keras-hub-nightly 0.19.0.dev202412230348__py3-none-any.whl → 0.19.0.dev202412250345__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/src/layers/modeling/reversible_embedding.py +3 -16
- keras_hub/src/models/albert/albert_presets.py +4 -4
- keras_hub/src/models/backbone.py +0 -5
- keras_hub/src/models/bart/bart_presets.py +3 -3
- keras_hub/src/models/bert/bert_presets.py +10 -10
- keras_hub/src/models/bloom/bloom_presets.py +8 -8
- keras_hub/src/models/clip/clip_presets.py +8 -8
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py +5 -5
- keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +1 -1
- keras_hub/src/models/densenet/densenet_presets.py +3 -3
- keras_hub/src/models/distil_bert/distil_bert_presets.py +3 -3
- keras_hub/src/models/efficientnet/efficientnet_backbone.py +10 -6
- keras_hub/src/models/efficientnet/efficientnet_presets.py +16 -16
- keras_hub/src/models/electra/electra_presets.py +6 -6
- keras_hub/src/models/f_net/f_net_presets.py +2 -2
- keras_hub/src/models/falcon/falcon_presets.py +1 -1
- keras_hub/src/models/gemma/gemma_presets.py +20 -20
- keras_hub/src/models/gpt2/gpt2_presets.py +5 -5
- keras_hub/src/models/llama/llama_presets.py +5 -5
- keras_hub/src/models/llama3/llama3_presets.py +4 -4
- keras_hub/src/models/mistral/mistral_presets.py +3 -3
- keras_hub/src/models/mit/mit_presets.py +12 -12
- keras_hub/src/models/opt/opt_presets.py +4 -4
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +16 -16
- keras_hub/src/models/phi3/phi3_presets.py +2 -2
- keras_hub/src/models/resnet/resnet_presets.py +16 -16
- keras_hub/src/models/retinanet/retinanet_presets.py +1 -1
- keras_hub/src/models/roberta/roberta_presets.py +2 -2
- keras_hub/src/models/sam/sam_presets.py +3 -3
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
- keras_hub/src/models/t5/t5_presets.py +11 -11
- keras_hub/src/models/vgg/vgg_presets.py +4 -4
- keras_hub/src/models/vit/vit_presets.py +4 -4
- keras_hub/src/models/whisper/whisper_presets.py +10 -10
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +2 -2
- keras_hub/src/tests/test_case.py +1 -2
- keras_hub/src/utils/keras_utils.py +2 -13
- keras_hub/src/utils/preset_utils.py +34 -45
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412250345.dist-info}/METADATA +3 -2
- {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412250345.dist-info}/RECORD +43 -43
- {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412250345.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.19.0.dev202412230348.dist-info → keras_hub_nightly-0.19.0.dev202412250345.dist-info}/top_level.txt +0 -0
@@ -1,9 +1,7 @@
|
|
1
1
|
import keras
|
2
2
|
from keras import ops
|
3
|
-
from packaging.version import parse
|
4
3
|
|
5
4
|
from keras_hub.src.api_export import keras_hub_export
|
6
|
-
from keras_hub.src.utils.keras_utils import assert_quantization_support
|
7
5
|
|
8
6
|
|
9
7
|
@keras_hub_export("keras_hub.layers.ReversibleEmbedding")
|
@@ -145,10 +143,6 @@ class ReversibleEmbedding(keras.layers.Embedding):
|
|
145
143
|
if not self.built:
|
146
144
|
return
|
147
145
|
super().save_own_variables(store)
|
148
|
-
# Before Keras 3.2, the reverse weight is saved in the super() call.
|
149
|
-
# After Keras 3.2, the reverse weight must be saved manually.
|
150
|
-
if parse(keras.version()) < parse("3.2.0"):
|
151
|
-
return
|
152
146
|
target_variables = []
|
153
147
|
if not self.tie_weights:
