keras-hub-nightly 0.19.0.dev202412230348__py3-none-any.whl → 0.19.0.dev202412250345__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. keras_hub/src/layers/modeling/reversible_embedding.py +3 -16
  2. keras_hub/src/models/albert/albert_presets.py +4 -4
  3. keras_hub/src/models/backbone.py +0 -5
  4. keras_hub/src/models/bart/bart_presets.py +3 -3
  5. keras_hub/src/models/bert/bert_presets.py +10 -10
  6. keras_hub/src/models/bloom/bloom_presets.py +8 -8
  7. keras_hub/src/models/clip/clip_presets.py +8 -8
  8. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +5 -5
  9. keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +1 -1
  10. keras_hub/src/models/densenet/densenet_presets.py +3 -3
  11. keras_hub/src/models/distil_bert/distil_bert_presets.py +3 -3
  12. keras_hub/src/models/efficientnet/efficientnet_backbone.py +10 -6
  13. keras_hub/src/models/efficientnet/efficientnet_presets.py +16 -16
  14. keras_hub/src/models/electra/electra_presets.py +6 -6
  15. keras_hub/src/models/f_net/f_net_presets.py +2 -2
  16. keras_hub/src/models/falcon/falcon_presets.py +1 -1
  17. keras_hub/src/models/gemma/gemma_presets.py +20 -20
  18. keras_hub/src/models/gpt2/gpt2_presets.py +5 -5
  19. keras_hub/src/models/llama/llama_presets.py +5 -5
  20. keras_hub/src/models/llama3/llama3_presets.py +4 -4
  21. keras_hub/src/models/mistral/mistral_presets.py +3 -3
  22. keras_hub/src/models/mit/mit_presets.py +12 -12
  23. keras_hub/src/models/opt/opt_presets.py +4 -4
  24. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +16 -16
  25. keras_hub/src/models/phi3/phi3_presets.py +2 -2
  26. keras_hub/src/models/resnet/resnet_presets.py +16 -16
  27. keras_hub/src/models/retinanet/retinanet_presets.py +1 -1
  28. keras_hub/src/models/roberta/roberta_presets.py +2 -2
  29. keras_hub/src/models/sam/sam_presets.py +3 -3
  30. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
  31. keras_hub/src/models/t5/t5_presets.py +11 -11
  32. keras_hub/src/models/vgg/vgg_presets.py +4 -4
  33. keras_hub/src/models/vit/vit_presets.py +4 -4
  34. keras_hub/src/models/whisper/whisper_presets.py +10 -10
  35. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +2 -2
  36. keras_hub/src/tests/test_case.py +1 -2
  37. keras_hub/src/utils/keras_utils.py +2 -13
  38. keras_hub/src/utils/preset_utils.py +34 -45
  39. keras_hub/src/version_utils.py +1 -1
  40. {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412250345.dist-info}/METADATA +3 -2
  41. {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412250345.dist-info}/RECORD +43 -43
  42. {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412250345.dist-info}/WHEEL +0 -0
  43. {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412250345.dist-info}/top_level.txt +0 -0
@@ -15,7 +15,6 @@ from keras_hub.src.layers.modeling.reversible_embedding import (
15
15
  )
16
16
  from keras_hub.src.models.retinanet.feature_pyramid import FeaturePyramid
17
17
  from keras_hub.src.tokenizers.tokenizer import Tokenizer
18
- from keras_hub.src.utils.keras_utils import has_quantization_support
19
18
  from keras_hub.src.utils.tensor_utils import is_float_dtype
20
19
 
21
20
 
@@ -487,7 +486,7 @@ class TestCase(tf.test.TestCase, parameterized.TestCase):
487
486
  self.run_precision_test(cls, init_kwargs, input_data)
488
487
 
489
488
  # Check quantization.
490
- if run_quantization_check and has_quantization_support():
489
+ if run_quantization_check:
491
490
  self.run_quantization_test(backbone, cls, init_kwargs, input_data)
492
491
 
493
492
  def run_vision_backbone_test(
@@ -2,7 +2,6 @@ import sys
2
2
 
3
3
  import keras
4
4
  from absl import logging
5
- from packaging.version import parse
6
5
 
7
6
  try:
8
7
  import tensorflow as tf
@@ -36,23 +35,13 @@ def print_msg(message, line_break=True):
36
35
  logging.info(message)
37
36
 
38
37
 
38
+ # Register twice for backwards compat.
39
39
  @keras.saving.register_keras_serializable(package="keras_hub")
40
+ @keras.saving.register_keras_serializable(package="keras_nlp")
40
41
  def gelu_approximate(x):
41
42
  return keras.activations.gelu(x, approximate=True)
42
43
 
43
44
 
44
- def has_quantization_support():
45
- return False if parse(keras.version()) < parse("3.4.0") else True
46
-
47
-
48
- def assert_quantization_support():
49
- if not has_quantization_support():
50
- raise ValueError(
51
- "Quantization API requires Keras >= 3.4.0 to function "
52
- f"correctly. Received: '{keras.version()}'"
53
- )
54
-
55
-
56
45
  def standardize_data_format(data_format):
57
46
  if data_format is None:
58
47
  return keras.config.image_data_format()
@@ -7,20 +7,10 @@ import re
7
7
 
8
8
  import keras
9
9
  from absl import logging
10
- from packaging.version import parse
11
10
 
12
11
  from keras_hub.src.api_export import keras_hub_export
13
12
  from keras_hub.src.utils.keras_utils import print_msg
14
13
 
15
- try:
16
- import tensorflow as tf
17
- except ImportError:
18
- raise ImportError(
19
- "To use `keras_hub`, please install Tensorflow: "
20
- "`pip install tensorflow`. The TensorFlow package is required for data "
21
- "preprocessing with any backend."
22
- )
23
-
24
14
  try:
25
15
  import kagglehub
26
16
  from kagglehub.exceptions import KaggleApiHTTPError
@@ -173,22 +163,8 @@ def get_file(preset, path):
173
163
  )
174
164
  else:
175
165
  raise ValueError(message)
176
-
177
- elif scheme in tf.io.gfile.get_registered_schemes():
178
- url = os.path.join(preset, path)
179
- subdir = preset.replace("://", "_").replace("-", "_").replace("/", "_")
180
- filename = os.path.basename(path)
181
- subdir = os.path.join(subdir, os.path.dirname(path))
182
- try:
183
- return copy_gfile_to_cache(
184
- filename,
185
- url,
186
- cache_subdir=os.path.join("models", subdir),
187
- )
188
- except (tf.errors.PermissionDeniedError, tf.errors.NotFoundError) as e:
189
- raise FileNotFoundError(
190
- f"`{path}` doesn't exist in preset directory `{preset}`.",
191
- ) from e
166
+ elif scheme in tf_registered_schemes():
167
+ return tf_copy_gfile_to_cache(preset, path)
192
168
  elif scheme == HF_SCHEME:
193
169
  if huggingface_hub is None:
194
170
  raise ImportError(
@@ -237,29 +213,48 @@ def get_file(preset, path):
237
213
  )
238
214
 
