
97
|
+
|
98
|
+
def __init__(
|
99
|
+
self,
|
100
|
+
vocabulary_size,
|
101
|
+
num_layers,
|
102
|
+
num_query_heads,
|
103
|
+
num_key_value_heads,
|
104
|
+
hidden_dim,
|
105
|
+
intermediate_dim,
|
106
|
+
moe_intermediate_dim,
|
107
|
+
shared_expert_intermediate_dim,
|
108
|
+
num_experts,
|
109
|
+
top_k=4,
|
110
|
+
norm_top_k_prob=False,
|
111
|
+
decoder_sparse_step=1,
|
112
|
+
rope_max_wavelength=10000,
|
113
|
+
rope_scaling_factor=1.0,
|
114
|
+
layer_norm_epsilon=1e-6,
|
115
|
+
dropout=0,
|
116
|
+
dtype=None,
|
117
|
+
tie_word_embeddings=False,
|
118
|
+
use_sliding_window_attention=False,
|
119
|
+
sliding_window_size=32768,
|
120
|
+
output_router_logits=False,
|
121
|
+
router_aux_loss_coefficient=0.001,
|
122
|
+
mlp_only_layers=[],
|
123
|
+
training=None,
|
124
|
+
**kwargs,
|
125
|
+
):
|
126
|
+
# === Layers ===
|
127
|
+
self.token_embedding = ReversibleEmbedding(
|
128
|
+
input_dim=vocabulary_size,
|
129
|
+
output_dim=hidden_dim,
|
130
|
+
tie_weights=tie_word_embeddings,
|
131
|
+
embeddings_initializer=_qwen_moe_kernel_initializer(stddev=0.01),
|
132
|
+
dtype=dtype,
|
133
|
+
name="token_embedding",
|
134
|
+
)
|
135
|
+
self.transformer_layers = []
|
136
|
+
for i in range(num_layers):
|
137
|
+
layer = QwenMoeTransformerDecoder(
|
138
|
+
intermediate_dim=intermediate_dim,
|
139
|
+
num_query_heads=num_query_heads,
|
140
|
+
num_key_value_heads=num_key_value_heads,
|
141
|
+
moe_intermediate_dim=moe_intermediate_dim,
|
142
|
+
shared_expert_intermediate_dim=shared_expert_intermediate_dim,
|
143
|
+
num_experts=num_experts,
|
144
|
+
top_k=top_k,
|
145
|
+
norm_top_k_prob=norm_top_k_prob,
|
146
|
+
decoder_sparse_step=decoder_sparse_step,
|
147
|
+
rope_max_wavelength=rope_max_wavelength,
|
148
|
+
rope_scaling_factor=rope_scaling_factor,
|
149
|
+
layer_norm_epsilon=layer_norm_epsilon,
|
150
|
+
activation=ops.silu,
|
151
|
+
kernel_initializer=_qwen_moe_kernel_initializer(stddev=0.02),
|
152
|
+
dropout=dropout,
|
153
|
+
dtype=dtype,
|
154
|
+
use_sliding_window_attention=use_sliding_window_attention,
|
155
|
+
sliding_window_size=sliding_window_size,
|
156
|
+
output_router_logits=output_router_logits,
|
157
|
+
router_aux_loss_coefficient=router_aux_loss_coefficient,
|
158
|
+
mlp_only_layers=mlp_only_layers,
|
159
|
+
name=f"transformer_layer_{i}",
|
160
|
+
)
|
161
|
+
self.transformer_layers.append(layer)
|
162
|
+
self.layer_norm = QwenLayerNorm(
|
163
|
+
epsilon=layer_norm_epsilon,
|
164
|
+
dtype=dtype,
|
165
|
+
name="sequence_output_layernorm",
|
166
|
+
)
|
167
|
+
|
168
|
+
# === Functional Model ===
|
169
|
+
token_id_input = keras.Input(
|
170
|
+
shape=(None,), dtype="int32", name="token_ids"
|
171
|
+
)
|
172
|
+
padding_mask_input = keras.Input(
|
173
|
+
shape=(None,), dtype="int32", name="padding_mask"
|
174
|
+
)
|
175
|
+
x = self.token_embedding(token_id_input)
|
176
|
+
for transformer_layer in self.transformer_layers:
|
177
|
+
x = transformer_layer(
|
178
|
+
x, decoder_padding_mask=padding_mask_input, training=training
|
179
|
+
)
|
180
|
+
sequence_output = self.layer_norm(x)
|
181
|
+
super().__init__(
|
182
|
+
inputs={
|
183
|
+
"token_ids": token_id_input,
|
184
|
+
"padding_mask": padding_mask_input,
|
185
|
+
},
|
186
|
+
outputs=sequence_output,
|
187
|
+
dtype=dtype,
|
188
|
+
**kwargs,
|
189
|
+
)
|
190
|
+
|
191
|
+
# === Config ===
|
192
|
+
self.vocabulary_size = vocabulary_size
|
193
|
+
self.num_layers = num_layers
|
194
|
+
self.num_query_heads = num_query_heads
|
195
|
+
self.hidden_dim = hidden_dim
|
196
|
+
self.intermediate_dim = intermediate_dim
|
197
|
+
self.moe_intermediate_dim = moe_intermediate_dim
|
198
|
+
self.shared_expert_intermediate_dim = shared_expert_intermediate_dim
|
199
|
+
self.rope_max_wavelength = rope_max_wavelength
|
200
|
+
self.num_key_value_heads = num_key_value_heads
|
201
|
+
