keras-hub-nightly 0.16.1.dev202410090340__py3-none-any.whl → 0.16.1.dev202410100339__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -40,6 +40,9 @@ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
40
40
  from keras_hub.src.models.densenet.densenet_image_converter import (
41
41
  DenseNetImageConverter,
42
42
  )
43
+ from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
44
+ MiTImageConverter,
45
+ )
43
46
  from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
44
47
  PaliGemmaImageConverter,
45
48
  )
@@ -208,6 +208,9 @@ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
208
208
  from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
209
209
  MiTImageClassifier,
210
210
  )
211
+ from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
212
+ MiTImageClassifierPreprocessor,
213
+ )
211
214
  from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
212
215
  from keras_hub.src.models.mobilenet.mobilenet_image_classifier import (
213
216
  MobileNetImageClassifier,
@@ -145,8 +145,9 @@ class ImageConverter(PreprocessingLayer):
145
145
 
146
146
  @preprocessing_function
147
147
  def call(self, inputs):
148
+ x = inputs
148
149
  if self.image_size is not None:
149
- x = self.resizing(inputs)
150
+ x = self.resizing(x)
150
151
  if self.scale is not None:
151
152
  x = x * self._expand_non_channel_dims(self.scale, x)
152
153
  if self.offset is not None:
@@ -0,0 +1,12 @@
1
+ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
2
+ MiTBackbone,
3
+ )
4
+ from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
5
+ MiTImageClassifier,
6
+ )
7
+ from keras_hub.src.models.mix_transformer.mix_transformer_presets import (
8
+ backbone_presets,
9
+ )
10
+ from keras_hub.src.utils.preset_utils import register_presets
11
+
12
+ register_presets(backbone_presets, MiTBackbone)
@@ -3,8 +3,12 @@ from keras_hub.src.models.image_classifier import ImageClassifier
3
3
  from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
4
4
  MiTBackbone,
5
5
  )
6
+ from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
7
+ MiTImageClassifierPreprocessor,
8
+ )
6
9
 
7
10
 
8
11
  @keras_hub_export("keras_hub.models.MiTImageClassifier")
9
12
  class MiTImageClassifier(ImageClassifier):
10
13
  backbone_cls = MiTBackbone
14
+ preprocessor_cls = MiTImageClassifierPreprocessor
@@ -0,0 +1,16 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.image_classifier_preprocessor import (
3
+ ImageClassifierPreprocessor,
4
+ )
5
+ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
6
+ MiTBackbone,
7
+ )
8
+ from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
9
+ MiTImageConverter,
10
+ )
11
+
12
+
13
+ @keras_hub_export("keras_hub.models.MiTImageClassifierPreprocessor")
14
+ class MiTImageClassifierPreprocessor(ImageClassifierPreprocessor):
15
+ backbone_cls = MiTBackbone
16
+ image_converter_cls = MiTImageConverter
@@ -0,0 +1,8 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
+ from keras_hub.src.models.mix_transformer import MiTBackbone
4
+
5
+
6
+ @keras_hub_export("keras_hub.layers.MiTImageConverter")
7
+ class MiTImageConverter(ImageConverter):
8
+ backbone_cls = MiTBackbone
@@ -28,19 +28,23 @@ class OverlappingPatchingAndEmbedding(keras.layers.Layer):
28
28
  self.patch_size = patch_size
29
29
  self.stride = stride
30
30
 
31
+ padding_size = self.patch_size // 2
32
+
33
+ self.padding = keras.layers.ZeroPadding2D(
34
+ padding=(padding_size, padding_size)
35
+ )
31
36
  self.proj = keras.layers.Conv2D(
32
37
  filters=project_dim,
33
38
  kernel_size=patch_size,
34
39
  strides=stride,
35
- padding="same",
40
+ padding="valid",
36
41
  )
37
- self.norm = keras.layers.LayerNormalization()
42
+ self.norm = keras.layers.LayerNormalization(epsilon=1e-5)
38
43
 
39
44
  def call(self, x):
45
+ x = self.padding(x)
40
46
  x = self.proj(x)
41
- # B, H, W, C
42
- shape = x.shape
43
- x = ops.reshape(x, (-1, shape[1] * shape[2], shape[3]))
47
+ x = ops.reshape(x, (-1, x.shape[1] * x.shape[2], x.shape[3]))
44
48
  x = self.norm(x)
45
49
  return x
46
50
 
