keras-hub-nightly 0.16.1.dev202410080341__py3-none-any.whl → 0.16.1.dev202410100339__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. keras_hub/api/layers/__init__.py +3 -0
  2. keras_hub/api/models/__init__.py +11 -0
  3. keras_hub/src/layers/preprocessing/image_converter.py +2 -1
  4. keras_hub/src/models/image_to_image.py +411 -0
  5. keras_hub/src/models/inpaint.py +513 -0
  6. keras_hub/src/models/mix_transformer/__init__.py +12 -0
  7. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +4 -0
  8. keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py +16 -0
  9. keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py +8 -0
  10. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +9 -5
  11. keras_hub/src/models/mix_transformer/mix_transformer_presets.py +151 -0
  12. keras_hub/src/models/preprocessor.py +4 -4
  13. keras_hub/src/models/stable_diffusion_3/mmdit.py +308 -177
  14. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +87 -55
  15. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +171 -0
  16. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +194 -0
  17. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +1 -1
  18. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +13 -8
  19. keras_hub/src/models/task.py +1 -1
  20. keras_hub/src/models/text_to_image.py +89 -36
  21. keras_hub/src/tests/test_case.py +3 -1
  22. keras_hub/src/tokenizers/tokenizer.py +7 -7
  23. keras_hub/src/utils/preset_utils.py +7 -7
  24. keras_hub/src/utils/timm/preset_loader.py +1 -3
  25. keras_hub/src/version_utils.py +1 -1
  26. {keras_hub_nightly-0.16.1.dev202410080341.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/METADATA +1 -1
  27. {keras_hub_nightly-0.16.1.dev202410080341.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/RECORD +29 -22
  28. {keras_hub_nightly-0.16.1.dev202410080341.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/WHEEL +0 -0
  29. {keras_hub_nightly-0.16.1.dev202410080341.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,513 @@
1
+ import itertools
2
+ from functools import partial
3
+
4
+ import keras
5
+ from keras import ops
6
+ from keras import random
7
+
8
+ from keras_hub.src.api_export import keras_hub_export
9
+ from keras_hub.src.models.task import Task
10
+ from keras_hub.src.utils.keras_utils import standardize_data_format
11
+
12
+ try:
13
+ import tensorflow as tf
14
+ except ImportError:
15
+ tf = None
16
+
17
+
18
+ @keras_hub_export("keras_hub.models.Inpaint")
19
+ class Inpaint(Task):
20
+ """Base class for image-to-image tasks.
21
+
22
+ `Inpaint` tasks wrap a `keras_hub.models.Backbone` and
23
+ a `keras_hub.models.Preprocessor` to create a model that can be used for
24
+ generation and generative fine-tuning.
25
+
26
+ `Inpaint` tasks provide an additional, high-level `generate()` function
27
+ which can be used to generate image by token with a (image, mask, string)
28
+ in, image out signature.
29
+
30
+ All `Inpaint` tasks include a `from_preset()` constructor which can be
31
+ used to load a pre-trained config and weights.
32
+
33
+ Example:
34
+
35
+ ```python
36
+ # Load a Stable Diffusion 3 backbone with pre-trained weights.
37
+ reference_image = np.ones((1024, 1024, 3), dtype="float32")
38
+ reference_mask = np.ones((1024, 1024), dtype="float32")
39
+ inpaint = keras_hub.models.Inpaint.from_preset(
40
+ "stable_diffusion_3_medium",
41
+ )
42
+ inpaint.generate(
43
+ reference_image,
44
+ reference_mask,
45
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
46
+ )
47
+
48
+ # Load a Stable Diffusion 3 backbone at bfloat16 precision.
49
+ inpaint = keras_hub.models.Inpaint.from_preset(
50
+ "stable_diffusion_3_medium",
51
+ dtype="bfloat16",
52
+ )
53
+ inpaint.generate(
54
+ reference_image,
55
+ reference_mask,
56
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
57
+ )
58
+ ```
59
+ """
60
+
61
+ def __init__(self, *args, **kwargs):
62
+ super().__init__(*args, **kwargs)
63
+ # Default compilation.
64
+ self.compile()
65
+
66
+ @property
67
+ def support_negative_prompts(self):
68
+ """Whether the model supports `negative_prompts` key in `generate()`."""
69
+ return bool(True)
70
+
71
+ @property
72
+ def image_shape(self):
73
+ return tuple(self.backbone.image_shape)
74
+
75
+ @property
76
+ def latent_shape(self):
77
+ return tuple(self.backbone.latent_shape)
78
+
79
+ def compile(
80
+ self,
81
+ optimizer="auto",
82
+ loss="auto",
83
+ *,
84
+ metrics="auto",
85
+ **kwargs,
86
+ ):
87
+ """Configures the `Inpaint` task for training.
88
+
89
+ The `Inpaint` task extends the default compilation signature of
90
+ `keras.Model.compile` with defaults for `optimizer`, `loss`, and
91
+ `metrics`. To override these defaults, pass any value
92
+ to these arguments during compilation.