|
154
148
|
# Store the reverse embedding weights as the last weights.
|
@@ -239,9 +233,7 @@ class ReversibleEmbedding(keras.layers.Embedding):
|
|
239
233
|
|
240
234
|
def quantize(self, mode, type_check=True):
|
241
235
|
import gc
|
242
|
-
import inspect
|
243
236
|
|
244
|
-
assert_quantization_support()
|
245
237
|
if type_check and type(self) is not ReversibleEmbedding:
|
246
238
|
raise NotImplementedError(
|
247
239
|
f"Layer {self.__class__.__name__} does not have a `quantize()` "
|
@@ -250,14 +242,9 @@ class ReversibleEmbedding(keras.layers.Embedding):
|
|
250
242
|
self._check_quantize_args(mode, self.compute_dtype)
|
251
243
|
|
252
244
|
def abs_max_quantize(inputs, axis):
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
inputs, axis=axis, to_numpy=True
|
257
|
-
)
|
258
|
-
else:
|
259
|
-
# `keras<=3.4.1` doesn't support `to_numpy`
|
260
|
-
return keras.quantizers.abs_max_quantize(inputs, axis=axis)
|
245
|
+
return keras.quantizers.abs_max_quantize(
|
246
|
+
inputs, axis=axis, to_numpy=True
|
247
|
+
)
|
261
248
|
|
262
249
|
self._tracker.unlock()
|
263
250
|
if mode == "int8":
|
@@ -10,7 +10,7 @@ backbone_presets = {
|
|
10
10
|
"params": 11683584,
|
11
11
|
"path": "albert",
|
12
12
|
},
|
13
|
-
"kaggle_handle": "kaggle://keras/albert/keras/albert_base_en_uncased/
|
13
|
+
"kaggle_handle": "kaggle://keras/albert/keras/albert_base_en_uncased/5",
|
14
14
|
},
|
15
15
|
"albert_large_en_uncased": {
|
16
16
|
"metadata": {
|
@@ -21,7 +21,7 @@ backbone_presets = {
|
|
21
21
|
"params": 17683968,
|
22
22
|
"path": "albert",
|
23
23
|
},
|
24
|
-
"kaggle_handle": "kaggle://keras/albert/keras/albert_large_en_uncased/
|
24
|
+
"kaggle_handle": "kaggle://keras/albert/keras/albert_large_en_uncased/3",
|
25
25
|
},
|
26
26
|
"albert_extra_large_en_uncased": {
|
27
27
|
"metadata": {
|
@@ -32,7 +32,7 @@ backbone_presets = {
|
|
32
32
|
"params": 58724864,
|
33
33
|
"path": "albert",
|
34
34
|
},
|
35
|
-
"kaggle_handle": "kaggle://keras/albert/keras/albert_extra_large_en_uncased/
|
35
|
+
"kaggle_handle": "kaggle://keras/albert/keras/albert_extra_large_en_uncased/3",
|
36
36
|
},
|
37
37
|
"albert_extra_extra_large_en_uncased": {
|
38
38
|
"metadata": {
|
@@ -43,6 +43,6 @@ backbone_presets = {
|
|
43
43
|
"params": 222595584,
|
44
44
|
"path": "albert",
|
45
45
|
},
|
46
|
-
"kaggle_handle": "kaggle://keras/albert/keras/albert_extra_extra_large_en_uncased/
|
46
|
+
"kaggle_handle": "kaggle://keras/albert/keras/albert_extra_extra_large_en_uncased/3",
|
47
47
|
},
|
48
48
|
}
|
keras_hub/src/models/backbone.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1
1
|
import keras
|
2
2
|
|
3
3
|
from keras_hub.src.api_export import keras_hub_export
|
4
|
-
from keras_hub.src.utils.keras_utils import assert_quantization_support
|
5
4
|
from keras_hub.src.utils.preset_utils import builtin_presets
|
6
5
|
from keras_hub.src.utils.preset_utils import get_preset_loader
|
7
6
|
from keras_hub.src.utils.preset_utils import get_preset_saver
|
@@ -83,10 +82,6 @@ class Backbone(keras.Model):
|
|
83
82
|
def token_embedding(self, value):
|
84
83
|
self._token_embedding = value
|
85
84
|
|
86
|
-
def quantize(self, mode, **kwargs):
|
87
|
-
assert_quantization_support()
|
88
|
-
return super().quantize(mode, **kwargs)
|
89
|
-
|
90
85
|
def get_config(self):
