keras-hub-nightly 0.16.1.dev202410090340__py3-none-any.whl → 0.16.1.dev202410100339__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/layers/__init__.py +3 -0
- keras_hub/api/models/__init__.py +3 -0
- keras_hub/src/layers/preprocessing/image_converter.py +2 -1
- keras_hub/src/models/mix_transformer/__init__.py +12 -0
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +4 -0
- keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py +16 -0
- keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py +8 -0
- keras_hub/src/models/mix_transformer/mix_transformer_layers.py +9 -5
- keras_hub/src/models/mix_transformer/mix_transformer_presets.py +151 -0
- keras_hub/src/models/task.py +1 -1
- keras_hub/src/utils/timm/preset_loader.py +1 -3
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410090340.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.16.1.dev202410090340.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/RECORD +16 -13
- {keras_hub_nightly-0.16.1.dev202410090340.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.16.1.dev202410090340.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/top_level.txt +0 -0
keras_hub/api/layers/__init__.py
CHANGED
@@ -40,6 +40,9 @@ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
|
|
40
40
|
from keras_hub.src.models.densenet.densenet_image_converter import (
|
41
41
|
DenseNetImageConverter,
|
42
42
|
)
|
43
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
|
44
|
+
MiTImageConverter,
|
45
|
+
)
|
43
46
|
from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
|
44
47
|
PaliGemmaImageConverter,
|
45
48
|
)
|
keras_hub/api/models/__init__.py
CHANGED
@@ -208,6 +208,9 @@ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
|
|
208
208
|
from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
|
209
209
|
MiTImageClassifier,
|
210
210
|
)
|
211
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
|
212
|
+
MiTImageClassifierPreprocessor,
|
213
|
+
)
|
211
214
|
from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
|
212
215
|
from keras_hub.src.models.mobilenet.mobilenet_image_classifier import (
|
213
216
|
MobileNetImageClassifier,
|
@@ -145,8 +145,9 @@ class ImageConverter(PreprocessingLayer):
|
|
145
145
|
|
146
146
|
@preprocessing_function
|
147
147
|
def call(self, inputs):
|
148
|
+
x = inputs
|
148
149
|
if self.image_size is not None:
|
149
|
-
x = self.resizing(
|
150
|
+
x = self.resizing(x)
|
150
151
|
if self.scale is not None:
|
151
152
|
x = x * self._expand_non_channel_dims(self.scale, x)
|
152
153
|
if self.offset is not None:
|
@@ -0,0 +1,12 @@
|
|
1
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
|
2
|
+
MiTBackbone,
|
3
|
+
)
|
4
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
|
5
|
+
MiTImageClassifier,
|
6
|
+
)
|
7
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_presets import (
|
8
|
+
backbone_presets,
|
9
|
+
)
|
10
|
+
from keras_hub.src.utils.preset_utils import register_presets
|
11
|
+
|
12
|
+
register_presets(backbone_presets, MiTBackbone)
|
@@ -3,8 +3,12 @@ from keras_hub.src.models.image_classifier import ImageClassifier
|
|
3
3
|
from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
|
4
4
|
MiTBackbone,
|
5
5
|
)
|
6
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
|
7
|
+
MiTImageClassifierPreprocessor,
|
8
|
+
)
|
6
9
|
|
7
10
|
|
8
11
|
@keras_hub_export("keras_hub.models.MiTImageClassifier")
|
9
12
|
class MiTImageClassifier(ImageClassifier):
|
10
13
|
backbone_cls = MiTBackbone
|
14
|
+
preprocessor_cls = MiTImageClassifierPreprocessor
|
@@ -0,0 +1,16 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.image_classifier_preprocessor import (
|
3
|
+
ImageClassifierPreprocessor,
|
4
|
+
)
|
5
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
|
6
|
+
MiTBackbone,
