keras-hub-nightly 0.21.0.dev202505040408__py3-none-any.whl → 0.21.0.dev202505060405__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/models/__init__.py +21 -0
- keras_hub/src/models/backbone.py +5 -2
- keras_hub/src/models/mixtral/mixtral_attention.py +263 -0
- keras_hub/src/models/mixtral/mixtral_backbone.py +207 -0
- keras_hub/src/models/mixtral/mixtral_causal_lm.py +281 -0
- keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +76 -0
- keras_hub/src/models/mixtral/mixtral_decoder.py +494 -0
- keras_hub/src/models/mixtral/mixtral_layer_norm.py +34 -0
- keras_hub/src/models/mixtral/mixtral_tokenizer.py +21 -0
- keras_hub/src/models/qwen/qwen_attention.py +3 -1
- keras_hub/src/models/qwen/qwen_presets.py +61 -0
- keras_hub/src/models/qwen_moe/__init__.py +0 -0
- keras_hub/src/models/qwen_moe/qwen_moe_attention.py +377 -0
- keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +373 -0
- keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +350 -0
- keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +17 -0
- keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +625 -0
- keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +32 -0
- keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +46 -0
- keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -13
- keras_hub/src/models/retinanet/retinanet_presets.py +2 -2
- keras_hub/src/models/task.py +5 -2
- keras_hub/src/utils/keras_utils.py +11 -0
- keras_hub/src/utils/preset_utils.py +69 -9
- keras_hub/src/utils/tensor_utils.py +27 -1
- keras_hub/src/utils/transformers/convert_mixtral.py +139 -0
- keras_hub/src/utils/transformers/convert_qwen_moe.py +253 -0
- keras_hub/src/utils/transformers/preset_loader.py +6 -0
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +6 -0
- {keras_hub_nightly-0.21.0.dev202505040408.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.21.0.dev202505040408.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/RECORD +34 -16
- {keras_hub_nightly-0.21.0.dev202505040408.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/WHEEL +1 -1
- {keras_hub_nightly-0.21.0.dev202505040408.dist-info → keras_hub_nightly-0.21.0.dev202505060405.dist-info}/top_level.txt +0 -0
keras_hub/models/__init__.py
CHANGED
@@ -348,6 +348,18 @@ from keras_hub.src.models.mit.mit_image_classifier import (
|
|
348
348
|
from keras_hub.src.models.mit.mit_image_classifier_preprocessor import (
|
349
349
|
MiTImageClassifierPreprocessor as MiTImageClassifierPreprocessor,
|
350
350
|
)
|
351
|
+
from keras_hub.src.models.mixtral.mixtral_backbone import (
|
352
|
+
MixtralBackbone as MixtralBackbone,
|
353
|
+
)
|
354
|
+
from keras_hub.src.models.mixtral.mixtral_causal_lm import (
|
355
|
+
MixtralCausalLM as MixtralCausalLM,
|
356
|
+
)
|
357
|
+
from keras_hub.src.models.mixtral.mixtral_causal_lm_preprocessor import (
|
358
|
+
MixtralCausalLMPreprocessor as MixtralCausalLMPreprocessor,
|
359
|
+
)
|
360
|
+
from keras_hub.src.models.mixtral.mixtral_tokenizer import (
|
361
|
+
MixtralTokenizer as MixtralTokenizer,
|
362
|
+
)
|
351
363
|
from keras_hub.src.models.mobilenet.mobilenet_backbone import (
|
352
364
|
MobileNetBackbone as MobileNetBackbone,
|
353
365
|
)
|
@@ -420,6 +432,15 @@ from keras_hub.src.models.qwen.qwen_tokenizer import (
|
|
420
432
|
from keras_hub.src.models.qwen.qwen_tokenizer import (
|
421
433
|
QwenTokenizer as QwenTokenizer,
|
422
434
|
)
|
435
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_backbone import (
|
436
|
+
QwenMoeBackbone as QwenMoeBackbone,
|
437
|
+
)
|
438
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_causal_lm import (
|
439
|
+
QwenMoeCausalLM as QwenMoeCausalLM,
|
440
|
+
)
|
441
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_causal_lm_preprocessor import (
|
442
|
+
QwenMoeCausalLMPreprocessor as QwenMoeCausalLMPreprocessor,
|
443
|
+
)
|
423
444
|
from keras_hub.src.models.resnet.resnet_backbone import (
|
424
445
|
ResNetBackbone as ResNetBackbone,
|
425
446
|
)
|
keras_hub/src/models/backbone.py
CHANGED
@@ -177,14 +177,17 @@ class Backbone(keras.Model):
|
|
177
177
|
)
|
178
178
|
return loader.load_backbone(backbone_cls, load_weights, **kwargs)
|
179
179
|
|
180
|
-
def save_to_preset(self, preset_dir):
|
180
|
+
def save_to_preset(self, preset_dir, max_shard_size=10):
|
181
181
|
"""Save backbone to a preset directory.