self.rope_scaling_factor = rope_scaling_factor
|
202
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
203
|
+
self.dropout = dropout
|
204
|
+
self.tie_word_embeddings = tie_word_embeddings
|
205
|
+
self.use_sliding_window_attention = use_sliding_window_attention
|
206
|
+
self.sliding_window_size = sliding_window_size
|
207
|
+
self.num_experts = num_experts
|
208
|
+
self.top_k = top_k
|
209
|
+
self.norm_top_k_prob = norm_top_k_prob
|
210
|
+
self.decoder_sparse_step = decoder_sparse_step
|
211
|
+
self.mlp_only_layers = mlp_only_layers
|
212
|
+
self.router_aux_loss_coefficient = router_aux_loss_coefficient
|
213
|
+
self.output_router_logits = output_router_logits
|
214
|
+
|
215
|
+
def get_config(self):
|
216
|
+
config = super().get_config()
|
217
|
+
config.update(
|
218
|
+
{
|
219
|
+
"vocabulary_size": self.vocabulary_size,
|
220
|
+
"num_layers": self.num_layers,
|
221
|
+
"num_query_heads": self.num_query_heads,
|
222
|
+
"hidden_dim": self.hidden_dim,
|
223
|
+
"intermediate_dim": self.intermediate_dim,
|
224
|
+
"moe_intermediate_dim": self.moe_intermediate_dim,
|
225
|
+
"shared_expert_intermediate_dim": (
|
226
|
+
self.shared_expert_intermediate_dim
|
227
|
+
),
|
228
|
+
"rope_max_wavelength": self.rope_max_wavelength,
|
229
|
+
"num_key_value_heads": self.num_key_value_heads,
|
230
|
+
"rope_scaling_factor": self.rope_scaling_factor,
|
231
|
+
"layer_norm_epsilon": self.layer_norm_epsilon,
|
232
|
+
"dropout": self.dropout,
|
233
|
+
"tie_word_embeddings": self.tie_word_embeddings,
|
234
|
+
"use_sliding_window_attention": (
|
235
|
+
self.use_sliding_window_attention
|
236
|
+
),
|
237
|
+
"sliding_window_size": self.sliding_window_size,
|
238
|
+
"num_experts": self.num_experts,
|
239
|
+
"top_k": self.top_k,
|
240
|
+
"norm_top_k_prob": self.norm_top_k_prob,
|
241
|
+
"decoder_sparse_step": self.decoder_sparse_step,
|
242
|
+
"mlp_only_layers": self.mlp_only_layers,
|
243
|
+
"output_router_logits": self.output_router_logits,
|
244
|
+
}
|
245
|
+
)
|
246
|
+
return config
|
247
|
+
|
248
|
+
@staticmethod
|
249
|
+
def get_layout_map(
|
250
|
+
device_mesh,
|
251
|
+
model_parallel_dim_name="model",
|
252
|
+
data_parallel_dim_name="batch",
|
253
|
+
):
|
254
|
+
"""Get a `keras.distribution.LayoutMap` for model parallel distribution.
|
255
|
+
|
256
|
+
The returned `LayoutMap` contains the sharding spec for the QwenMoe
|
257
|
+
backbone weights, so that you can use it to distribute weights across
|
258
|
+
the accelerators.
|
259
|
+
|
260
|
+
Example:
|
261
|
+
```
|
262
|
+
# Feel free to change the mesh shape to balance data and model
|
263
|
+
# parallelism
|
264
|
+
mesh = keras.distribution.DeviceMesh(
|
265
|
+
shape=(1, 8),
|
266
|
+
axis_names=('batch', 'model'),
|
267
|
+
devices=keras.distribution.list_devices(),
|
268
|
+
)
|
269
|
+
layout_map = QwenMoeBackbone.get_layout_map(
|
270
|
+
mesh,
|
271
|
+
model_parallel_dim_name="model",
|
272
|
+
)
|
273
|
+
|
274
|
+
distribution = keras.distribution.ModelParallel(
|
275
|
+
layout_map=layout_map,
|
276
|
+
batch_dim_name='batch',
|
277
|
+
)
|
278
|
+
|
279
|
+
with distribution.scope():
|
280
|
+
qwen_moe_model = keras_hub.models.QwenMoeBackbone.from_preset()
|
281
|
+
```
|
282
|
+
|
283
|
+
To see how the layout map was applied, load the model then run
|
284
|
+
(for one decoder block):
|
285
|
+
```
|
286
|
+
embedding_layer = qwen_moe_model.backbone.get_layer("token_embedding")
|
287
|
+
decoder_block_1 = qwen_moe_model.backbone.get_layer(
|
288
|
+
'transformer_layer_0'
|
289
|
+
)
|
290
|
+
for variable in embedding_layer.weights + decoder_block_1.weights:
|
291
|
+
print(
|
292
|
+
f'{variable.path:<58} {str(variable.shape):<16} '
|
293
|
+
f'{str(variable.value.sharding.spec)}'
|
294
|
+
)
|
295
|
+
```
|
296
|
+
|
297
|
+
Args:
|
298
|
+
device_mesh: The `keras.distribution.DeviceMesh` instance for
|
299
|
+
distribution.