@@ -0,0 +1,151 @@
1
+ # Licensed under the Apache License, Version 2.0 (the "License");
2
+ # you may not use this file except in compliance with the License.
3
+ # You may obtain a copy of the License at
4
+ #
5
+ # https://www.apache.org/licenses/LICENSE-2.0
6
+ #
7
+ # Unless required by applicable law or agreed to in writing, software
8
+ # distributed under the License is distributed on an "AS IS" BASIS,
9
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10
+ # See the License for the specific language governing permissions and
11
+ # limitations under the License.
12
+ """MiT model preset configurations."""
13
+
14
+ backbone_presets_with_weights = {
15
+ "mit_b0_ade20k_512": {
16
+ "metadata": {
17
+ "description": (
18
+ "MiT (MixTransformer) model with 8 transformer blocks."
19
+ ),
20
+ "params": 3321962,
21
+ "official_name": "MiT",
22
+ "path": "mit",
23
+ },
24
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b0_ade20k_512",
25
+ },
26
+ "mit_b1_ade20k_512": {
27
+ "metadata": {
28
+ "description": (
29
+ "MiT (MixTransformer) model with 8 transformer blocks."
30
+ ),
31
+ "params": 13156554,
32
+ "official_name": "MiT",
33
+ "path": "mit",
34
+ },
35
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b1_ade20k_512",
36
+ },
37
+ "mit_b2_ade20k_512": {
38
+ "metadata": {
39
+ "description": (
40
+ "MiT (MixTransformer) model with 16 transformer blocks."
41
+ ),
42
+ "params": 24201418,
43
+ "official_name": "MiT",
44
+ "path": "mit",
45
+ },
46
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b2_ade20k_512",
47
+ },
48
+ "mit_b3_ade20k_512": {
49
+ "metadata": {
50
+ "description": (
51
+ "MiT (MixTransformer) model with 28 transformer blocks."
52
+ ),
53
+ "params": 44077258,
54
+ "official_name": "MiT",
55
+ "path": "mit",
56
+ },
57
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b3_ade20k_512",
58
+ },
59
+ "mit_b4_ade20k_512": {
60
+ "metadata": {
61
+ "description": (
62
+ "MiT (MixTransformer) model with 41 transformer blocks."
63
+ ),
64
+ "params": 60847818,
65
+ "official_name": "MiT",
66
+ "path": "mit",
67
+ },
68
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b4_ade20k_512",
69
+ },
70
+ "mit_b5_ade20k_640": {
71
+ "metadata": {
72
+ "description": (
73
+ "MiT (MixTransformer) model with 52 transformer blocks."
74
+ ),
75
+ "params": 81448138,
76
+ "official_name": "MiT",
77
+ "path": "mit",
78
+ },
79
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b5_ade20k_512",
80
+ },
81
+ "mit_b0_cityscapes_1024": {
82
+ "metadata": {
83
+ "description": (
84
+ "MiT (MixTransformer) model with 8 transformer blocks."
85
+ ),
86
+ "params": 3321962,
87
+ "official_name": "MiT",
88
+ "path": "mit",
89
+ },
90
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b0_cityscapes_1024",
91
+ },
92
+ "mit_b1_cityscapes_1024": {
93
+ "metadata": {
94
+ "description": (
95
+ "MiT (MixTransformer) model with 8 transformer blocks."
96
+ ),
97
+ "params": 13156554,
98
+ "official_name": "MiT",
99
+ "path": "mit",
100
+ },
101
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b1_cityscapes_1024",
102
+ },
103
+ "mit_b2_cityscapes_1024": {
104
+ "metadata": {
105
+ "description": (
106
+ "MiT (MixTransformer) model with 16 transformer blocks."
107
+ ),
108
+ "params": 24201418,
109
+ "official_name": "MiT",
110
+ "path": "mit",
111
+ },
112
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b2_cityscapes_1024",
113
+ },
114
+ "mit_b3_cityscapes_1024": {
115
+ "metadata": {
116
+ "description": (
117
+ "MiT (MixTransformer) model with 28 transformer blocks."
118
+ ),
119
+ "params": 44077258,
120
+ "official_name": "MiT",
121
+ "path": "mit",
122
+ },
123
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b3_cityscapes_1024",
124
+ },
125
+ "mit_b4_cityscapes_1024": {
126
+ "metadata": {
127
+ "description": (
128
+ "MiT (MixTransformer) model with 41 transformer blocks."
129
+ ),
130
+ "params": 60847818,
131
+ "official_name": "MiT",
132
+ "path": "mit",
133
+ },
134
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b4_cityscapes_1024",
135
+ },
136
+ "mit_b5_cityscapes_1024": {
137
+ "metadata": {
138
+ "description": (
139
+ "MiT (MixTransformer) model with 52 transformer blocks."
140
+ ),
141
+ "params": 81448138,
142
+ "official_name": "MiT",
143
+ "path": "mit",
144
+ },
145
+ "kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b5_cityscapes_1024",
146
+ },
147
+ }
148
+
149
+ backbone_presets = {
150
+ **backbone_presets_with_weights,
151
+ }
@@ -339,7 +339,7 @@ class Task(PipelineModel):
339
339
  add_layer(layer, info)
340
340
  elif isinstance(layer, ImageConverter):
341
341
  info = "Image size: "
342
- info += highlight_shape(layer.image_size())
342
+ info += highlight_shape(layer.image_size)
343
343
  add_layer(layer, info)
344
344
  elif isinstance(layer, AudioConverter):
345
345
  info = "Audio shape: "
@@ -50,11 +50,10 @@ class TimmPresetLoader(PresetLoader):
50
50
 