239
215
 
240
- def copy_gfile_to_cache(filename, url, cache_subdir):
216
+ def tf_registered_schemes():
217
+ try:
218
+ import tensorflow as tf
219
+
220
+ return tf.io.gfile.get_registered_schemes()
221
+ except ImportError:
222
+ return []
223
+
224
+
225
+ def tf_copy_gfile_to_cache(preset, path):
241
226
  """Much of this is adapted from get_file of keras core."""
242
227
  if "KERAS_HOME" in os.environ:
243
- cachdir_base = os.environ.get("KERAS_HOME")
228
+ base_dir = os.environ.get("KERAS_HOME")
244
229
  else:
245
- cachdir_base = os.path.expanduser(os.path.join("~", ".keras"))
246
- if not os.access(cachdir_base, os.W_OK):
247
- cachdir_base = os.path.join("/tmp", ".keras")
248
- cachedir = os.path.join(cachdir_base, cache_subdir)
249
- os.makedirs(cachedir, exist_ok=True)
250
-
251
- fpath = os.path.join(cachedir, filename)
252
- if not os.path.exists(fpath):
230
+ base_dir = os.path.expanduser(os.path.join("~", ".keras"))
231
+ if not os.access(base_dir, os.W_OK):
232
+ base_dir = os.path.join("/tmp", ".keras")
233
+
234
+ url = os.path.join(preset, path)
235
+ model_dir = preset.replace("://", "_").replace("-", "_").replace("/", "_")
236
+ local_path = os.path.join(base_dir, "models", model_dir, path)
237
+
238
+ if not os.path.exists(local_path):
253
239
  print_msg(f"Downloading data from {url}")
254
240
  try:
255
- tf.io.gfile.copy(url, fpath)
241
+ import tensorflow as tf
242
+
243
+ os.make_dirs(os.path.dirname(local_path), exist_ok=True)
244
+ tf.io.gfile.copy(url, local_path)
256
245
  except Exception as e:
257
246
  # gfile.copy will leave an empty file after an error.
258
247
  # Work around this bug.
259
- os.remove(fpath)
248
+ os.remove(local_path)
249
+ if isinstance(
250
+ e, tf.errors.PermissionDeniedError, tf.errors.NotFoundError
251
+ ):
252
+ raise FileNotFoundError(
253
+ f"`{path}` doesn't exist in preset directory `{preset}`.",
254
+ ) from e
260
255
  raise e
261
256
 