|
91
86
|
# Don't chain to super here. `get_config()` for functional models is
|
92
87
|
# a nested layer config and cannot be passed to Backbone constructors.
|
@@ -10,7 +10,7 @@ backbone_presets = {
|
|
10
10
|
"params": 139417344,
|
11
11
|
"path": "bart",
|
12
12
|
},
|
13
|
-
"kaggle_handle": "kaggle://keras/bart/keras/bart_base_en/
|
13
|
+
"kaggle_handle": "kaggle://keras/bart/keras/bart_base_en/3",
|
14
14
|
},
|
15
15
|
"bart_large_en": {
|
16
16
|
"metadata": {
|
@@ -30,7 +30,7 @@ backbone_presets = {
|
|
30
30
|
"dropout": 0.1,
|
31
31
|
"max_sequence_length": 1024,
|
32
32
|
},
|
33
|
-
"kaggle_handle": "kaggle://keras/bart/keras/bart_large_en/
|
33
|
+
"kaggle_handle": "kaggle://keras/bart/keras/bart_large_en/3",
|
34
34
|
},
|
35
35
|
"bart_large_en_cnn": {
|
36
36
|
"metadata": {
|
@@ -50,6 +50,6 @@ backbone_presets = {
|
|
50
50
|
"dropout": 0.1,
|
51
51
|
"max_sequence_length": 1024,
|
52
52
|
},
|
53
|
-
"kaggle_handle": "kaggle://keras/bart/keras/bart_large_en_cnn/
|
53
|
+
"kaggle_handle": "kaggle://keras/bart/keras/bart_large_en_cnn/3",
|
54
54
|
},
|
55
55
|
}
|
@@ -10,7 +10,7 @@ backbone_presets = {
|
|
10
10
|
"params": 4385920,
|
11
11
|
"path": "bert",
|
12
12
|
},
|
13
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased/
|
13
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased/3",
|
14
14
|
},
|
15
15
|
"bert_small_en_uncased": {
|
16
16
|
"metadata": {
|
@@ -21,7 +21,7 @@ backbone_presets = {
|
|
21
21
|
"params": 28763648,
|
22
22
|
"path": "bert",
|
23
23
|
},
|
24
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_small_en_uncased/
|
24
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_small_en_uncased/3",
|
25
25
|
},
|
26
26
|
"bert_medium_en_uncased": {
|
27
27
|
"metadata": {
|
@@ -32,7 +32,7 @@ backbone_presets = {
|
|
32
32
|
"params": 41373184,
|
33
33
|
"path": "bert",
|
34
34
|
},
|
35
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_medium_en_uncased/
|
35
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_medium_en_uncased/3",
|
36
36
|
},
|
37
37
|
"bert_base_en_uncased": {
|
38
38
|
"metadata": {
|
@@ -43,7 +43,7 @@ backbone_presets = {
|
|
43
43
|
"params": 109482240,
|
44
44
|
"path": "bert",
|
45
45
|
},
|
46
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_base_en_uncased/
|
46
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_base_en_uncased/3",
|
47
47
|
},
|
48
48
|
"bert_base_en": {
|
49
49
|
"metadata": {
|
@@ -54,7 +54,7 @@ backbone_presets = {
|
|
54
54
|
"params": 108310272,
|
55
55
|
"path": "bert",
|
56
56
|
},
|
57
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_base_en/
|
57
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_base_en/3",
|
58
58
|
},
|
59
59
|
"bert_base_zh": {
|
60
60
|
"metadata": {
|
@@ -64,7 +64,7 @@ backbone_presets = {
|
|
64
64
|
"params": 102267648,
|
65
65
|
"path": "bert",
|
66
66
|
},
|
67
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_base_zh/
|
67
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_base_zh/3",
|
68
68
|
},
|
69
69
|
"bert_base_multi": {
|
70
70
|
"metadata": {
|
@@ -75,7 +75,7 @@ backbone_presets = {
|
|
75
75
|
"params": 177853440,
|
76
76
|
"path": "bert",
|
77
77
|
},
|
78
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_base_multi/
|
78
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_base_multi/3",
|
79
79
|
},
|
80
80
|
"bert_large_en_uncased": {
|
81
81
|