|
7
|
+
)
|
8
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
|
9
|
+
MiTImageConverter,
|
10
|
+
)
|
11
|
+
|
12
|
+
|
13
|
+
@keras_hub_export("keras_hub.models.MiTImageClassifierPreprocessor")
|
14
|
+
class MiTImageClassifierPreprocessor(ImageClassifierPreprocessor):
|
15
|
+
backbone_cls = MiTBackbone
|
16
|
+
image_converter_cls = MiTImageConverter
|
@@ -0,0 +1,8 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
|
3
|
+
from keras_hub.src.models.mix_transformer import MiTBackbone
|
4
|
+
|
5
|
+
|
6
|
+
@keras_hub_export("keras_hub.layers.MiTImageConverter")
|
7
|
+
class MiTImageConverter(ImageConverter):
|
8
|
+
backbone_cls = MiTBackbone
|
@@ -28,19 +28,23 @@ class OverlappingPatchingAndEmbedding(keras.layers.Layer):
|
|
28
28
|
self.patch_size = patch_size
|
29
29
|
self.stride = stride
|
30
30
|
|
31
|
+
padding_size = self.patch_size // 2
|
32
|
+
|
33
|
+
self.padding = keras.layers.ZeroPadding2D(
|
34
|
+
padding=(padding_size, padding_size)
|
35
|
+
)
|
31
36
|
self.proj = keras.layers.Conv2D(
|
32
37
|
filters=project_dim,
|
33
38
|
kernel_size=patch_size,
|
34
39
|
strides=stride,
|
35
|
-
padding="
|
40
|
+
padding="valid",
|
36
41
|
)
|
37
|
-
self.norm = keras.layers.LayerNormalization()
|
42
|
+
self.norm = keras.layers.LayerNormalization(epsilon=1e-5)
|
38
43
|
|
39
44
|
def call(self, x):
|
45
|
+
x = self.padding(x)
|
40
46
|
x = self.proj(x)
|
41
|
-
|
42
|
-
shape = x.shape
|
43
|
-
x = ops.reshape(x, (-1, shape[1] * shape[2], shape[3]))
|
47
|
+
x = ops.reshape(x, (-1, x.shape[1] * x.shape[2], x.shape[3]))
|
44
48
|
x = self.norm(x)
|
45
49
|
return x
|
46
50
|
|
@@ -0,0 +1,151 @@
|
|
1
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2
|
+
# you may not use this file except in compliance with the License.
|
3
|
+
# You may obtain a copy of the License at
|
4
|
+
#
|
5
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
6
|
+
#
|
7
|
+
# Unless required by applicable law or agreed to in writing, software
|
8
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10
|
+
# See the License for the specific language governing permissions and
|
11
|
+
# limitations under the License.
|
12
|
+
"""MiT model preset configurations."""
|
13
|
+
|
14
|
+
backbone_presets_with_weights = {
|
15
|
+
"mit_b0_ade20k_512": {
|
16
|
+
"metadata": {
|
17
|
+
"description": (
|
18
|
+
"MiT (MixTransformer) model with 8 transformer blocks."
|
19
|
+
),
|
20
|
+
"params": 3321962,
|
21
|
+
"official_name": "MiT",
|
22
|
+
"path": "mit",
|
23
|
+
},
|
24
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b0_ade20k_512",
|
25
|
+
},
|
26
|
+
"mit_b1_ade20k_512": {
|
27
|
+
"metadata": {
|
28
|
+
"description": (
|
29
|
+
"MiT (MixTransformer) model with 8 transformer blocks."
|
30
|
+
),
|
31
|
+
"params": 13156554,
|
32
|
+
"official_name": "MiT",
|
33
|
+
"path": "mit",
|
34
|
+
},
|
35
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b1_ade20k_512",
|
36
|
+
},
|
37
|
+
"mit_b2_ade20k_512": {
|
38
|
+
"metadata": {
|
39
|
+
"description": (
|
40
|
+
"MiT (MixTransformer) model with 16 transformer blocks."
|
41
|
+
),
|
42
|
+
"params": 24201418,
|
43
|
+
"official_name": "MiT",
|
44
|
+
"path": "mit",
|
45
|
+
},
|
46
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b2_ade20k_512",
|
47
|
+
},
|
48
|
+
"mit_b3_ade20k_512": {
|
49
|
+
"metadata": {
|
50
|
+
"description": (
|
51
|
+
"MiT (MixTransformer) model with 28 transformer blocks."
|
52
|
+
),
|
53
|
+
"params": 44077258,
|
54
|
+
"official_name": "MiT",
|
55
|
+
"path": "mit",
|
56
|
+
},
|
57
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b3_ade20k_512",
|
58
|
+
},
|
59
|
+
"mit_b4_ade20k_512": {
|
60
|
+
"metadata": {
|
61
|
+
"description": (
|
62
|
+
"MiT (MixTransformer) model with 41 transformer blocks."