|
182
182
|
|
183
183
|
Args:
|
184
184
|
preset_dir: The path to the local model preset directory.
|
185
|
+
max_shard_size: `int` or `float`. Maximum size in GB for each
|
186
|
+
sharded file. If `None`, no sharding will be done. Defaults to
|
187
|
+
`10`.
|
185
188
|
"""
|
186
189
|
saver = get_preset_saver(preset_dir)
|
187
|
-
saver.save_backbone(self)
|
190
|
+
saver.save_backbone(self, max_shard_size=max_shard_size)
|
188
191
|
|
189
192
|
def get_lora_target_names(self):
|
190
193
|
"""Returns list of layer names which are to be LoRA-fied.
|
@@ -0,0 +1,263 @@
|
|
1
|
+
import inspect
|
2
|
+
import math
|
3
|
+
|
4
|
+
import keras
|
5
|
+
from keras import ops
|
6
|
+
|
7
|
+
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
8
|
+
from keras_hub.src.utils.keras_utils import clone_initializer
|
9
|
+
from keras_hub.src.utils.keras_utils import fused_attention_op_available
|
10
|
+
from keras_hub.src.utils.keras_utils import gpu_supports_fused_attention_op
|
11
|
+
from keras_hub.src.utils.keras_utils import running_on_gpu
|
12
|
+
from keras_hub.src.utils.keras_utils import running_on_tpu
|
13
|
+
|
14
|
+
|
15
|
+
class CachedMixtralAttention(keras.layers.Layer):
|
16
|
+
"""A cached grounded query attention layer with sliding window."""
|
17
|
+
|
18
|
+
def __init__(
|
19
|
+
self,
|
20
|
+
num_query_heads,
|
21
|
+
num_key_value_heads,
|
22
|
+
rope_max_wavelength=10000,
|
23
|
+
rope_scaling_factor=1.0,
|
24
|
+
kernel_initializer="glorot_uniform",
|
25
|
+
sliding_window=512,
|
26
|
+
dropout=0,
|
27
|
+
**kwargs,
|
28
|
+
):
|
29
|
+
super().__init__(**kwargs)
|
30
|
+
self._num_query_heads = num_query_heads
|
31
|
+
self._num_key_value_heads = num_key_value_heads
|
32
|
+
self._sliding_window = sliding_window
|
33
|
+
self._dropout = dropout
|
34
|
+
|
35
|
+
self._num_key_value_groups = num_query_heads // num_key_value_heads
|
36
|
+
self._rope_max_wavelength = rope_max_wavelength
|
37
|
+
|
38
|
+
self._kernel_initializer = keras.initializers.get(
|
39
|
+
clone_initializer(kernel_initializer)
|
40
|
+
)
|
41
|
+
|
42
|
+
self._rope_scaling_factor = rope_scaling_factor
|
43
|
+
|
44
|
+
def build(self, inputs_shape):
|
45
|
+
# Einsum variables:
|
46
|
+
# b = batch size
|
47
|
+
# q = query length
|
48
|
+
# k = key/value length
|
49
|
+
# m = model dim
|
50
|
+
# u = num query heads
|
51
|
+
# v = num key/value heads
|
52
|
+
# h = head dim
|
53
|
+
self._hidden_dim = inputs_shape[-1]
|
54
|
+
self._head_dim = self._hidden_dim // self._num_query_heads
|
55
|
+
self._inv_norm_factor = 1.0 / math.sqrt(self._head_dim)
|
56
|
+
|
57
|
+
self.query_dense = keras.layers.EinsumDense(
|
58
|
+
equation="bqm,muh->bquh",
|
59
|
+
output_shape=(None, self._num_query_heads, self._head_dim),
|
60
|
+