"metadata": {
|
@@ -86,7 +86,7 @@ backbone_presets = {
|
|
86
86
|
"params": 335141888,
|
87
87
|
"path": "bert",
|
88
88
|
},
|
89
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_large_en_uncased/
|
89
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_large_en_uncased/3",
|
90
90
|
},
|
91
91
|
"bert_large_en": {
|
92
92
|
"metadata": {
|
@@ -97,7 +97,7 @@ backbone_presets = {
|
|
97
97
|
"params": 333579264,
|
98
98
|
"path": "bert",
|
99
99
|
},
|
100
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_large_en/
|
100
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_large_en/3",
|
101
101
|
},
|
102
102
|
"bert_tiny_en_uncased_sst2": {
|
103
103
|
"metadata": {
|
@@ -108,6 +108,6 @@ backbone_presets = {
|
|
108
108
|
"params": 4385920,
|
109
109
|
"path": "bert",
|
110
110
|
},
|
111
|
-
"kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased_sst2/
|
111
|
+
"kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased_sst2/5",
|
112
112
|
},
|
113
113
|
}
|
@@ -10,7 +10,7 @@ backbone_presets = {
|
|
10
10
|
"params": 559214592,
|
11
11
|
"path": "bloom",
|
12
12
|
},
|
13
|
-
"kaggle_handle": "kaggle://keras/bloom/keras/bloom_560m_multi/
|
13
|
+
"kaggle_handle": "kaggle://keras/bloom/keras/bloom_560m_multi/4",
|
14
14
|
},
|
15
15
|
"bloom_1.1b_multi": {
|
16
16
|
"metadata": {
|
@@ -21,7 +21,7 @@ backbone_presets = {
|
|
21
21
|
"params": 1065314304,
|
22
22
|
"path": "bloom",
|
23
23
|
},
|
24
|
-
"kaggle_handle": "kaggle://keras/bloom/keras/bloom_1.1b_multi/
|
24
|
+
"kaggle_handle": "kaggle://keras/bloom/keras/bloom_1.1b_multi/2",
|
25
25
|
},
|
26
26
|
"bloom_1.7b_multi": {
|
27
27
|
"metadata": {
|
@@ -32,7 +32,7 @@ backbone_presets = {
|
|
32
32
|
"params": 1722408960,
|
33
33
|
"path": "bloom",
|
34
34
|
},
|
35
|
-
"kaggle_handle": "kaggle://keras/bloom/keras/bloom_1.7b_multi/
|
35
|
+
"kaggle_handle": "kaggle://keras/bloom/keras/bloom_1.7b_multi/2",
|
36
36
|
},
|
37
37
|
"bloom_3b_multi": {
|
38
38
|
"metadata": {
|
@@ -43,7 +43,7 @@ backbone_presets = {
|
|
43
43
|
"params": 3002557440,
|
44
44
|
"path": "bloom",
|
45
45
|
},
|
46
|
-
"kaggle_handle": "kaggle://keras/bloom/keras/bloom_3b_multi/
|
46
|
+
"kaggle_handle": "kaggle://keras/bloom/keras/bloom_3b_multi/2",
|
47
47
|
},
|
48
48
|
"bloomz_560m_multi": {
|
49
49
|
"metadata": {
|
@@ -54,7 +54,7 @@ backbone_presets = {
|
|
54
54
|
"params": 559214592,
|
55
55
|
"path": "bloom",
|
56
56
|
},
|
57
|
-
"kaggle_handle": "kaggle://keras/bloom/keras/bloomz_560m_multi/
|
57
|
+
"kaggle_handle": "kaggle://keras/bloom/keras/bloomz_560m_multi/2",
|
58
58
|
},
|
59
59
|
"bloomz_1.1b_multi": {
|
60
60
|
"metadata": {
|
@@ -65,7 +65,7 @@ backbone_presets = {
|
|
65
65
|
"params": 1065314304,
|
66
66
|
"path": "bloom",
|
67
67
|
},
|
68
|
-
"kaggle_handle": "kaggle://keras/bloom/keras/bloomz_1.1b_multi/
|
68
|
+
"kaggle_handle": "kaggle://keras/bloom/keras/bloomz_1.1b_multi/2",
|
69
69
|
},
|
70
70
|
"bloomz_1.7b_multi": {
|
71
71
|
"metadata": {
|
@@ -76,7 +76,7 @@ backbone_presets = {
|
|
76
76
|
"params": 1722408960,
|
77
77
|
"path": "bloom",
|
78
78
|
},
|
79
|
-
"kaggle_handle": "kaggle://keras/bloom/keras/bloomz_1.7b_multi/
|
79
|
+
"kaggle_handle": "kaggle://keras/bloom/keras/bloomz_1.7b_multi/2",
|
80
80
|
},
|
81
81
|
"bloomz_3b_multi": {
|
82
82
|
"metadata": {
|
@@ -87,6 +87,6 @@ backbone_presets = {
|
|
87
87
|
"params": 3002557440,
|
88
88
|