51
51
  def load_image_converter(self, cls, **kwargs):
52
52
  pretrained_cfg = self.config.get("pretrained_cfg", None)
53
- if not pretrained_cfg or "input_size" not in pretrained_cfg:
53
+ if not pretrained_cfg:
54
54
  return None
55
55
  # This assumes the same basic setup for all timm preprocessing, We may
56
56
  # need to extend this as we cover more model types.
57
- input_size = pretrained_cfg["input_size"]
58
57
  mean = pretrained_cfg["mean"]
59
58
  std = pretrained_cfg["std"]
60
59
  scale = [1.0 / 255.0 / s for s in std]
@@ -63,7 +62,6 @@ class TimmPresetLoader(PresetLoader):
63
62
  if interpolation not in ("bilinear", "nearest", "bicubic"):
64
63
  interpolation = "bilinear" # Unsupported interpolation type.
65
64
  return cls(
66
- image_size=input_size[1:],
67
65
  scale=scale,
68
66
  offset=offset,
69
67
  interpolation=interpolation,
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.16.1.dev202410090340"
4
+ __version__ = "0.16.1.dev202410100339"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410090340
3
+ Version: 0.16.1.dev202410100339
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -1,15 +1,15 @@
1
1
  keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
2
2
  keras_hub/api/__init__.py,sha256=spMxsgqzjpeuC8rY4WP-2kAZ2qwwKRSbFwddXgUjqQE,524
3
3
  keras_hub/api/bounding_box/__init__.py,sha256=T8R_X7BPm0et1xaZq8565uJmid7dylsSFSj4V-rGuFQ,1097
4
- keras_hub/api/layers/__init__.py,sha256=XImD0tHdnDR1a7q3u-Pw-VRMASi9sDtrV6hr2beVYTw,2331
4
+ keras_hub/api/layers/__init__.py,sha256=jQbYVdHrjC0PnJVa3myfJbAmRef9KGwrTgPDaTsWPJw,2439
5
5
  keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
6
- keras_hub/api/models/__init__.py,sha256=m3v73xL31KBAJaHZEfscrFIAFRoc4NIMM2bmZ_0D9Ys,14657
6
+ keras_hub/api/models/__init__.py,sha256=Z3GLSmrvds7-XDtkcB9gq_sNZ5zJ_3Rwl_xoZ-dTX14,14786
7
7
  keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
8
8
  keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2EBDlM0cA,2524
9
9
  keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
10
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
- keras_hub/src/version_utils.py,sha256=OAeKND2_C34aewj9b9MT6TsgAA1AKvb-uZhnN4UWS5s,222
12
+ keras_hub/src/version_utils.py,sha256=ta3Ul-3W63rzG1EOq-JStAvR39K8vw23TKBmNmLl2MQ,222
13
13
  keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
15
15
  keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
@@ -34,7 +34,7 @@ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=howjIXH_vgBOKaXaIa7m
34
34
  keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
35
35
  keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
36
  keras_hub/src/layers/preprocessing/audio_converter.py,sha256=YGh_kQw65a1Z6S5zzSNVP-ChyLYHq3-eOYpOS53xIN8,4156
37
- keras_hub/src/layers/preprocessing/image_converter.py,sha256=zlg6VKQWjKDCojJnI9VfK4Rt88QE29XjpDewZQNT8IE,10166
37
+ keras_hub/src/layers/preprocessing/image_converter.py,sha256=j8SdL-pFOrWIGIV_HwlABUPhdcSOZXYhPRlvFCukAU8,10180
38
38
  keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
39
39
  keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
40
40
  keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
@@ -64,7 +64,7 @@ keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_j
64
64
  keras_hub/src/models/preprocessor.py,sha256=3CWLsMpQC77w7GzM3fU3Jf-G62ldJjufKyzPVvnGdeI,7970
65
65
  keras_hub/src/models/seq_2_seq_lm.py,sha256=w0gX-5YZjatfvAJmFAgSHyqS_BLqc8FF8DPLGK8mrgI,1864
66
66
  keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=HUHRbWRG5SF1pPpotGzBhXlrMh4pLFxgAoFk05FIrB4,9687
67
- keras_hub/src/models/task.py,sha256=2iapEFHvzyl0ASlH6yzQA2OHSr1jV1V-pLtagHdBncQ,14416
67
+ keras_hub/src/models/task.py,sha256=VN-CClNw3EB5Byb7HyyI3CqaS140od7-dmQInmYFSKg,14414
68
68
  keras_hub/src/models/text_classifier.py,sha256=VBDvQUHTpJPqKp7A4VAtm35FOmJ3yMo0DW6GdX67xG0,4159