kernel_initializer=self._kernel_initializer,
|
61
|
+
dtype=self.dtype_policy,
|
62
|
+
name="query",
|
63
|
+
)
|
64
|
+
self.query_dense.build(inputs_shape)
|
65
|
+
|
66
|
+
self.key_dense = keras.layers.EinsumDense(
|
67
|
+
equation="bkm,mvh->bkvh",
|
68
|
+
output_shape=(
|
69
|
+
None,
|
70
|
+
self._num_key_value_heads,
|
71
|
+
self._head_dim,
|
72
|
+
),
|
73
|
+
kernel_initializer=self._kernel_initializer,
|
74
|
+
dtype=self.dtype_policy,
|
75
|
+
name="key",
|
76
|
+
)
|
77
|
+
self.key_dense.build(inputs_shape)
|
78
|
+
|
79
|
+
self.value_dense = keras.layers.EinsumDense(
|
80
|
+
equation="bkm,mvh->bkvh",
|
81
|
+
output_shape=(
|
82
|
+
None,
|
83
|
+
self._num_key_value_heads,
|
84
|
+
self._head_dim,
|
85
|
+
),
|
86
|
+
kernel_initializer=self._kernel_initializer,
|
87
|
+
dtype=self.dtype_policy,
|
88
|
+
name="value",
|
89
|
+
)
|
90
|
+
self.value_dense.build(inputs_shape)
|
91
|
+
|
92
|
+
self._softmax = keras.layers.Softmax(
|
93
|
+
axis=-1,
|
94
|
+
dtype="float32",
|
95
|
+
name="attention_softmax",
|
96
|
+
)
|
97
|
+
|
98
|
+
self._dropout_layer = keras.layers.Dropout(
|
99
|
+
rate=self._dropout,
|
100
|
+
dtype=self.dtype_policy,
|
101
|
+
)
|
102
|
+
|
103
|
+
self._output_dense = keras.layers.EinsumDense(
|
104
|
+
equation="bquh,uhm->bqm",
|
105
|
+
output_shape=(None, self._hidden_dim),
|
106
|
+
kernel_initializer=self._kernel_initializer,
|
107
|
+
dtype=self.dtype_policy,
|
108
|
+
name="attention_output",
|
109
|
+
)
|
110
|
+
self._output_dense.build(
|
111
|
+
(None, None, self._num_query_heads, self._head_dim)
|
112
|
+
)
|
113
|
+
|
114
|
+
self.rotary_embedding_layer = RotaryEmbedding(
|
115
|
+
max_wavelength=self._rope_max_wavelength,
|
116
|
+
scaling_factor=self._rope_scaling_factor,
|
117
|
+
dtype=self.dtype_policy,
|
118
|
+
)
|
119
|
+
|
120
|
+
self._dot_product_equation = "bquh,bkuh->buqk"
|
121
|
+
self._combine_equation = "buqk,bkuh->bquh"
|
122
|
+
|
123
|
+
self.built = True
|
124
|
+
|
125
|
+
def call(
|
126
|
+
self,
|
127
|
+
hidden_states,
|
128
|
+
attention_mask=None,
|
129
|
+
cache=None,
|
130
|
+
cache_update_index=None,
|
131
|
+
training=None,
|
132
|
+
):
|
133
|
+
start_index = (
|
134
|
+
cache_update_index if cache_update_index is not None else 0
|
135
|
+
)
|
136
|
+
|
137
|
+
query = self.query_dense(hidden_states)
|
138
|
+
|
139
|
+
# Compute RoPE for queries
|
140
|
+
query = self.rotary_embedding_layer(query, start_index=start_index)
|
141
|
+
|
142
|
+
def _compute_key_value(x):
|
143
|
+
key, value = self.key_dense(x), self.value_dense(x)
|
144
|
+
# Compute RoPE for keys
|
145
|
+
key = self.rotary_embedding_layer(key, start_index=start_index)
|
146
|
+
return key, value
|
147
|
+
|
148
|
+
if cache is not None:
|
149
|
+
key_cache = cache[:, 0, ...]