"path": "bloom",
|
89
89
|
},
|
90
|
-
"kaggle_handle": "kaggle://keras/bloom/keras/bloomz_3b_multi/
|
90
|
+
"kaggle_handle": "kaggle://keras/bloom/keras/bloomz_3b_multi/2",
|
91
91
|
},
|
92
92
|
}
|
@@ -11,7 +11,7 @@ backbone_presets = {
|
|
11
11
|
"params": 149620934,
|
12
12
|
"path": "clip",
|
13
13
|
},
|
14
|
-
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch16/
|
14
|
+
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch16/2",
|
15
15
|
},
|
16
16
|
"clip_vit_base_patch32": {
|
17
17
|
"metadata": {
|
@@ -22,7 +22,7 @@ backbone_presets = {
|
|
22
22
|
"params": 151277363,
|
23
23
|
"path": "clip",
|
24
24
|
},
|
25
|
-
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch32/
|
25
|
+
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_base_patch32/2",
|
26
26
|
},
|
27
27
|
"clip_vit_large_patch14": {
|
28
28
|
"metadata": {
|
@@ -33,7 +33,7 @@ backbone_presets = {
|
|
33
33
|
"params": 427616770,
|
34
34
|
"path": "clip",
|
35
35
|
},
|
36
|
-
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14/
|
36
|
+
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14/2",
|
37
37
|
},
|
38
38
|
"clip_vit_large_patch14_336": {
|
39
39
|
"metadata": {
|
@@ -44,7 +44,7 @@ backbone_presets = {
|
|
44
44
|
"params": 427944770,
|
45
45
|
"path": "clip",
|
46
46
|
},
|
47
|
-
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14_336/
|
47
|
+
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_large_patch14_336/2",
|
48
48
|
},
|
49
49
|
"clip_vit_b_32_laion2b_s34b_b79k": {
|
50
50
|
"metadata": {
|
@@ -55,7 +55,7 @@ backbone_presets = {
|
|
55
55
|
"params": 151277363,
|
56
56
|
"path": "clip",
|
57
57
|
},
|
58
|
-
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_b_32_laion2b_s34b_b79k/
|
58
|
+
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_b_32_laion2b_s34b_b79k/2",
|
59
59
|
},
|
60
60
|
"clip_vit_h_14_laion2b_s32b_b79k": {
|
61
61
|
"metadata": {
|
@@ -66,7 +66,7 @@ backbone_presets = {
|
|
66
66
|
"params": 986109698,
|
67
67
|
"path": "clip",
|
68
68
|
},
|
69
|
-
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_h_14_laion2b_s32b_b79k/
|
69
|
+
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_h_14_laion2b_s32b_b79k/2",
|
70
70
|
},
|
71
71
|
"clip_vit_g_14_laion2b_s12b_b42k": {
|
72
72
|
"metadata": {
|
@@ -77,7 +77,7 @@ backbone_presets = {
|
|
77
77
|
"params": 1366678530,
|
78
78
|
"path": "clip",
|
79
79
|
},
|
80
|
-
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_g_14_laion2b_s12b_b42k/
|
80
|
+
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_g_14_laion2b_s12b_b42k/2",
|
81
81
|
},
|
82
82
|
"clip_vit_bigg_14_laion2b_39b_b160k": {
|
83
83
|
"metadata": {
|
@@ -88,6 +88,6 @@ backbone_presets = {
|
|
88
88
|
"params": 2539567362,
|
89
89
|
"path": "clip",
|
90
90
|
},
|
91
|
-
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_bigg_14_laion2b_39b_b160k/
|
91
|
+
"kaggle_handle": "kaggle://keras/clip/keras/clip_vit_bigg_14_laion2b_39b_b160k/2",
|
92
92
|
},
|
93
93
|
}
|
@@ -10,7 +10,7 @@ backbone_presets = {
|
|
10
10
|
"params": 70682112,
|
11
11
|
"path": "deberta_v3",
|
12
12
|
},
|
13
|
-
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_extra_small_en/
|
13
|
+
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_extra_small_en/3",
|
14
14
|
},
|
15
15
|
"deberta_v3_small_en": {
|
16
16
|
"metadata": {
|
@@ -21,7 +21,7 @@ backbone_presets = {
|
|
21
21
|