|
63
|
+
),
|
64
|
+
"params": 60847818,
|
65
|
+
"official_name": "MiT",
|
66
|
+
"path": "mit",
|
67
|
+
},
|
68
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b4_ade20k_512",
|
69
|
+
},
|
70
|
+
"mit_b5_ade20k_640": {
|
71
|
+
"metadata": {
|
72
|
+
"description": (
|
73
|
+
"MiT (MixTransformer) model with 52 transformer blocks."
|
74
|
+
),
|
75
|
+
"params": 81448138,
|
76
|
+
"official_name": "MiT",
|
77
|
+
"path": "mit",
|
78
|
+
},
|
79
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b5_ade20k_512",
|
80
|
+
},
|
81
|
+
"mit_b0_cityscapes_1024": {
|
82
|
+
"metadata": {
|
83
|
+
"description": (
|
84
|
+
"MiT (MixTransformer) model with 8 transformer blocks."
|
85
|
+
),
|
86
|
+
"params": 3321962,
|
87
|
+
"official_name": "MiT",
|
88
|
+
"path": "mit",
|
89
|
+
},
|
90
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b0_cityscapes_1024",
|
91
|
+
},
|
92
|
+
"mit_b1_cityscapes_1024": {
|
93
|
+
"metadata": {
|
94
|
+
"description": (
|
95
|
+
"MiT (MixTransformer) model with 8 transformer blocks."
|
96
|
+
),
|
97
|
+
"params": 13156554,
|
98
|
+
"official_name": "MiT",
|
99
|
+
"path": "mit",
|
100
|
+
},
|
101
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b1_cityscapes_1024",
|
102
|
+
},
|
103
|
+
"mit_b2_cityscapes_1024": {
|
104
|
+
"metadata": {
|
105
|
+
"description": (
|
106
|
+
"MiT (MixTransformer) model with 16 transformer blocks."
|
107
|
+
),
|
108
|
+
"params": 24201418,
|
109
|
+
"official_name": "MiT",
|
110
|
+
"path": "mit",
|
111
|
+
},
|
112
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b2_cityscapes_1024",
|
113
|
+
},
|
114
|
+
"mit_b3_cityscapes_1024": {
|
115
|
+
"metadata": {
|
116
|
+
"description": (
|
117
|
+
"MiT (MixTransformer) model with 28 transformer blocks."
|
118
|
+
),
|
119
|
+
"params": 44077258,
|
120
|
+
"official_name": "MiT",
|
121
|
+
"path": "mit",
|
122
|
+
},
|
123
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b3_cityscapes_1024",
|
124
|
+
},
|
125
|
+
"mit_b4_cityscapes_1024": {
|
126
|
+
"metadata": {
|
127
|
+
"description": (
|
128
|
+
"MiT (MixTransformer) model with 41 transformer blocks."
|
129
|
+
),
|
130
|
+
"params": 60847818,
|
131
|
+
"official_name": "MiT",
|
132
|
+
"path": "mit",
|
133
|
+
},
|
134
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b4_cityscapes_1024",
|
135
|
+
},
|
136
|
+
"mit_b5_cityscapes_1024": {
|
137
|
+
"metadata": {
|
138
|
+
"description": (
|
139
|
+
"MiT (MixTransformer) model with 52 transformer blocks."
|
140
|
+
),
|
141
|
+
"params": 81448138,
|
142
|
+
"official_name": "MiT",
|
143
|
+
"path": "mit",
|
144
|
+
},
|
145
|
+
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b5_cityscapes_1024",
|
146
|
+
},
|
147
|
+
}
|
148
|
+
|
149
|
+
backbone_presets = {
|
150
|
+
**backbone_presets_with_weights,
|
151
|
+
}
|
keras_hub/src/models/task.py
CHANGED
@@ -339,7 +339,7 @@ class Task(PipelineModel):
|
|
339
339
|
add_layer(layer, info)
|
340
340
|
elif isinstance(layer, ImageConverter):
|
341
341
|
info = "Image size: "
|
342
|
-
info += highlight_shape(layer.image_size
|
342
|
+
info += highlight_shape(layer.image_size)
|
343
343
|
add_layer(layer, info)
|
344
344
|
elif isinstance(layer, AudioConverter):
|
345
345
|
info = "Audio shape: "
|
@@ -50,11 +50,10 @@ class TimmPresetLoader(PresetLoader):
|
|
50
50
|
|
51
51
|
def load_image_converter(self, cls, **kwargs):
|
52
52
|
pretrained_cfg = self.config.get("pretrained_cfg", None)
|
53
|
-
if not pretrained_cfg
|
53
|
+
if not pretrained_cfg:
|
54
54
|
return None
|
55
55
|
# This assumes the same basic setup for all timm preprocessing, We may
|
56
56
|
# need to extend this as we cover more model types.
|
57
|
-
input_size = pretrained_cfg["input_size"]
|
58
57
|
mean = pretrained_cfg["mean"]
|
59
58
|
std = pretrained_cfg["std"]
|
60
59
|
scale = [1.0 / 255.0 / s for s in std]
|
@@ -63,7 +62,6 @@ class TimmPresetLoader(PresetLoader):
|
|
63
62
|
if interpolation not in ("bilinear", "nearest", "bicubic"):
|
64
63
|
interpolation = "bilinear" # Unsupported interpolation type.
|
65
64
|
return cls(
|
66
|
-
image_size=input_size[1:],
|
67
65
|
scale=scale,
|
68
66
|
offset=offset,
|
69
67
|
interpolation=interpolation,
|
keras_hub/src/version_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.1.
|
3
|
+
Version: 0.16.1.dev202410100339
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -1,15 +1,15 @@
|
|
1
1
|
keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
|
2
2
|
keras_hub/api/__init__.py,sha256=spMxsgqzjpeuC8rY4WP-2kAZ2qwwKRSbFwddXgUjqQE,524
|
3
3
|
keras_hub/api/bounding_box/__init__.py,sha256=T8R_X7BPm0et1xaZq8565uJmid7dylsSFSj4V-rGuFQ,1097
|
4
|
-
keras_hub/api/layers/__init__.py,sha256=
|
4
|
+
keras_hub/api/layers/__init__.py,sha256=jQbYVdHrjC0PnJVa3myfJbAmRef9KGwrTgPDaTsWPJw,2439
|
5
5
|
keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
|
6
|
-
keras_hub/api/models/__init__.py,sha256=
|
6
|
+
keras_hub/api/models/__init__.py,sha256=Z3GLSmrvds7-XDtkcB9gq_sNZ5zJ_3Rwl_xoZ-dTX14,14786
|
7
7
|
keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
|
8
8
|
keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2EBDlM0cA,2524
|
9
9
|
keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
|
10
10
|
keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
|
12
|
-
keras_hub/src/version_utils.py,sha256=
|
12
|
+
keras_hub/src/version_utils.py,sha256=ta3Ul-3W63rzG1EOq-JStAvR39K8vw23TKBmNmLl2MQ,222
|
13
13
|
keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
14
|
keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
|
15
15
|
keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
|
@@ -34,7 +34,7 @@ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=howjIXH_vgBOKaXaIa7m
|
|
34
34
|
keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
|
35
35
|
keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
36
36
|
keras_hub/src/layers/preprocessing/audio_converter.py,sha256=YGh_kQw65a1Z6S5zzSNVP-ChyLYHq3-eOYpOS53xIN8,4156
|
37
|
-
keras_hub/src/layers/preprocessing/image_converter.py,sha256=
|
37
|
+
keras_hub/src/layers/preprocessing/image_converter.py,sha256=j8SdL-pFOrWIGIV_HwlABUPhdcSOZXYhPRlvFCukAU8,10180
|
38
38
|
keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
|
39
39
|
keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
|
40
40
|
keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
|
@@ -64,7 +64,7 @@ keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_j
|
|
64
64
|
keras_hub/src/models/preprocessor.py,sha256=3CWLsMpQC77w7GzM3fU3Jf-G62ldJjufKyzPVvnGdeI,7970
|
65
65
|
keras_hub/src/models/seq_2_seq_lm.py,sha256=w0gX-5YZjatfvAJmFAgSHyqS_BLqc8FF8DPLGK8mrgI,1864
|
66
66
|
keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=HUHRbWRG5SF1pPpotGzBhXlrMh4pLFxgAoFk05FIrB4,9687
|
67
|
-
keras_hub/src/models/task.py,sha256=
|
67
|
+
keras_hub/src/models/task.py,sha256=VN-CClNw3EB5Byb7HyyI3CqaS140od7-dmQInmYFSKg,14414
|
68
68
|
keras_hub/src/models/text_classifier.py,sha256=VBDvQUHTpJPqKp7A4VAtm35FOmJ3yMo0DW6GdX67xG0,4159