|
300
|
+
model_parallel_dim_name: The axis name of the device mesh, where
|
301
|
+
the weights should be partition on.
|
302
|
+
data_parallel_dim_name: The axis name of the device mesh, where
|
303
|
+
the data should be partition on.
|
304
|
+
Return:
|
305
|
+
`keras.distribution.LayoutMap` that contains the sharding spec
|
306
|
+
for all the model weights.
|
307
|
+
"""
|
308
|
+
# The weight path and shape of the Llama backbone is like below
|
309
|
+
# token_embedding/embeddings (128256, 2048)
|
310
|
+
# repeat block for decoder
|
311
|
+
# transformer_layer_0/self_attention/query/kernel (2048, 32, 64)
|
312
|
+
# transformer_layer_0/self_attention/key/kernel (2048, 8, 64)
|
313
|
+
# transformer_layer_0/self_attention/value/kernel (2048, 8, 64)
|
314
|
+
# transformer_layer_0/self_attention/attention_output/kernel
|
315
|
+
# (32, 64, 2048)
|
316
|
+
# transformer_layer_0/self_attention_layernorm/scale (2048,)
|
317
|
+
# transformer_layer_0/feedforward_intermediate_dense/kernel
|
318
|
+
# (2048, 8192)
|
319
|
+
# transformer_layer_0/feedforward_gate_dense/kernel (2048, 8192)
|
320
|
+
# transformer_layer_0/feedforward_output_dense/kerne (8192, 2048)
|
321
|
+
# transformer_layer_0/feedforward_layernorm/scale (2048,)
|
322
|
+
|
323
|
+
if not isinstance(device_mesh, keras.distribution.DeviceMesh):
|
324
|
+
raise ValueError(
|
325
|
+
"Invalid device_mesh type. Expected "
|
326
|
+
f"`keras.distribution.Device`, got {type(device_mesh)}"
|
327
|
+
)
|
328
|
+
if model_parallel_dim_name not in device_mesh.axis_names:
|
329
|
+
raise ValueError(
|
330
|
+
f"{model_parallel_dim_name} is not found in the "
|
331
|
+
f"device_mesh.axis_names. {device_mesh.axis_name=}"
|
332
|
+
)
|
333
|
+
if data_parallel_dim_name not in device_mesh.axis_names:
|
334
|
+
raise ValueError(
|
335
|
+
f"{data_parallel_dim_name} is not found in the "
|
336
|
+
f"device_mesh.axis_names. {device_mesh.axis_name=}"
|
337
|
+
)
|
338
|
+
# Note that it is possible to further config the mesh to be 3D, eg
|
339
|
+
# (data, seq, model). We leave it as 2D for now for simplicity.
|
340
|
+
data_dim = data_parallel_dim_name
|
341
|
+
model_dim = model_parallel_dim_name
|
342
|
+
# The sharding config is based on the Gemma team training config.
|
343
|
+
# See https://arxiv.org/abs/2403.08295
|
344
|
+
layout_map = keras.distribution.LayoutMap(device_mesh)
|
345
|
+
layout_map["token_embedding/embeddings"] = (model_dim, data_dim)
|
346
|
+
layout_map[
|
347
|
+
"transformer_layer.*self_attention.*(query|key|value).kernel"
|
348
|
+
] = (
|
349
|
+
model_dim,
|
350
|
+
data_dim,
|
351
|
+
None,
|
352
|
+
)
|
353
|
+
layout_map["transformer_layer.*attention_output.kernel"] = (
|
354
|
+
model_dim,
|
355
|
+
None,
|
356
|
+
data_dim,
|
357
|
+
)
|
358
|
+
layout_map[
|
359
|
+
"transformer_layer.*feedforward_intermediate_dense.kernel"
|
360
|
+
] = (
|
361
|
+
data_dim,
|
362
|
+
model_dim,
|
363
|
+
)
|
364
|
+
layout_map["transformer_layer.*feedforward_gate_dense.kernel"] = (
|
365
|
+
data_dim,
|
366
|
+
model_dim,
|
367
|
+
)
|
368
|
+
layout_map["transformer_layer.*feedforward_output_dense.kernel"] = (
|
369
|
+
model_dim,
|
370
|
+
data_dim,
|
371
|
+
)
|
372
|
+
|
373
|
+
return layout_map
|