"params": 141304320,
|
22
22
|
"path": "deberta_v3",
|
23
23
|
},
|
24
|
-
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_small_en/
|
24
|
+
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_small_en/3",
|
25
25
|
},
|
26
26
|
"deberta_v3_base_en": {
|
27
27
|
"metadata": {
|
@@ -32,7 +32,7 @@ backbone_presets = {
|
|
32
32
|
"params": 183831552,
|
33
33
|
"path": "deberta_v3",
|
34
34
|
},
|
35
|
-
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_base_en/
|
35
|
+
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_base_en/3",
|
36
36
|
},
|
37
37
|
"deberta_v3_large_en": {
|
38
38
|
"metadata": {
|
@@ -43,7 +43,7 @@ backbone_presets = {
|
|
43
43
|
"params": 434012160,
|
44
44
|
"path": "deberta_v3",
|
45
45
|
},
|
46
|
-
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_large_en/
|
46
|
+
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_large_en/3",
|
47
47
|
},
|
48
48
|
"deberta_v3_base_multi": {
|
49
49
|
"metadata": {
|
@@ -54,6 +54,6 @@ backbone_presets = {
|
|
54
54
|
"params": 278218752,
|
55
55
|
"path": "deberta_v3",
|
56
56
|
},
|
57
|
-
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_base_multi/
|
57
|
+
"kaggle_handle": "kaggle://keras/deberta_v3/keras/deberta_v3_base_multi/3",
|
58
58
|
},
|
59
59
|
}
|
@@ -12,6 +12,6 @@ backbone_presets = {
|
|
12
12
|
"params": 39190656,
|
13
13
|
"path": "deeplab_v3",
|
14
14
|
},
|
15
|
-
"kaggle_handle": "kaggle://keras/deeplabv3plus/keras/deeplab_v3_plus_resnet50_pascalvoc/
|
15
|
+
"kaggle_handle": "kaggle://keras/deeplabv3plus/keras/deeplab_v3_plus_resnet50_pascalvoc/4",
|
16
16
|
},
|
17
17
|
}
|
@@ -10,7 +10,7 @@ backbone_presets = {
|
|
10
10
|
"params": 7037504,
|
11
11
|
"path": "densenet",
|
12
12
|
},
|
13
|
-
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/
|
13
|
+
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/3",
|
14
14
|
},
|
15
15
|
"densenet_169_imagenet": {
|
16
16
|
"metadata": {
|
@@ -21,7 +21,7 @@ backbone_presets = {
|
|
21
21
|
"params": 12642880,
|
22
22
|
"path": "densenet",
|
23
23
|
},
|
24
|
-
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/
|
24
|
+
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/3",
|
25
25
|
},
|
26
26
|
"densenet_201_imagenet": {
|
27
27
|
"metadata": {
|
@@ -32,6 +32,6 @@ backbone_presets = {
|
|
32
32
|
"params": 18321984,
|
33
33
|
"path": "densenet",
|
34
34
|
},
|
35
|
-
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/
|
35
|
+
"kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/3",
|
36
36
|
},
|
37
37
|
}
|
@@ -11,7 +11,7 @@ backbone_presets = {
|
|
11
11
|
"params": 66362880,
|
12
12
|
"path": "distil_bert",
|
13
13
|
},
|
14
|
-
"kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en_uncased/
|
14
|
+
"kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en_uncased/3",
|
15
15
|
},
|
16
16
|
"distil_bert_base_en": {
|
17
17
|
"metadata": {
|
@@ -23,7 +23,7 @@ backbone_presets = {
|
|
23
23
|
"params": 65190912,
|
24
24
|
"path": "distil_bert",
|
25
25
|
},
|
26
|
-
"kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en/
|
26
|
+
"kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en/3",
|
27
27
|
},
|
28
28
|
"distil_bert_base_multi": {
|
29
29
|
"metadata": {
|
@@ -34,6 +34,6 @@ backbone_presets = {
|
|
34
34
|
"params": 134734080,
|
35
35
|
"path": "distil_bert",
|
36
36
|
},
|
37
|
-
"kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_multi/