262
- return fpath
257
+ return local_path
263
258
 
264
259
 
265
260
  def check_file_exists(preset, path):
@@ -394,12 +389,6 @@ def upload_preset(
394
389
  "Uploading a model to Kaggle Hub requires the `kagglehub` "
395
390
  "package. Please install with `pip install kagglehub`."
396
391
  )
397
- if parse(kagglehub.__version__) < parse("0.2.4"):
398
- raise ImportError(
399
- "Uploading a model to Kaggle Hub requires the `kagglehub` "
400
- "package version `0.2.4` or higher. Please upgrade with "
401
- "`pip install --upgrade kagglehub`."
402
- )
403
392
  kaggle_handle = uri.removeprefix(KAGGLE_PREFIX)
404
393
  kagglehub.model_upload(kaggle_handle, preset)
405
394
  elif uri.startswith(HF_PREFIX):
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.19.0.dev202412230348"
4
+ __version__ = "0.19.0.dev202412250345"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202412230348
3
+ Version: 0.19.0.dev202412250345
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -20,13 +20,14 @@ Classifier: Topic :: Scientific/Engineering
20
20
  Classifier: Topic :: Software Development
21
21
  Requires-Python: >=3.9
22
22
  Description-Content-Type: text/markdown
23
+ Requires-Dist: keras>=3.5
23
24
  Requires-Dist: absl-py
24
25
  Requires-Dist: numpy
25
26
  Requires-Dist: packaging
26
27
  Requires-Dist: regex
27
28
  Requires-Dist: rich
28
29
  Requires-Dist: kagglehub
29
- Requires-Dist: tensorflow-text; platform_system != "Darwin"
30
+ Requires-Dist: tensorflow-text
30
31
  Provides-Extra: extras
31
32
  Requires-Dist: rouge-score; extra == "extras"
32
33
  Requires-Dist: sentencepiece; extra == "extras"
@@ -9,7 +9,7 @@ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzc
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=QPQJ5xMiyHa61iqdrzyKq-QHP5ISj-BBBzb0gglhpHo,222
12
+ keras_hub/src/version_utils.py,sha256=r-Pnv0jx-lpV1_8SUZ1z0GNKBjoNKlHCMvp3MRSBBFo,222
13
13
  keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
14
14
  keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
@@ -25,7 +25,7 @@ keras_hub/src/layers/modeling/cached_multi_head_attention.py,sha256=8IDyP3JMeALV
25
25
  keras_hub/src/layers/modeling/f_net_encoder.py,sha256=zkVeO5Nk_kBZCUGq2LeDGmPEIM_cr-aGqCKtQGOHKTY,6842
26
26
  keras_hub/src/layers/modeling/masked_lm_head.py,sha256=no6XQb76KB2cUiksYC0MSdyeDOK7pn8MY6cmdCDxpKs,9015
27
27
  keras_hub/src/layers/modeling/position_embedding.py,sha256=FfTS6JGMhnOIzo9bHzvoxBbdQNctc32iRLI7ZjdxoTY,3850
28
- keras_hub/src/layers/modeling/reversible_embedding.py,sha256=HEkVACePzuHcSuAliyhtu-fsly7t3m1zKOwaMRAUzyE,11810
28
+ keras_hub/src/layers/modeling/reversible_embedding.py,sha256=sfm5giI-bHu2J9xm9Tkydx8XM-I_m8Oe0wbW1gzrYjk,11141
29
29
  keras_hub/src/layers/modeling/rms_normalization.py,sha256=Ylnc9vkDw1A_ZqiKpQ09jVTAGumS5rspjdQOkH-mxf4,1084
30
30
  keras_hub/src/layers/modeling/rotary_embedding.py,sha256=BuMD2dCyZi73Eokddx8Q9cFb4pJVlOL2OgFwsom2p8I,6059
31
31
  keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=NAPW9HaVTMNZgUJNzA3l1B3C_FNvaY7IW-5tQgFgnNg,3453
@@ -50,7 +50,7 @@ keras_hub/src/metrics/rouge_base.py,sha256=Pt2DUznhTTeR-fX1nQ_wSbPtmuTgxQTvrGpu8
50
50
  keras_hub/src/metrics/rouge_l.py,sha256=JlZhMBV6wS_6zMd57pkTc6yxHkEJT9fVQMlPZKekQzQ,2729
51
51
  keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemupRc,3620
52
52
  keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
- keras_hub/src/models/backbone.py,sha256=2OZx6WAx2q9JK2yue5BoUUipIBjpOJRVNnMjXLVDLRk,11185
53
+ keras_hub/src/models/backbone.py,sha256=lOv8id2qCkewrtBOrSObc3_nh_WOfsHsgGlIBsHug7g,10986
54
54
  keras_hub/src/models/causal_lm.py,sha256=ReaF-i3SHsCkHh4c28jM72QjMQ8x7yiCwG39FRb-7KE,16786
55
55
  keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
56
56
  keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
@@ -75,13 +75,13 @@ keras_hub/src/models/albert/__init__.py,sha256=rR6q_-8FujB1FXp6r4KOI7xi4gFjtAhQw
75
75
  keras_hub/src/models/albert/albert_backbone.py,sha256=4NQFo8lhv8rFiNIwQeZxxKxFwT3nKcCt36FUa6oPGok,10073
76
76
  keras_hub/src/models/albert/albert_masked_lm.py,sha256=jG6FttE_MAyBe8GzOEXMjEem3wo6UFGvxM3lRmXuS70,4126
77
77
  keras_hub/src/models/albert/albert_masked_lm_preprocessor.py,sha256=OxAr-PwU2eELevV7uNJPpXNPpSySOouMfUJXbWKOyEE,4475
78
- keras_hub/src/models/albert/albert_presets.py,sha256=F4pDS37EWUedEfb-kceRG5Rd08oT6VD_u4YplZs65jc,1681
78
+ keras_hub/src/models/albert/albert_presets.py,sha256=Z0NYTJXFUR9-lJnhvYAkwXOOitMW0woMBhUO2QYdZm8,1681
79
79
  keras_hub/src/models/albert/albert_text_classifier.py,sha256=y1ZABsI6-U3qWa8Oo6jtX5qIUEvCci5YsKRKXbu8Z7Q,6645
80
80
  keras_hub/src/models/albert/albert_text_classifier_preprocessor.py,sha256=SPpjxnei4YMHqPuY6P4T8t7MPQgzyqtDxTMqsMllRtA,5539
81
81
  keras_hub/src/models/albert/albert_tokenizer.py,sha256=dNEkjqUHJXBgprMCNH8qsjhoXuxtqa0510iEa_tNsmU,2984
82
82
  keras_hub/src/models/bart/__init__.py,sha256=foekeZj_Z4I75KI2oB8AuyzXfRdEb8Fcvn-dbv9cTjs,245
83
83
  keras_hub/src/models/bart/bart_backbone.py,sha256=9OXrITk3eBa3yx0qAsNm_JfzmMENX9JIWhsbjsDafEw,9714
84
- keras_hub/src/models/bart/bart_presets.py,sha256=ppk9r_4Sm21XO6F9k3L946rkJBwWSLNT_zhBMeHakrA,1719
84
+ keras_hub/src/models/bart/bart_presets.py,sha256=kUvisJlSE9muT1AkIj_4TKHysYofvambm15kjjFp654,1719
85
85
  keras_hub/src/models/bart/bart_seq_2_seq_lm.py,sha256=0r9snJsqqmH8F1_CDQZyFgqLNMYJM8AYFkmqfxUNB1U,19262
86
86
  keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=3_e-ULIcm_3DKgt7X7cvyLZEDIEkpu9HdANgH6MjZgg,4373
87
87
  keras_hub/src/models/bart/bart_tokenizer.py,sha256=Q7IXmIwXzhPSN427oQRyF9ufoExQGS184Yo_4boaOZo,2811
@@ -95,7 +95,7 @@ keras_hub/src/models/bert/__init__.py,sha256=K_UmCqDgOFFvXgzjXRn5oG0WWi53rAsQMOm
95
95
  keras_hub/src/models/bert/bert_backbone.py,sha256=o8GXUpoKPXLpfFzx5u9wI_3rZJeabPfYJEYSI09Clos,8069
96
96