69
69
  keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
70
70
  keras_hub/src/models/text_to_image.py,sha256=7s6rB1To46A7l9ItqRw3Pe4DGRm7YnqbHJ-RyNAlLPE,12973
@@ -209,10 +209,13 @@ keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=nimMZ5CTPK8v9eflfrGuzq
209
209
  keras_hub/src/models/mistral/mistral_presets.py,sha256=gucgdaFAiU-vRDS1g9zWGHjbDF_jaCiljPibCF4yVqY,1329
210
210
  keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
211
211
  keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=RDIIB3FhneHZP11tNUFQT9DcWawCMnrtVxtSvtnP3ts,9542
212
- keras_hub/src/models/mix_transformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
212
+ keras_hub/src/models/mix_transformer/__init__.py,sha256=neU-h7C0sXS6OmtS5NFJeJ1lF13OW3DaUlT6LXhl6vA,409
213
213
  keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=B4hdhWHZ93lS937BGSSxovDKVXQZVuWrMbFwECFoWrg,6048
214
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=uXO2-GzI_25TdlXe8O8qvnM7tryadfetVDW3yJLGfiI,348
215
- keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=SzyJJhuyESlsCgndmZNYuuF0Ogb1FKoYkSfDJnThgT0,9538
214
+ keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=pVfbbTNuiZRFElCGLyNO3gknNGnut-6-L-zAVB4Nb5w,531
215
+ keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py,sha256=lSUuMAJiyWDVH0AVjG2y684bU3msxI3_UTa_xWyLLKQ,570
216
+ keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py,sha256=WG2LjuagCxSYXkFgqd4bHyUoMLFCzTj9QjJBoptW6WM,323
217
+ keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=9AbA4kCJkjeV7fAwbRns8VGn0l1pgQ3CqFPjY-99VGA,9695
218
+ keras_hub/src/models/mix_transformer/mix_transformer_presets.py,sha256=rWrjAAwc9Kmo0c66CNh5cuIpySzqqLKj_VI6hlI9d44,5116
216
219
  keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
217
220
  keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=nlXdMqcj18iahy60aew4ON79EHUEuNIgvKY9dToH284,18191
218
221
  keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
@@ -350,7 +353,7 @@ keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=MvIvv1WJo51ZXBxy4S7t_DsN3Z
350
353
  keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
351
354
  keras_hub/src/utils/timm/convert_densenet.py,sha256=V-GRjWuDnlh3b1EMxqahwZ3GMwSgOa3v0HOfb2ZZ-d0,3342
352
355
  keras_hub/src/utils/timm/convert_resnet.py,sha256=ee8eTml0ffJKE8avzGoLFcpjPF63DsvoIUArAGa8Ngg,5832
353
- keras_hub/src/utils/timm/preset_loader.py,sha256=SbDqy2nr54_Y7bwe4sICQ8n-kHnw0PtvNI52tgrH170,3095
356
+ keras_hub/src/utils/timm/preset_loader.py,sha256=CW-yNXvp3IExK3xuHKjYqbLdBVUST2kSsLmWxSs0i5c,2968
354
357
  keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
355
358
  keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
356
359
  keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
@@ -363,7 +366,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS
363
366
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
364
367
  keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
365
368
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
366
- keras_hub_nightly-0.16.1.dev202410090340.dist-info/METADATA,sha256=Wj_ah1mdW2q0gdurqH9ENThTtO9Qjg_ctqIzbiRXn-A,7458
367
- keras_hub_nightly-0.16.1.dev202410090340.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
368
- keras_hub_nightly-0.16.1.dev202410090340.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
369
- keras_hub_nightly-0.16.1.dev202410090340.dist-info/RECORD,,
369
+ keras_hub_nightly-0.16.1.dev202410100339.dist-info/METADATA,sha256=Q1QCPvLIZpKSgKKhzvHH4Qng8vWrQihbFRVWk85Pjqs,7458
370
+ keras_hub_nightly-0.16.1.dev202410100339.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
371
+ keras_hub_nightly-0.16.1.dev202410100339.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
372
+ keras_hub_nightly-0.16.1.dev202410100339.dist-info/RECORD,,