|
150
|
+
value_cache = cache[:, 1, ...]
|
151
|
+
if cache_update_index is None:
|
152
|
+
key = key_cache
|
153
|
+
value = value_cache
|
154
|
+
else:
|
155
|
+
key_update, value_update = _compute_key_value(hidden_states)
|
156
|
+
start = [0, cache_update_index, 0, 0]
|
157
|
+
key = ops.slice_update(key_cache, start, key_update)
|
158
|
+
value = ops.slice_update(value_cache, start, value_update)
|
159
|
+
cache = ops.stack((key, value), axis=1)
|
160
|
+
else:
|
161
|
+
if cache_update_index is not None:
|
162
|
+
raise ValueError(
|
163
|
+
"`cache_update_index` should not be set if `cache` is "
|
164
|
+
f"`None`. Received: cache={cache}, "
|
165
|
+
f"cache_update_index={cache_update_index}"
|
166
|
+
)
|
167
|
+
key, value = _compute_key_value(hidden_states)
|
168
|
+
|
169
|
+
# [batch_shape, seq_len, num_key_value_heads, head_dim]
|
170
|
+
# -> [batch_shape, seq_len, num_heads, head_dim]
|
171
|
+
key = ops.repeat(key, repeats=self._num_key_value_groups, axis=2)
|
172
|
+
value = ops.repeat(value, repeats=self._num_key_value_groups, axis=2)
|
173
|
+
|
174
|
+
attention_output = self._compute_attention(
|
175
|
+
query, key, value, attention_mask
|
176
|
+
)
|
177
|
+
|
178
|
+
attention_output = self._dropout_layer(
|
179
|
+
attention_output, training=training
|
180
|
+
)
|
181
|
+
|
182
|
+
attention_output = self._output_dense(attention_output)
|
183
|
+
|
184
|
+
if cache is not None:
|
185
|
+
return attention_output, cache
|
186
|
+
return attention_output
|
187
|
+
|
188
|
+
def _masked_softmax(self, attention_scores, attention_mask=None):
|
189
|
+
if attention_mask is not None:
|
190
|
+
return self._softmax(
|
191
|
+
attention_scores, attention_mask[:, None, :, :]
|
192
|
+
)
|
193
|
+
return self._softmax(attention_scores)
|
194
|
+
|
195
|
+
def _use_fused_attention_op(self):
|
196
|
+
if not fused_attention_op_available():
|
197
|
+
return False
|
198
|
+
if self.dropout > 0.0:
|
199
|
+
return False
|
200
|
+
if running_on_gpu():
|
201
|
+
# GPU never supports softcap in the fused op.
|
202
|
+
if self.logit_soft_cap is not None:
|
203
|
+
return False
|
204
|
+
return gpu_supports_fused_attention_op()
|
205
|
+
elif running_on_tpu():