|
69
69
|
keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
|
70
70
|
keras_hub/src/models/text_to_image.py,sha256=7s6rB1To46A7l9ItqRw3Pe4DGRm7YnqbHJ-RyNAlLPE,12973
|
@@ -209,10 +209,13 @@ keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=nimMZ5CTPK8v9eflfrGuzq
|
|
209
209
|
keras_hub/src/models/mistral/mistral_presets.py,sha256=gucgdaFAiU-vRDS1g9zWGHjbDF_jaCiljPibCF4yVqY,1329
|
210
210
|
keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
|
211
211
|
keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=RDIIB3FhneHZP11tNUFQT9DcWawCMnrtVxtSvtnP3ts,9542
|
212
|
-
keras_hub/src/models/mix_transformer/__init__.py,sha256=
|
212
|
+
keras_hub/src/models/mix_transformer/__init__.py,sha256=neU-h7C0sXS6OmtS5NFJeJ1lF13OW3DaUlT6LXhl6vA,409
|
213
213
|
keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=B4hdhWHZ93lS937BGSSxovDKVXQZVuWrMbFwECFoWrg,6048
|
214
|
-
keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=
|
215
|
-
keras_hub/src/models/mix_transformer/
|
214
|
+
keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=pVfbbTNuiZRFElCGLyNO3gknNGnut-6-L-zAVB4Nb5w,531
|
215
|
+
keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py,sha256=lSUuMAJiyWDVH0AVjG2y684bU3msxI3_UTa_xWyLLKQ,570
|
216
|
+
keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py,sha256=WG2LjuagCxSYXkFgqd4bHyUoMLFCzTj9QjJBoptW6WM,323
|
217
|
+
keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=9AbA4kCJkjeV7fAwbRns8VGn0l1pgQ3CqFPjY-99VGA,9695
|
218
|
+
keras_hub/src/models/mix_transformer/mix_transformer_presets.py,sha256=rWrjAAwc9Kmo0c66CNh5cuIpySzqqLKj_VI6hlI9d44,5116
|
216
219
|
keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
217
220
|
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=nlXdMqcj18iahy60aew4ON79EHUEuNIgvKY9dToH284,18191
|
218
221
|
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
|
@@ -350,7 +353,7 @@ keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=MvIvv1WJo51ZXBxy4S7t_DsN3Z
|
|
350
353
|
keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
351
354
|
keras_hub/src/utils/timm/convert_densenet.py,sha256=V-GRjWuDnlh3b1EMxqahwZ3GMwSgOa3v0HOfb2ZZ-d0,3342
|
352
355
|
keras_hub/src/utils/timm/convert_resnet.py,sha256=ee8eTml0ffJKE8avzGoLFcpjPF63DsvoIUArAGa8Ngg,5832
|
353
|
-
keras_hub/src/utils/timm/preset_loader.py,sha256=
|
356
|
+
keras_hub/src/utils/timm/preset_loader.py,sha256=CW-yNXvp3IExK3xuHKjYqbLdBVUST2kSsLmWxSs0i5c,2968
|
354
357
|
keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
355
358
|
keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
|
356
359
|
keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
|
@@ -363,7 +366,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
|
|
363
366
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
|
364
367
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
|
365
368
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
|
366
|
-
keras_hub_nightly-0.16.1.
|
367
|
-
keras_hub_nightly-0.16.1.
|
368
|
-
keras_hub_nightly-0.16.1.
|
369
|
-
keras_hub_nightly-0.16.1.
|
369
|
+
keras_hub_nightly-0.16.1.dev202410100339.dist-info/METADATA,sha256=Q1QCPvLIZpKSgKKhzvHH4Qng8vWrQihbFRVWk85Pjqs,7458
|
370
|
+
keras_hub_nightly-0.16.1.dev202410100339.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
371
|
+
keras_hub_nightly-0.16.1.dev202410100339.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
372
|
+
keras_hub_nightly-0.16.1.dev202410100339.dist-info/RECORD,,
|
File without changes
|