  keras_hub/src/models/bert/bert_masked_lm.py,sha256=8gb1g8h5VFVLmKNEPfLe26z7SOlFnzf9R9okK3rp8AU,4045
97
97
  keras_hub/src/models/bert/bert_masked_lm_preprocessor.py,sha256=UAtj1gTxvrzTTueGts_9fkAyHeJ6cp269YwE69p7vys,4574
98
- keras_hub/src/models/bert/bert_presets.py,sha256=PlJ1CuZbJViT_GRdlI5xO6Re-doAGoCdwcSsmj_skkk,3782
98
+ keras_hub/src/models/bert/bert_presets.py,sha256=C1RimzWTA2cKdZmsg91TCx2t4Rji52bq2AzmWWjSd50,3782
99
99
  keras_hub/src/models/bert/bert_text_classifier.py,sha256=T6yTS7eM3gSmCcr80OVgfkD2eFp4TRNLsRjAfHjmcJc,5798
100
100
  keras_hub/src/models/bert/bert_text_classifier_preprocessor.py,sha256=0KIVajjOUDBagJIA9dfXdlQZB08h2XumUVec5OZauAI,4713
101
101
  keras_hub/src/models/bert/bert_tokenizer.py,sha256=hCyhRg_QTdexiaw23vcl1brxYJ-sPEImXSBCSTNwV9M,3025
@@ -105,14 +105,14 @@ keras_hub/src/models/bloom/bloom_backbone.py,sha256=dvSXekDbukixkeKxTo8yvRPpxVjF
105
105
  keras_hub/src/models/bloom/bloom_causal_lm.py,sha256=dq8WjkGZgj5kc4wqsZCxXrHk-nAVgwMVL0ur__Y2Bx8,10961
106
106
  keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py,sha256=KRvp3_lhRFPg8C028qEOJ9V2taI-07h5jj4DfkD7qoU,3011
107
107
  keras_hub/src/models/bloom/bloom_decoder.py,sha256=fda8iX4wzx2M8AoLX7fDHkyoir89KLJXrKbOZf70SX8,6572
108
- keras_hub/src/models/bloom/bloom_presets.py,sha256=o-oQEHiFnD5-NtSkvWj2ODUWfbaQ3xBK9pfj00lSfvU,3215
108
+ keras_hub/src/models/bloom/bloom_presets.py,sha256=7RptuZi__oJyiX6X4xE5ToANcEwsmLDqhuEKwFyKIPU,3215
109
109
  keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=6Konh7B_L9BqgjkA0z8-APFpr9sQmQPuAJFZSsCIClU,2574
110
110
  keras_hub/src/models/clip/__init__.py,sha256=NcjBkTNWxLY4Ss9wV-NW9iS8k6AwMiS2ARMcxr6KEps,245
111
111
  keras_hub/src/models/clip/clip_backbone.py,sha256=AyVhLwFg5nLFSaoaL8mLuNkK9uBPJ9y5FMQu4psTGvo,9877
112
112
  keras_hub/src/models/clip/clip_encoder_block.py,sha256=4Jxqb0Pq3Joh-lHDq-Y2c8v-gcMm1sDjPID4eRGK0DE,3823
113
113
  keras_hub/src/models/clip/clip_image_converter.py,sha256=XyHEDB4RbYiveMN1hLQxHgGADb_goyWyE0TceAd2owM,330
114
114
  keras_hub/src/models/clip/clip_preprocessor.py,sha256=nUYu8Bgf3TU7jrR10kr0BIe7ph3aABvGtIqnjqrIb9k,4752
115
- keras_hub/src/models/clip/clip_presets.py,sha256=qlBJ0BOfSP1v5aXHdspSaFEoDEIhDHrxqL3K1L0FvNo,3348
115
+ keras_hub/src/models/clip/clip_presets.py,sha256=b9Azial1dUtuNV96Q0Ahz-bcBRmlIjnZPUzMvAMb8OY,3348
116
116
  keras_hub/src/models/clip/clip_text_encoder.py,sha256=BCIE24eKZJ3yc4T0sjD6-Msjr1FQRKpdTP7vpGEn_7M,5456
117
117
  keras_hub/src/models/clip/clip_tokenizer.py,sha256=6gIm_LWRbCeBQUI9M2gA8-OXb4tXGygixkbcL6joV1c,7444
118
118
  keras_hub/src/models/clip/clip_vision_embedding.py,sha256=6_qC7T1dqKd-39EreGmHZj-YfjOLEDDKjWnEKcKIyuY,3667
@@ -124,7 +124,7 @@ keras_hub/src/models/deberta_v3/__init__.py,sha256=6E-QtAD1uvTBobrn5bUoyB1qtaCJU
124
124
  keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=oXdV7naTiMowuU3GsXEUo5K0GXiKbPKxdo27o5fXWjc,7258
125
125
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=ADBktf1DdiP9T6LCaMhdFiZ_mUbBRKMekY5mGwAeJIo,4186
126
126
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py,sha256=qoUCmhHAqx_YW0GzHsE44u2AT8ms-HFBwkFovPqZdD0,4966
127
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=TvknOy9wzJr8_BDfuzmn55Ctl6ghlEIZ44B6V3eus4A,2110
127
+ keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=ea5OOeuRNlaBvla-TWLSXim8jJzI0k2l7k5e-LbiDlA,2110
128
128
  keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=OuhJrC2klo6oNJ-g8CucJVzyo390pMlDx_BJnhh1B1Q,7252
129
129
  keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=3U2x8Nr7HhwdhAyd3duYo8jj0JDYuB8Z1WMzArzQpKI,5975
130
130
  keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=zEMCLy9eCiBEpA_xM2j8ACg7YJunD3bAruEK-1beElk,4987
@@ -136,40 +136,40 @@ keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py,sha256=dH7HHu_NAnE-HP6ivO
136
136
  keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py,sha256=mRkH3HdhpV0fCcQcVXEvIX7SNk-bAMb3SAHzgK-FD5c,371
137
137
  keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256=hR9S6lNYamY0EBDBo3e1qTCiwtftmLXrN-UYuzfw5Io,581
138
138
  keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=qmEiolOOriLAojXB67xXW9IOo717kaCGeDVZJLaGY98,7834
139
- keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=h35SN6U-INyNQT0icF1SEP6u8d3zw-qFLjGD8jt8do8,625
139
+ keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=ZKYY8A7mV2QvwXwjDUd9xAbVHo58-Hgj_IqNUbuyCIU,625
140
140
  keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=pubi30sPJKLOpz9fRQff2FZt_53KBvwf2uyaJ5YL7J8,3726
141
141
  keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
142
142
  keras_hub/src/models/densenet/densenet_backbone.py,sha256=5QawyB4EhyaXpmm8l_QUYveU7kEet3jRD3s94XAz8Tw,6738
143
143
  keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ye-Ix3oU42pfsDoh-h1PG4di1kzldO0ZO7Nj304p_X4,544
144
144
  keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
145
145
  keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
146
- keras_hub/src/models/densenet/densenet_presets.py,sha256=oAUNE95fD3x7v01FwISiNaDqnmnflvScX7vMj0KFxKQ,1222
146
+ keras_hub/src/models/densenet/densenet_presets.py,sha256=d2GEB9cWYrzP8Qj1w8CWiRW976MibQBuk_YQYvgCzr4,1222
147
147
  keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
148
148
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
149
149
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=axeZd5UcxFr3_Q8H4yG10CINh93wbcyjlPLauqe5N9E,4289
150
150
  keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py,sha256=rkrOkmEi883dA7MbouVBBMvOejUBuViP8lqlp4gyFJY,5230
151
- keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=Q_IM7IrD81t4HzigHyd7xTJ85Ey-40JWKV0D5sDqaQ4,1380
151
+ keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=eN2tGTPCjGH7Dqjjlaif24_i8PX4ggabIwN3LJiFxtY,1380
152
152
  keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=iy2A-fTJZ2drgvw3AXjEgbS6DADtQuoCNxfNJ8W9yRU,6765
153
153
  keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=Z51X2EkimPN1qeWfwa0Ie7d3fmNe7J34D0YsRNUsj_k,4893
154
154
  keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=YS2K8Gtp8wHGrb2-KFnQanetFWmxYIr1tuZCGRT6tZw,3111
155
155
  keras_hub/src/models/efficientnet/__init__.py,sha256=QSy7wnaMHs5Mx3OVrTN0twH6ynu7aXuIiIyijfxlzWs,311
156
156
  keras_hub/src/models/efficientnet/cba.py,sha256=m9G-XueyUP-HAxiS0LZeEKgXMz0um3MUCIePNFU9muo,4610
157
- keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=PJvBVvOUYZoeESbyWgUG103BDrqoHiHkAbqKMRxH0qM,25197
157
+ keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=dFA0rIJ0qO_Py4rb4W1MqVBxpXtCCxnIVgE3ichly90,25541
158
158
  keras_hub/src/models/efficientnet/efficientnet_image_classifier.py,sha256=e37sWzxkQW0CuM78WOJozqHDErWiRLLmQbOV-uY7hI4,593
159
159
  keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py,sha256=Njs8nGyz28Xngzrc7fQrIJH6ItDkDJUPEsBGKVlKgZs,612
160
160
  keras_hub/src/models/efficientnet/efficientnet_image_converter.py,sha256=X9Io6IhjoUglywiyph48C0rt9Xp-3ZW4rsIzyt7zkmg,387
161
- keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=yiXGMl5w5EE_2L42oYwkX28x-2lFxmgHT-HVneSxCbo,7610
161
+ keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=Cb2IAGTThULOBXugs4R_U6UZuGffVSjQXPQTMz-MjzI,7610
162
162
  keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=7-3FzqCqjPC1WaYfYqluryegKpkqFlXZ32Y4y7VJ5G0,9503
163
163
  keras_hub/src/models/efficientnet/mbconv.py,sha256=9tHiRWAO3KafgdqO5FYshdkGfXDx_zEkaiqA93ZiDbI,8942
164
164
  keras_hub/src/models/electra/__init__.py,sha256=vaXl_uQx_oLeKZWxmc1NRgCJfHpYJ35JeF9as8U0q5M,263
165
165
  keras_hub/src/models/electra/electra_backbone.py,sha256=h-QuFxACBvbMktkyGV2pIgn6dQ-kudJB1i14ekwEaL4,9004
166
- keras_hub/src/models/electra/electra_presets.py,sha256=cFTP-ECB13chZXS3JZ49NS5GtY59NTL29_I-V1_f58U,2697
166
+ keras_hub/src/models/electra/electra_presets.py,sha256=6f0WAYtDx5To4gvi6btN8I8y7yfc9ANchTHRKgCyIkg,2697
167
167
  keras_hub/src/models/electra/electra_tokenizer.py,sha256=Ll_EW-14i-OZr6appQEt5ceMUCeEadF4yPJHMwaRfVs,2729
168
168
  keras_hub/src/models/f_net/__init__.py,sha256=a3OAwgEVy3Rv88ZlBE9RYLrPCNteImhGkW-lSAq5hyI,249
169
169
  keras_hub/src/models/f_net/f_net_backbone.py,sha256=6vZEq2UgoJxU2-aEesdXZnyRbACxpMZQ1akyVbGH8wg,8290
170
170
  keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GDRtPdF4K2tPtnM6NqmMeZs6PCRwtBN5Bo1qIMeqwCU,3978
171
171
  keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py,sha256=eCSaiMCcrrjS51SP5fF0OkWj57C2z_zmg_qGSEbvNNo,5081
172
- keras_hub/src/models/f_net/f_net_presets.py,sha256=_UgBa4g7vKinQ4XRZv1h82VabuvyDMBDhNkRpKR2DeE,765
172
+ keras_hub/src/models/f_net/f_net_presets.py,sha256=qwLRHB44rNYWg6_QN6h3ueYfouNNGSVkgYfX3YFMAIE,765
173
173
  keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=YoWq08mcn-oOsdiajxLy2f6zH3Gjv6hH8vkUrmPtQlw,4869
174
174
  keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=UUa7RKylLt41Z0wRxGzhSgWTaJjNAcgqkVeC-ZzJbfo,4822
175
175
  keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=ZRTaSfgZnYLTVXgM51303LpryRsSL5GaC2Cl_D7g27A,2285
@@ -178,7 +178,7 @@ keras_hub/src/models/falcon/falcon_attention.py,sha256=nBpvh3KGElNG062NfqznNJmTq
178
178
  keras_hub/src/models/falcon/falcon_backbone.py,sha256=nGJcHnbqncZRTPERRi4ZuYGcODpkH2Mu0-Db59vH5io,5451
179
179
  keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=2UEIeju5Tg-FstVuusejJ-MbHZ6vsNfsSJzzBM89fnU,10908
180
180
  keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=nI9E8N9enx5DppDHpLwGslb65rqGorL2sEz1jzet4gA,3033
181
- keras_hub/src/models/falcon/falcon_presets.py,sha256=cnIVlfHV_w_H749F3iAMEhgheAT5oG9SllnMigLD08Y,463
181
+ keras_hub/src/models/falcon/falcon_presets.py,sha256=PDghkND0-7le4W-atm4BitzA127z-5ZyQguCnCChSBo,463
182
182
  keras_hub/src/models/falcon/falcon_tokenizer.py,sha256=MF2QcWl5hsnjQRI3UWMETjb3lqYV-lDLyB7Bjkk_Pgs,2591
183
183
  keras_hub/src/models/falcon/falcon_transformer_decoder.py,sha256=QqIK6v97uBXZFBG3qS6O8HrP9_93uOFzvHQgOiMO2eY,8125
184
184
  keras_hub/src/models/flux/__init__.py,sha256=rBO-FNMbnfABw2QQazRmuWpIhhiVXwowaYQXWkTGeyU,224
@@ -194,7 +194,7 @@ keras_hub/src/models/gemma/gemma_backbone.py,sha256=lNGsv3xmCD66N1WaebHkTMb4lISO
194
194
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
195
195
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
196
196
  keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=f5UsRO-VNsKJfm_WHVJWK4UahhzYm3sKprJ8jjr-zm4,7628
197
- keras_hub/src/models/gemma/gemma_presets.py,sha256=LDRwPELwyJLjR5CnpUDQD79p7jYBB2RrYXyEOmE0tZ8,7178
197
+ keras_hub/src/models/gemma/gemma_presets.py,sha256=lWPjEb_6pFC1vdX7mwxf-C2im93YygmlSPjWvqnLWic,7178
198
198
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
199
199
  keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
200
200
  keras_hub/src/models/gpt2/__init__.py,sha256=_hqeljpBkW8DLABy4nKBzJxXUh29WIEW27obmDCiH5Q,245
@@ -202,7 +202,7 @@ keras_hub/src/models/gpt2/gpt2_backbone.py,sha256=H1LgDd-bavrWtdCavdI519qlaruE2J
202
202
  keras_hub/src/models/gpt2/gpt2_causal_lm.py,sha256=ynAcvh0-WUmwMN7vgflau4LH4YRFLf986OYRZ3M2Znk,16765
203
203
  keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py,sha256=3AD1LBFJ-u6bDdrwKa1LbINlEblZkhwB2sMJx-XEUZk,2992
204
204
  keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLbIK3WnLUxaXj25fFpQ,3179
205
- keras_hub/src/models/gpt2/gpt2_presets.py,sha256=lJu2BBiaFBTwmrGY8uJ4huqdK3VkF067Q6MgqcS8J3g,1897
205
+ keras_hub/src/models/gpt2/gpt2_presets.py,sha256=1mflR1dVuEwFfNe3Fkra6vt7DrjmkAckjyP-LclNLFc,1897
206
206
  keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
207
207
  keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
208
208
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=iCwNoeaHMLfnL-MLOeLir7G75XRJilvpmdKJeBAqLTY,8535
@@ -218,13 +218,13 @@ keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy
218
218
  keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
219
219
  keras_hub/src/models/llama/llama_decoder.py,sha256=6iERIblED0ZB5w_EUlHks4UvMnsrWONdO_Xdz2OzhWM,8623
220
220
  keras_hub/src/models/llama/llama_layernorm.py,sha256=LfRbePHUJs00Ptf7dvNaw3Aj9n1xBMBpE_rS5zzsYMo,1050
221
- keras_hub/src/models/llama/llama_presets.py,sha256=RAQdTh7mjBy3poSdtSNNBLf0cUSJwTSSU_Xi5Ubsnrw,1902
221
+ keras_hub/src/models/llama/llama_presets.py,sha256=k0JPQggSQ0XUkhiPlfM0gTqHXGOt39InVLglPUi4AJU,1902
222
222
  keras_hub/src/models/llama/llama_tokenizer.py,sha256=NKWhxTutQ2jd6sd3NSTy9plQyKGCmuNG7U6kVxhZU4Y,1981
223
223
  keras_hub/src/models/llama3/__init__.py,sha256=Vqvr2E10cnANkrRQGNBJtVLNAu-Bg9Lx6sqKOZWFy_8,257
224
224
  keras_hub/src/models/llama3/llama3_backbone.py,sha256=g_IkHys5cr0gBXhDiqgIICO93RdGAm6WS5NK2SPhFvM,2866
225
225
  keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=qk_onuf7S6d7rxAntilq2Q2orggMbPEJbNHJNVe2G0U,1541
226
226
  keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgGxDAoQhEQuVm2udnEybI4fAQTJzXAuBs,3064
227
- keras_hub/src/models/llama3/llama3_presets.py,sha256=HNuiZ-pgSGhALBbjxWwuwtwJqmIXgzk2zMYekcf_XCo,1579
227
+ keras_hub/src/models/llama3/llama3_presets.py,sha256=PWEW_hLMCD9SIYm3QLhRVIcwjrPuqv-KDebXACXRNbM,1579
228
228
  keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
229
229
  keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
230
230
  keras_hub/src/models/mistral/mistral_attention.py,sha256=HCkUIc2DVIlYC5hhwomENlqLOsKTvbCKF0lx0_OBAyA,7862
@@ -232,7 +232,7 @@ keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0D
232
232
  keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
233
233
  keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
234
234
  keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=nimMZ5CTPK8v9eflfrGuzqmv-2vd2rGlPvcHOMwYZyg,1063
235
- keras_hub/src/models/mistral/mistral_presets.py,sha256=YfdFdjx0OrQJWIf1msil_WeMWP2fTUpxOI-ZO6cphpI,939
235
+ keras_hub/src/models/mistral/mistral_presets.py,sha256=76Cctnl-UXFtl76OFzMl7Q0E-oJuizbpIHoDlYA1pBI,939
236
236
  keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
237
237
  keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=z5FCh9TEaznvhW3JOSKmFTotRbiuQhzJTZClW2m9sEw,9556
238
238
  keras_hub/src/models/mit/__init__.py,sha256=F70_0PR_nPzPdMI8XOpXDRR_nxclGjcHv3iWSWUX3w8,316
@@ -241,7 +241,7 @@ keras_hub/src/models/mit/mit_image_classifier.py,sha256=HKj6u6AqPbxinGYPRsz_ZdW2
241
241
  keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8VnzNEPcq5beYX0qfnnlbJcxY8o5s7bVQes,504
242
242
  keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
243
243
  keras_hub/src/models/mit/mit_layers.py,sha256=HUJO5uhJ6jgwANpwbQdPlEVwLRVb3BZQ-Ftjg3B9XvY,9734
244
- keras_hub/src/models/mit/mit_presets.py,sha256=M2T9x7CgEW-t5kBtbNqelL63OpCDjt2-wWyRP66tJrc,4528
244
+ keras_hub/src/models/mit/mit_presets.py,sha256=ooLrh2OoGZKxnCGnhB6BynYJtVCXH7nDDFhgQRWt36U,4528
245
245
  keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
246
246
  keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=oIhNjPRWVtJvQbjaWxXzgIQwtRV10-dIWVR7LJM4Ev0,18192
247
247
  keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
@@ -249,7 +249,7 @@ keras_hub/src/models/opt/__init__.py,sha256=6Ybj8etxNaPsVcuZvaeHnKB3As92Px--dbiF
249
249
  keras_hub/src/models/opt/opt_backbone.py,sha256=mK5z_E5mSiIX5s0w4hr4IVQpT7K46W2ajZBmuMjxwaY,5873
250
250
  keras_hub/src/models/opt/opt_causal_lm.py,sha256=UqN6E3vJDMx1Wgc5tpptsdFu6wadRgdHqgOLTAMiazw,10851
251
251
  keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=xHfslVMOZlAIj2V2jIc-1GizR8TzEbeg1aggfwFTsPY,3102
252
- keras_hub/src/models/opt/opt_presets.py,sha256=qRHCFImOQCJJSyAQxRM3bmytos9y_MtXjbbxT655AUg,1745
252
+ keras_hub/src/models/opt/opt_presets.py,sha256=LrjgI5gbq4Cvfl_pmeCnKn4hS_V_0GYTeJaDc9tbeZM,1745
253
253
  keras_hub/src/models/opt/opt_tokenizer.py,sha256=oDHeed4xf07tm14hj_C78BkzMuuRwRP2cRHmqYnObrs,2557
254
254
  keras_hub/src/models/pali_gemma/__init__.py,sha256=uODWTlttOOchcTLpiYHCEWMXnDxIz8ZVIeYFQN2bd8o,288
255
255
  keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=aRsLlgKqqxwtYxYy-D9k37YSJowUlRWfxpyRBFWDRnI,13413
@@ -257,7 +257,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7
257
257
  keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
258
258
  keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
259
259
  keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
260
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Sk39FWJq2p-XHFejdm9i5X0hsoUnlHMK86qcr29_fPQ,8985
260
+ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=O648iwzs0wooiQCfDQ-n0wOtzIOEDGXRSwSb_Brx2Ck,8985
261
261
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
262
262
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=ViPKfGksbxBGJ3iS3M_KWxRc8Ie4LF7rWWUKDiqECJE,18285
263
263
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
@@ -267,7 +267,7 @@ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayul
267
267
  keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
268
268
  keras_hub/src/models/phi3/phi3_decoder.py,sha256=gTRqn-Wu9dz0u9VKrsdjkSs2mHvpKl2bCjOBLlJc9lg,9586
269
269
  keras_hub/src/models/phi3/phi3_layernorm.py,sha256=Oqu81tGd97Lzx3kG1QEtZ0S6gbfn3GLgRzY8UWGJRBo,1049
270
- keras_hub/src/models/phi3/phi3_presets.py,sha256=4brTcMrm5KLBb0gl18F5oCRciap3rDxdfLIkKZkB0S0,1366
270
+ keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8qhlN-Ea8d6J7k,1366
271
271
  keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
272
272
  keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
273
273
  keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
@@ -275,7 +275,7 @@ keras_hub/src/models/resnet/resnet_backbone.py,sha256=3acTjdWbnos8l_TPxYLgoV3Y4V
275
275
  keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
276
276
  keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
277