|
206
|
+
# TPU supports softcap with on keras >= 3.10.
|
207
|
+
sig = inspect.signature(ops.dot_product_attention)
|
208
|
+
return "attn_logits_soft_cap" in sig.parameters
|
209
|
+
else:
|
210
|
+
return False
|
211
|
+
|
212
|
+
def _compute_attention(self, query, key, value, attention_mask=None):
|
213
|
+
if self._use_fused_attention_op():
|
214
|
+
if attention_mask is not None:
|
215
|
+
attention_mask = ops.expand_dims(attention_mask, axis=1)
|
216
|
+
attention_mask = ops.cast(attention_mask, dtype="bool")
|
217
|
+
|
218
|
+
if self.logit_soft_cap:
|
219
|
+
kwargs = {"attn_logits_soft_cap": self.logit_soft_cap}
|
220
|
+
else:
|
221
|
+
kwargs = {}
|
222
|
+
|
223
|
+
attention_output = ops.dot_product_attention(
|
224
|
+
query,
|
225
|
+
key,
|
226
|
+
value,
|
227
|
+
mask=attention_mask,
|
228
|
+
scale=self._inv_norm_factor,
|
229
|
+
**kwargs,
|
230
|
+
)
|
231
|
+
return attention_output
|
232
|
+
|
233
|
+
attention_scores = ops.einsum(self._dot_product_equation, query, key)
|
234
|
+
attention_scores = ops.multiply(
|
235
|
+
attention_scores,
|
236
|
+
ops.cast(self._inv_norm_factor, self.compute_dtype),
|
237
|
+
)
|
238
|
+
attention_scores = self._masked_softmax(
|
239
|
+
attention_scores, attention_mask
|
240
|
+
)
|
241
|
+
attention_scores = ops.cast(attention_scores, self.compute_dtype)
|
242
|
+
attention_output = ops.einsum(
|
243
|
+
self._combine_equation, attention_scores, value
|
244
|
+
)
|
245
|
+
|
246
|
+
return attention_output
|
247
|
+
|
248
|
+
def get_config(self):
|
249
|
+
config = super().get_config()
|
250
|
+
config.update(
|
251
|
+
{
|
252
|
+
"num_query_heads": self._num_query_heads,
|
253
|
+
"num_key_value_heads": self._num_key_value_heads,
|
254
|
+
"rope_max_wavelength": self._rope_max_wavelength,
|
255
|
+
"rope_scaling_factor": self._rope_scaling_factor,
|
256
|
+
"kernel_initializer": keras.initializers.serialize(
|
257
|
+
self._kernel_initializer
|
258
|
+
),
|
259
|
+
"sliding_window": self._sliding_window,
|
260
|
+
"dropout": self._dropout,
|
261
|
+
}
|
262
|
+
)
|
263
|
+
return config
|
@@ -0,0 +1,207 @@
|
|
1
|
+
import keras
|
2
|
+
from keras import ops
|
3
|
+
|
4
|
+
from keras_hub.src.api_export import keras_hub_export
|
5
|
+
from keras_hub.src.layers.modeling.reversible_embedding import (
|
6
|
+
ReversibleEmbedding,
|
7
|
+
)
|
8
|
+
from keras_hub.src.models.backbone import Backbone
|
9
|
+
from keras_hub.src.models.mixtral.mixtral_decoder import (
|
10
|
+
MixtralTransformerDecoder,
|
11
|
+
)
|
12
|
+
from keras_hub.src.models.mixtral.mixtral_layer_norm import (
|
13
|
+
MixtralLayerNormalization,
|
14
|
+
)
|
15
|
+
|
16
|
+
|
17
|
+
def _mixtral_kernel_initializer(stddev=0.02):
|
18
|
+
return keras.initializers.RandomNormal(stddev=stddev)
|
19
|
+
|
20
|
+
|
21
|
+
@keras_hub_export("keras_hub.models.MixtralBackbone")
|
22
|
+
class MixtralBackbone(Backbone):
|
23
|
+
"""The Mixtral Transformer core architecture with hyperparameters.
|
24
|
+
|
25
|
+
This network implements a mixture of Experts based decoder network,
|
26
|
+
Mixtral, as described in
|
27
|
+
["Mixtral of Experts"](https://arxiv.org/pdf/2401.04088).
|
28
|
+
It includes the embedding lookups and transformer layers.
|
29
|
+
|
30
|
+
The default constructor gives a fully customizable, randomly initialized
|
31
|
+
Mixtral model with any number of layers, heads, and embedding
|
32
|
+
dimensions. To load preset architectures and weights, use the `from_preset`
|
33
|
+
constructor.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
vocabulary_size (int): The size of the token vocabulary.
|
37
|
+
num_layers (int): The number of transformer layers.
|
38
|
+
num_query_heads (int): The number of query attention heads for
|
39
|
+
each transformer.
|
40
|
+
hidden_dim (int): The size of the transformer encoding and pooling
|
41
|
+
layers.
|
42
|
+
intermediate_dim (int): The output dimension of the first Dense layer
|
43
|
+
in a three-layer feedforward network for each transformer.
|
44
|
+
num_key_value_heads (int): The number of key and value attention heads
|
45
|
+
for each transformer.