|
37
|
+
"kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_multi/3",
|
38
38
|
},
|
39
39
|
}
|
@@ -136,13 +136,17 @@ class EfficientNetBackbone(FeaturePyramidBackbone):
|
|
136
136
|
):
|
137
137
|
num_stacks = len(stackwise_kernel_sizes)
|
138
138
|
if "depth_coefficient" in kwargs:
|
139
|
-
|
140
|
-
|
141
|
-
|
139
|
+
depth_coefficient = kwargs.pop("depth_coefficient")
|
140
|
+
if not isinstance(depth_coefficient, (list, tuple)):
|
141
|
+
stackwise_depth_coefficients = [depth_coefficient] * num_stacks
|
142
|
+
else:
|
143
|
+
stackwise_depth_coefficients = depth_coefficient
|
142
144
|
if "width_coefficient" in kwargs:
|
143
|
-
|
144
|
-
|
145
|
-
|
145
|
+
width_coefficient = kwargs.pop("width_coefficient")
|
146
|
+
if not isinstance(width_coefficient, (list, tuple)):
|
147
|
+
stackwise_width_coefficients = [width_coefficient] * num_stacks
|
148
|
+
else:
|
149
|
+
stackwise_width_coefficients = width_coefficient
|
146
150
|
|
147
151
|
image_input = keras.layers.Input(shape=input_shape)
|
148
152
|
|
@@ -10,7 +10,7 @@ backbone_presets = {
|
|
10
10
|
"params": 5288548,
|
11
11
|
"path": "efficientnet",
|
12
12
|
},
|
13
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b0_ra_imagenet/
|
13
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b0_ra_imagenet/2",
|
14
14
|
},
|
15
15
|
"efficientnet_b0_ra4_e3600_r224_imagenet": {
|
16
16
|
"metadata": {
|
@@ -23,7 +23,7 @@ backbone_presets = {
|
|
23
23
|
"params": 5288548,
|
24
24
|
"path": "efficientnet",
|
25
25
|
},
|
26
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b0_ra4_e3600_r224_imagenet/
|
26
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b0_ra4_e3600_r224_imagenet/2",
|
27
27
|
},
|
28
28
|
"efficientnet_b1_ft_imagenet": {
|
29
29
|
"metadata": {
|
@@ -33,7 +33,7 @@ backbone_presets = {
|
|
33
33
|
"params": 7794184,
|
34
34
|
"path": "efficientnet",
|
35
35
|
},
|
36
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/
|
36
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/5",
|
37
37
|
},
|
38
38
|
"efficientnet_b1_ra4_e3600_r240_imagenet": {
|
39
39
|
"metadata": {
|
@@ -46,7 +46,7 @@ backbone_presets = {
|
|
46
46
|
"params": 7794184,
|
47
47
|
"path": "efficientnet",
|
48
48
|
},
|
49
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ra4_e3600_r240_imagenet/
|
49
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ra4_e3600_r240_imagenet/2",
|
50
50
|
},
|
51
51
|
"efficientnet_b2_ra_imagenet": {
|
52
52
|
"metadata": {
|
@@ -57,7 +57,7 @@ backbone_presets = {
|
|
57
57
|
"params": 9109994,
|
58
58
|
"path": "efficientnet",
|
59
59
|
},
|
60
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b2_ra_imagenet/
|
60
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b2_ra_imagenet/2",
|
61
61
|
},
|
62
62
|
"efficientnet_b3_ra2_imagenet": {
|
63
63
|
"metadata": {
|
@@ -68,7 +68,7 @@ backbone_presets = {
|
|
68
68
|
"params": 12233232,
|
69
69
|
"path": "efficientnet",
|
70
70
|
},
|
71
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b3_ra2_imagenet/
|
71
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b3_ra2_imagenet/2",
|
72
72
|
},
|
73
73
|
"efficientnet_b4_ra2_imagenet": {
|
74
74
|
"metadata": {
|
@@ -79,7 +79,7 @@ backbone_presets = {
|
|
79
79
|
"params": 19341616,
|
80
80
|
"path": "efficientnet",
|
81
81
|
},
|
82
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b4_ra2_imagenet/
|
82