277
  keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
278
- keras_hub/src/models/resnet/resnet_presets.py,sha256=88o1gF2rWkFfzNYqvBKhSoQTxbZmxR5Ex2amodyv4zU,6947
278
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=cryfXlC_FSEN_jrexKIh5aVbzp87oYetoWeWpX0_lWQ,6947
279
279
  keras_hub/src/models/retinanet/__init__.py,sha256=veWIFvMN6151M69l7FvTcI-IIEe_8dLmNO5NLOszQ1c,275
280
280
  keras_hub/src/models/retinanet/anchor_generator.py,sha256=0OgKSW3OKmbc0cOPHF6FYTAzn7fcHklg665PGSwAaDM,6504
281
281
  keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
@@ -287,12 +287,12 @@ keras_hub/src/models/retinanet/retinanet_image_converter.py,sha256=jO2WSUVubjYc_
287
287
  keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=K4Ffs5Gh052kIvStxQXM7jifMyJVAwAF3kZN-ofr9rQ,10935
288
288
  keras_hub/src/models/retinanet/retinanet_object_detector.py,sha256=ROVALhkKq5ImLnlDh4wcc1hVZCF9BD2piKwkpglApUE,15510
289
289
  keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py,sha256=oKA-rSgX5kIOsCxKjo5Z3x2R5R15k_kUNQQXZ7VAR0c,584
290
- keras_hub/src/models/retinanet/retinanet_presets.py,sha256=nfjTclh--CH0XObzEXA_4Ko4cYq5npFwUWlzt6rpzlY,510
290
+ keras_hub/src/models/retinanet/retinanet_presets.py,sha256=ZOx4SM2c8BsqUQOikkWUhXLGq3Xut1hvjWt_gDXaJRM,510
291
291
  keras_hub/src/models/roberta/__init__.py,sha256=3ouSnKdLlMwoDDLVKD9cNtxam6f8XWgCyc0pwWJ0Zjo,263
292
292
  keras_hub/src/models/roberta/roberta_backbone.py,sha256=q16dylXbgWshT-elCA08lS_b_IZNphsBrrXiv3eJksM,6339
293
293
  keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=j2dFANRFHd1MNFP_REchljGWOcpOjCpdSya-WGdRzPA,4176
294
294
  keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py,sha256=bk6AYRbVQXGprD1LmDW1N3qYp-Q520X6mnxNF8jFwmQ,5851
295
- keras_hub/src/models/roberta/roberta_presets.py,sha256=iISv7YJzASMf7T-aNGZRI4rRFQwgAokO6ifh03MBe_c,917
295
+ keras_hub/src/models/roberta/roberta_presets.py,sha256=lu8_E888-YGlhMo1kE4LnsR0RiJMs0OwNP0JwYafV_8,917
296
296
  keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=x36hU84P-ROReZniUA8sMODzj2olrHvG0F5RTiz6Two,6681
297
297
  keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa8JdPUmT1N7nxBqtaIbnfXV-xlNjTtkEevQhfjNU,5993
298
298
  keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
@@ -303,7 +303,7 @@ keras_hub/src/models/sam/sam_image_segmenter.py,sha256=X7XFKPFLgpsUB4L8Ai8IfMEsX
303
303
  keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py,sha256=7slvyhGoMHmSigagqIcjDJ3gX8fUJbuMBwmozC4FlCg,849
304
304
  keras_hub/src/models/sam/sam_layers.py,sha256=dNyTlTHnnjnr-J9T06V1loZJsfrgfySWemn2CKEGa-Q,13902
305
305
  keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
306
- keras_hub/src/models/sam/sam_presets.py,sha256=XYi-Z47-wHc2deOCBibVxl7xKEVP2O3AM27ZpYD-GCk,875
306
+ keras_hub/src/models/sam/sam_presets.py,sha256=PVaWbFk5obdeh42pvW2_VqaieADOmKsbTU_X1Wp3sF8,875
307
307
  keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=-fIDCHaLg48XrelFqkZVy3xEYtNRyckCyWyQAuGfJ1w,11834
308
308
  keras_hub/src/models/sam/sam_transformer.py,sha256=8Bfj6FP691djsSZrvH_dgo6llARlS7ReU-zoqsrHPvQ,5742
309
309
  keras_hub/src/models/segformer/__init__.py,sha256=ERgxA8tyeG2l4G6ywHisn6Oo0Iu7_9OAkzrC9TEFHSE,365
@@ -318,7 +318,7 @@ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=poJlz-xt06hgOtn_Bw5YQDxZ
318
318
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=u0Wwtbl5b-1z_vn07TRw4jpkVYrReZeHbWqQIrZjyCA,23368
319
319
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
320
320
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=aZMIC-GYjLhdU_yM7fJEznApCo1zwRAgwQbW0tCW0xY,6399
321
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=a8uTfaZ9Fy4QXt4LJSTf6mM2faYSbay-SqY6CIb7yF0,1680
321
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=z6wrfv8rCqLBzn7_edRcKCIDQRTNUgLqyr-LLp55-IE,1680
322
322
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=Yt-UIatVKANjjKFCFEj1rIHhOrt8hqefKKQJIAWcTLc,4567
323
323
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=m5PdVSgTcYuqd7jOQ8wD4PAnMa7wY2WdhwpK3hdydhM,2756
324
324
  keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
@@ -327,7 +327,7 @@ keras_hub/src/models/t5/t5_backbone.py,sha256=MUmabugPx5_BkAHkuJXr2-8z_yZfKD19SO
327
327
  keras_hub/src/models/t5/t5_layer_norm.py,sha256=R8KPHFOq9N3SD013WjtloLWRzaEMNEyY0fbViNEFVXQ,630
328
328
  keras_hub/src/models/t5/t5_multi_head_attention.py,sha256=gStbrTZZx8X3J-bHFgwgugQMP-Wa6SC6kdShrqbUttQ,11859
329
329
  keras_hub/src/models/t5/t5_preprocessor.py,sha256=UVOnCHUJF_MBcOyfR9G9oeRUEoN3XotM6M0YQc2WNKU,2253
330
- keras_hub/src/models/t5/t5_presets.py,sha256=aC6HX3HYIqiyRHRlKxGYUGKKCfXuezeJWx5NIeK0GNg,3173
330
+ keras_hub/src/models/t5/t5_presets.py,sha256=I9rOBMG4dcBaSK3UHRcaJHUuVHeXsez60TYRqXZKL-A,3173
331
331
  keras_hub/src/models/t5/t5_tokenizer.py,sha256=pLTu15JeYSpVmy-2600vBc-Mxn_uHyTKts4PI2MxxBM,2517
332
332
  keras_hub/src/models/t5/t5_transformer_layer.py,sha256=uDeP84F1x7xJxki5iKe12Zn6eWD_4yVjoFXMuod-a3A,5347
333
333
  keras_hub/src/models/vae/__init__.py,sha256=i3UaSW4IJf76O7lSPE1dyxOVjuHx8iAYKivqvUbDHOw,62
@@ -338,14 +338,14 @@ keras_hub/src/models/vgg/vgg_backbone.py,sha256=XemFrdmX2i_JjvuAAgb7S-J11a1UPVje
338
338
  keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=d-hlgvwbNhzR6r3q2oqEmRmuAuCpKzUwNC2JUwdzruI,7460
339
339
  keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py,sha256=M7hBbDPws5Z7oDQPigBx-upHssul7Q_p0QIv3E4yOwo,504
340
340
  keras_hub/src/models/vgg/vgg_image_converter.py,sha256=FKVrSNNBxIkiKvApzf4TZxidBb1z917Xs9nooHCcRLM,324
341
- keras_hub/src/models/vgg/vgg_presets.py,sha256=qD2AK3W9NdyljY5ObVYpDyWAYgl1puQ3RLbha0CvrvU,1491
341
+ keras_hub/src/models/vgg/vgg_presets.py,sha256=UL7a8hdZ22duMADXwVypGnc20ME-ywI4QjtXu15usEI,1491
342
342
  keras_hub/src/models/vit/__init__.py,sha256=GH7x3VjEXZLm-4F-c9-55QZE0lP2OLVICH0Hr5YCp9A,239
343
343