|
46
|
+
rope_max_wavelength (int, optional): The maximum angular wavelength of
|
47
|
+
the sine/cosine curves, for rotary embeddings. Defaults to `10000`.
|
48
|
+
rope_scaling_factor (float, optional): The scaling factor for
|
49
|
+
calculation of roatary embedding. Defaults to `1.0`.
|
50
|
+
layer_norm_epsilon (float, optional): Epsilon for the layer
|
51
|
+
normalization layers in the transformer decoder. Defaults to `1e-6`.
|
52
|
+
sliding_window (int, optional): The sliding window for the mixtral
|
53
|
+
attention layers. This controls the maximum cache size for the
|
54
|
+
attention layers in each transformer decoder. Only `sliding_window`
|
55
|
+
number of tokens are saved in the cache and used to generate the
|
56
|
+
next token. Defaults to `512`.
|
57
|
+
dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
|
58
|
+
for model computations and weights. Note that some computations,
|
59
|
+
such as softmax and layer normalization, will always be done at
|
60
|
+
float32 precision regardless of dtype.
|
61
|
+
|
62
|
+
Examples:
|
63
|
+
|
64
|
+
```python
|
65
|
+
input_data = {
|
66
|
+
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
|
67
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
|
68
|
+
}
|
69
|
+
|
70
|
+
# Pretrained Mixtral decoder.
|
71
|
+
model = keras_hub.models.MixtralBackbone.from_preset("mixtral7b_base_en")
|
72
|
+
model(input_data)
|
73
|
+
|
74
|
+
# Randomly initialized Mixtral decoder with custom config.
|
75
|
+
model = keras_hub.models.MixtralBackbone(
|
76
|
+
vocabulary_size=10,
|
77
|
+
hidden_dim=512,
|
78
|
+
num_layers=2,
|
79
|
+
num_query_heads=32,
|
80
|
+
num_key_value_heads=8,
|
81
|
+
intermediate_dim=1024,
|
82
|
+
sliding_window=512,
|
83
|
+
layer_norm_epsilon=1e-6,
|
84
|
+
dtype="float32"
|
85
|
+
)
|
86
|
+
model(input_data)
|
87
|
+
```
|
88
|
+
"""
|
89
|
+
|
90
|
+
def __init__(
|
91
|
+
self,
|
92
|
+
vocabulary_size,
|
93
|
+
num_layers,
|
94
|
+
num_query_heads,
|
95
|
+
hidden_dim,
|
96
|
+
intermediate_dim,
|
97
|
+
num_key_value_heads,
|
98
|
+
num_experts,
|
99
|
+
top_k=2,
|
100
|
+
router_jitter_noise=0.0,
|
101
|
+
rope_max_wavelength=10000,
|
102
|
+
rope_scaling_factor=1.0,
|
103
|
+
layer_norm_epsilon=1e-6,
|
104
|
+
router_aux_loss_coef=0.02,
|
105
|
+
sliding_window=512,
|
106
|
+
dropout=0,
|
107
|
+
dtype=None,
|
108
|
+
output_router_logits=False,
|
109
|
+
**kwargs,
|
110
|
+
):
|
111
|
+
# === Layers ===
|
112
|
+
self.token_embedding = ReversibleEmbedding(
|
113
|
+
input_dim=vocabulary_size,
|
114
|
+
output_dim=hidden_dim,
|
115
|
+
tie_weights=False,
|
116
|
+
embeddings_initializer=_mixtral_kernel_initializer(stddev=0.01),
|
117
|
+
dtype=dtype,
|
118
|
+
name="token_embedding",
|
119
|
+
)
|
120
|
+
self.transformer_layers = []
|
121
|
+
for i in range(num_layers):
|
122
|
+
layer = MixtralTransformerDecoder(
|
123
|
+
intermediate_dim=intermediate_dim,
|
124
|
+
num_query_heads=num_query_heads,
|
125
|
+
num_key_value_heads=num_key_value_heads,
|
126
|
+
num_experts=num_experts,
|
127
|
+
top_k=top_k,
|
128
|
+
router_jitter_noise=router_jitter_noise,
|
129
|
+