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b4_ra2_imagenet/2",
|
83
83
|
},
|
84
84
|
"efficientnet_b5_sw_imagenet": {
|
85
85
|
"metadata": {
|
@@ -92,7 +92,7 @@ backbone_presets = {
|
|
92
92
|
"params": 30389784,
|
93
93
|
"path": "efficientnet",
|
94
94
|
},
|
95
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b5_sw_imagenet/
|
95
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b5_sw_imagenet/2",
|
96
96
|
},
|
97
97
|
"efficientnet_b5_sw_ft_imagenet": {
|
98
98
|
"metadata": {
|
@@ -105,7 +105,7 @@ backbone_presets = {
|
|
105
105
|
"params": 30389784,
|
106
106
|
"path": "efficientnet",
|
107
107
|
},
|
108
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b5_sw_ft_imagenet/
|
108
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b5_sw_ft_imagenet/2",
|
109
109
|
},
|
110
110
|
"efficientnet_el_ra_imagenet": {
|
111
111
|
"metadata": {
|
@@ -116,7 +116,7 @@ backbone_presets = {
|
|
116
116
|
"params": 10589712,
|
117
117
|
"path": "efficientnet",
|
118
118
|
},
|
119
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/
|
119
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/5",
|
120
120
|
},
|
121
121
|
"efficientnet_em_ra2_imagenet": {
|
122
122
|
"metadata": {
|
@@ -127,7 +127,7 @@ backbone_presets = {
|
|
127
127
|
"params": 6899496,
|
128
128
|
"path": "efficientnet",
|
129
129
|
},
|
130
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/
|
130
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/5",
|
131
131
|
},
|
132
132
|
"efficientnet_es_ra_imagenet": {
|
133
133
|
"metadata": {
|
@@ -138,7 +138,7 @@ backbone_presets = {
|
|
138
138
|
"params": 5438392,
|
139
139
|
"path": "efficientnet",
|
140
140
|
},
|
141
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/
|
141
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_b1_ft_imagenet/5",
|
142
142
|
},
|
143
143
|
"efficientnet2_rw_m_agc_imagenet": {
|
144
144
|
"metadata": {
|
@@ -151,7 +151,7 @@ backbone_presets = {
|
|
151
151
|
"path": "efficientnet",
|
152
152
|
"model_card": "https://arxiv.org/abs/2104.00298",
|
153
153
|
},
|
154
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet/
|
154
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_m_agc_imagenet/2",
|
155
155
|
},
|
156
156
|
"efficientnet2_rw_s_ra2_imagenet": {
|
157
157
|
"metadata": {
|
@@ -164,7 +164,7 @@ backbone_presets = {
|
|
164
164
|
"path": "efficientnet",
|
165
165
|
"model_card": "https://arxiv.org/abs/2104.00298",
|
166
166
|
},
|
167
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet/
|
167
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_s_ra2_imagenet/2",
|
168
168
|
},
|
169
169
|
"efficientnet2_rw_t_ra2_imagenet": {
|
170
170
|
"metadata": {
|
@@ -177,7 +177,7 @@ backbone_presets = {
|
|
177
177
|
"path": "efficientnet",
|
178
178
|
"model_card": "https://arxiv.org/abs/2104.00298",
|
179
179
|
},
|
180
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet/
|
180
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet2_rw_t_ra2_imagenet/2",
|
181
181
|
},
|
182
182
|
"efficientnet_lite0_ra_imagenet": {
|
183
183
|
"metadata": {
|
@@ -188,6 +188,6 @@ backbone_presets = {
|
|
188
188
|
"params": 4652008,
|
189
189
|
"path": "efficientnet",
|
190
190
|
},
|
191
|
-
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet/
|
191
|
+
"kaggle_handle": "kaggle://keras/efficientnet/keras/efficientnet_lite0_ra_imagenet/2",
|
192
192
|
},
|
193
193
|
}
|