  keras_hub/src/models/vit/vit_backbone.py,sha256=kGmRZO4u-1q4PBcbhJbiWVIEVYAcp2H4SPJgQimrJd0,5909
344
344
  keras_hub/src/models/vit/vit_image_classifier.py,sha256=lMVxiD1_6drx7XQ7P7YzlqnFP7kT1zlMe84f-T3SDQI,6332
345
345
  keras_hub/src/models/vit/vit_image_classifier_preprocessor.py,sha256=wu6YcBlXMWB9sKCPvmNdGBZKTLQt_HyHWS6P9nyDwsk,504
346
346
  keras_hub/src/models/vit/vit_image_converter.py,sha256=5xVF04BzMcdTDc6aErAYj3_BuGmVd3zoJMcH1ho4T0g,2561
347
347
  keras_hub/src/models/vit/vit_layers.py,sha256=s4j3n3qnJnv6W9AdUkNsO3Vsi_BhxEGECYkaLVCU6XY,13238
348
- keras_hub/src/models/vit/vit_presets.py,sha256=1QSyagzonaK4zpJdnjW2UL70T85xGxktsmLdSxcZTjk,4479
348
+ keras_hub/src/models/vit/vit_presets.py,sha256=zZhxUleOom1ie3gn0Mi-_xhhdFEEsnqSQyKADV2L38k,4479
349
349
  keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
350
350
  keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=DOZ5J7c1t5PAZ6y0pMmBoQTMOUup7UoUrYVfCs69ltY,7697
351
351
  keras_hub/src/models/vit_det/vit_layers.py,sha256=mnwu56chMc6zxmfp_hsLdR7TXYy1_YsWy1KwGX9M5Ic,19840
@@ -355,13 +355,13 @@ keras_hub/src/models/whisper/whisper_backbone.py,sha256=PqGY9-aNBp5NyiaBuwiJDdX-
355
355
  keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py,sha256=Dt6m0O5XU5_o4SOmMEkNj2RVqxMGJ3uIhouu_XLw0cc,4948
356
356
  keras_hub/src/models/whisper/whisper_decoder.py,sha256=rx9tFiXyGPnu_CScG8t8_7TVCZ1HJMTgGsW_fMyD0Ps,5089
357
357
  keras_hub/src/models/whisper/whisper_encoder.py,sha256=ZJ93D6mP95Mb9cFDZbfMWbB9FlrV3706ZsUwUJMKOdg,3730
358
- keras_hub/src/models/whisper/whisper_presets.py,sha256=Syq9mFYqpw0suQ6ZLZDLomsbUXNVPrlVoFgLbsBVlso,3898
358
+ keras_hub/src/models/whisper/whisper_presets.py,sha256=T1koXMeU-S3WCs10oTXIScVvn_4DoB6ah-EkqQLnVKI,3898
359
359
  keras_hub/src/models/whisper/whisper_tokenizer.py,sha256=HcF3PMoaLm-bNH9J_mG_iCBWGtJO6ahCRGAjjCptQOs,5575
360
360
  keras_hub/src/models/xlm_roberta/__init__.py,sha256=iiCNSvDxPXZdxDyQKRxSLp5qzSpTuodL2TlHfwfqQjQ,303
361
361
  keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py,sha256=x7wSDya7M4qcmzAwskd6qx9avSQs8mWhvAMWS4hnpFY,2922
362
362
  keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py,sha256=PTxsd3DSxciKL6ub4hRHXbusx7tFnIBj_pFJXPJu8zQ,4392
363
363
  keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py,sha256=O3W7qj3u2RGXbEdyIAeAmgGCUX1kapZ3L5dLNTLOtpM,5995
364
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=6_kPYz0syVV7SXi7Nw4wceILi-eHay3274Y62HYDyUM,875
364
+ keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=h9998snjRV_4QGIT7ziLQpw_JO4o7SFvfUNl7ZtWqxQ,875
365
365
  keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=VadJN4LVUx_O0fhVBDtIKtwoYh4ub3bZzvNZlBXzN4k,7251
366
366
  keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py,sha256=YwM-Ravzj_UxWhmm_xREvNxvT3kNTYQgRTkH6g9o2yM,6525
367
367
  keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py,sha256=_YDoJHeo2_02laLyNbv3blvqylpXms-hzhqlxLRky4M,6784
@@ -380,7 +380,7 @@ keras_hub/src/samplers/serialization.py,sha256=K6FC4AY1sfOLLIk2k4G783XWnQ_Rk3z1Q
380
380
  keras_hub/src/samplers/top_k_sampler.py,sha256=WSyrhmOCan55X2JYAnNWE88rkx66sXqdoerl87nOrDQ,2250
381
381
  keras_hub/src/samplers/top_p_sampler.py,sha256=9r29WdqBlrW_2TBma6QqkRps2Uit4a6iZPmq1Gsiuko,3400
382
382
  keras_hub/src/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
383
- keras_hub/src/tests/test_case.py,sha256=uNozBnMiAzJWGpETD_w1-O5dNU50TFKzljqfyD59qe0,27502
383
+ keras_hub/src/tests/test_case.py,sha256=oGWoUhlKgjVMNIjvUVnQR-k5iKvodztHsFMOs669Trw,27402
384
384
  keras_hub/src/tokenizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
385
385
  keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=WeUlHMAf5y_MUjFIfVhEcFoOZu-z4kkSj-Dq-pegM9w,24052
386
386
  keras_hub/src/tokenizers/byte_tokenizer.py,sha256=c1a41eVuLzGmBtscQ0RxPIqFi41m_604KJ9fdpPR7Sc,10437
@@ -391,9 +391,9 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=KxuVsUx3ntGsuqaQ-
391
391
  keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
392
392
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=Zz1SGgArykxBVWnS5YV-ViqyMOrw3j3i_i_jto96zCg,6610
393
393
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
394
- keras_hub/src/utils/keras_utils.py,sha256=lrZuC8HL2lmQfbHaS_t1JUyJann_ji2iTYE0Fzos8PU,1969
394
+ keras_hub/src/utils/keras_utils.py,sha256=0yKIfFuO_IqAH8vHbG3ncRmCVKg__xRGfQtLYWZ8YuA,1695
395
395
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
396
- keras_hub/src/utils/preset_utils.py,sha256=MFQqOIIWvfYToiUHfpPX0lERmgCkz09bM9L67E44H3s,31115
396
+ keras_hub/src/utils/preset_utils.py,sha256=gy0zjPZ3WYvB5LHekw60NU8bHdrV6qUMG84DuN5mT6M,30505
397
397
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
398
398
  keras_hub/src/utils/tensor_utils.py,sha256=YVJesN91bk-OzJXY1mOKBppuY8noBU7zhPQNXPxZVGc,14646
399
399
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -417,7 +417,7 @@ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYum
417
417
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
418
418
  keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
419
419
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
420
- keras_hub_nightly-0.19.0.dev202412230348.dist-info/METADATA,sha256=xUhSY7ieeoHX54vYDSFBL7BKX6L7QMrIH7Lg5nKZJWk,7263
421
- keras_hub_nightly-0.19.0.dev202412230348.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
422
- keras_hub_nightly-0.19.0.dev202412230348.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
- keras_hub_nightly-0.19.0.dev202412230348.dist-info/RECORD,,
420
+ keras_hub_nightly-0.19.0.dev202412250345.dist-info/METADATA,sha256=rAhTUNyX3r7AbqR8niuinpLTeurFTrbaZpL0XzbTGXo,7260
421
+ keras_hub_nightly-0.19.0.dev202412250345.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
422
+ keras_hub_nightly-0.19.0.dev202412250345.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
+ keras_hub_nightly-0.19.0.dev202412250345.dist-info/RECORD,,