output_router_logits=output_router_logits,
|
130
|
+
rope_max_wavelength=rope_max_wavelength,
|
131
|
+
rope_scaling_factor=rope_scaling_factor,
|
132
|
+
layer_norm_epsilon=layer_norm_epsilon,
|
133
|
+
activation=ops.silu,
|
134
|
+
router_aux_loss_coef=router_aux_loss_coef,
|
135
|
+
kernel_initializer=_mixtral_kernel_initializer(stddev=0.02),
|
136
|
+
sliding_window=sliding_window,
|
137
|
+
dropout=dropout,
|
138
|
+
dtype=dtype,
|
139
|
+
name=f"transformer_layer_{i}",
|
140
|
+
)
|
141
|
+
self.transformer_layers.append(layer)
|
142
|
+
self.layer_norm = MixtralLayerNormalization(
|
143
|
+
epsilon=layer_norm_epsilon,
|
144
|
+
dtype=dtype,
|
145
|
+
name="sequence_output_layernorm",
|
146
|
+
)
|
147
|
+
|
148
|
+
# === Functional Model ===
|
149
|
+
token_id_input = keras.Input(
|
150
|
+
shape=(None,), dtype="int32", name="token_ids"
|
151
|
+
)
|
152
|
+
padding_mask_input = keras.Input(
|
153
|
+
shape=(None,), dtype="int32", name="padding_mask"
|
154
|
+
)
|
155
|
+
x = self.token_embedding(token_id_input)
|
156
|
+
for transformer_layer in self.transformer_layers:
|
157
|
+
x = transformer_layer(x, decoder_padding_mask=padding_mask_input)
|
158
|
+
sequence_output = self.layer_norm(x)
|
159
|
+
super().__init__(
|
160
|
+
inputs={
|
161
|
+
"token_ids": token_id_input,
|
162
|
+
"padding_mask": padding_mask_input,
|
163
|
+
},
|
164
|
+
outputs=sequence_output,
|
165
|
+
dtype=dtype,
|
166
|
+
**kwargs,
|
167
|
+
)
|
168
|
+
|
169
|
+
# === Config ===
|
170
|
+
self.vocabulary_size = vocabulary_size
|
171
|
+
self.num_layers = num_layers
|
172
|
+
self.num_query_heads = num_query_heads
|
173
|
+
self.hidden_dim = hidden_dim
|
174
|
+
self.intermediate_dim = intermediate_dim
|
175
|
+
self.num_key_value_heads = num_key_value_heads
|
176
|
+
self.num_experts = num_experts
|
177
|
+
self.top_k = top_k
|
178
|
+
self.router_jitter_noise = router_jitter_noise
|
179
|
+
self.rope_max_wavelength = rope_max_wavelength
|
180
|
+
self.router_aux_loss_coef = router_aux_loss_coef
|
181
|
+
self.rope_scaling_factor = rope_scaling_factor
|
182
|
+
self.sliding_window = sliding_window
|
183
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
184
|
+
self.dropout = dropout
|
185
|
+
|
186
|
+
def get_config(self):
|
187
|
+
config = super().get_config()
|
188
|
+
config.update(
|
189
|
+
{
|
190
|
+
"vocabulary_size": self.vocabulary_size,
|
191
|
+
"num_layers": self.num_layers,
|
192
|
+
"num_query_heads": self.num_query_heads,
|
193
|
+
"hidden_dim": self.hidden_dim,
|
194
|
+
"intermediate_dim": self.intermediate_dim,
|
195
|
+
"num_experts": self.num_experts,
|
196
|
+
"top_k": self.top_k,
|
197
|
+
"router_jitter_noise": self.router_jitter_noise,
|
198
|
+
"rope_max_wavelength": self.rope_max_wavelength,
|
199
|
+
"rope_scaling_factor": self.rope_scaling_factor,
|
200
|
+
"num_key_value_heads": self.num_key_value_heads,
|
201
|
+
"router_aux_loss_coef": self.router_aux_loss_coef,
|
202
|
+
"sliding_window": self.sliding_window,
|
203
|
+
"layer_norm_epsilon": self.layer_norm_epsilon,
|
204
|
+
"dropout": self.dropout,
|
205
|
+
}
|
206
|
+
)
|
207
|
+
return config
|