93
+
94
+ Args:
95
+ optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
96
+ instance. Defaults to `"auto"`, which uses the default optimizer
97
+ for the given model and task. See `keras.Model.compile` and
98
+ `keras.optimizers` for more info on possible `optimizer` values.
99
+ loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
100
+ Defaults to `"auto"`, where a
101
+ `keras.losses.MeanSquaredError` loss will be applied. See
102
+ `keras.Model.compile` and `keras.losses` for more info on
103
+ possible `loss` values.
104
+ metrics: `"auto"`, or a list of metrics to be evaluated by
105
+ the model during training and testing. Defaults to `"auto"`,
106
+ where a `keras.metrics.MeanSquaredError` will be applied to
107
+ track the loss of the model during training. See
108
+ `keras.Model.compile` and `keras.metrics` for more info on
109
+ possible `metrics` values.
110
+ **kwargs: See `keras.Model.compile` for a full list of arguments
111
+ supported by the compile method.
112
+ """
113
+ # Ref: https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py#L410-L414
114
+ if optimizer == "auto":
115
+ optimizer = keras.optimizers.AdamW(
116
+ 1e-4, weight_decay=1e-2, epsilon=1e-8, clipnorm=1.0
117
+ )
118
+ if loss == "auto":
119
+ loss = keras.losses.MeanSquaredError()
120
+ if metrics == "auto":
121
+ metrics = [keras.metrics.MeanSquaredError()]
122
+ super().compile(
123
+ optimizer=optimizer,
124
+ loss=loss,
125
+ metrics=metrics,
126
+ **kwargs,
127
+ )
128
+ self.generate_function = None
129
+
130
+ def generate_step(self, *args, **kwargs):
131
+ """Run generation on batches of input."""
132
+ raise NotImplementedError
133
+
134
+ def make_generate_function(self):
135
+ """Create or return the compiled generation function."""
136
+ if self.generate_function is not None:
137
+ return self.generate_function
138
+
139
+ self.generate_function = self.generate_step
140
+ if keras.config.backend() == "torch":
141
+ import torch
142
+
143
+ def wrapped_function(*args, **kwargs):
144
+ with torch.no_grad():
145
+ return self.generate_step(*args, **kwargs)
146
+
147
+ self.generate_function = wrapped_function
148
+ elif keras.config.backend() == "tensorflow" and not self.run_eagerly:
149
+ self.generate_function = tf.function(
150
+ self.generate_step, jit_compile=self.jit_compile
151
+ )
152
+ elif keras.config.backend() == "jax" and not self.run_eagerly:
153
+ import jax
154
+
155
+ @partial(jax.jit)
156
+ def compiled_function(state, *args, **kwargs):
157
+ (
158
+ trainable_variables,
159
+ non_trainable_variables,
160
+ ) = state
161
+ mapping = itertools.chain(
162
+ zip(self.trainable_variables, trainable_variables),
163
+ zip(self.non_trainable_variables, non_trainable_variables),
164
+ )
165
+
166
+ with keras.StatelessScope(state_mapping=mapping):
167
+ outputs = self.generate_step(*args, **kwargs)
168
+ return outputs
169
+
170
+ def wrapped_function(*args, **kwargs):
171
+ # Create an explicit tuple of all variable state.
172
+ state = (
173
+ # Use the explicit variable.value to preserve the
174
+ # sharding spec of distribution.
175
+ [v.value for v in self.trainable_variables],
176
+ [v.value for v in self.non_trainable_variables],
177
+ )
178
+ outputs = compiled_function(state, *args, **kwargs)
179
+ return outputs
180
+
181
+ self.generate_function = wrapped_function
182
+ return self.generate_function
183
+
184
+ def _normalize_generate_images(self, inputs):
185
+ """Normalize user image to the generate function.
186
+
187
+ This function converts all inputs to tensors, adds a batch dimension if
188
+ necessary, and returns a iterable "dataset like" object (either an
189
+ actual `tf.data.Dataset` or a list with a single batch element).
190
+ """
191
+ if tf and isinstance(inputs, tf.data.Dataset):
192
+ return inputs.as_numpy_iterator(), False
193
+
194
+ def normalize(x):
195
+ data_format = getattr(
196
+ self.backbone, "data_format", standardize_data_format(None)
197
+ )
198
+ input_is_scalar = False
199
+ x = ops.convert_to_tensor(x)
200
+ if len(ops.shape(x)) < 4:
201
+ x = ops.expand_dims(x, axis=0)
202
+ input_is_scalar = True
203
+ x = ops.image.resize(
204
+ x,
205
+ (self.backbone.height, self.backbone.width),
206
+ interpolation="nearest",
207
+ data_format=data_format,
208
+ )
209
+ return x, input_is_scalar
210
+
211
+ if isinstance(inputs, dict):
212
+ for key in inputs:
213
+ inputs[key], input_is_scalar = normalize(inputs[key])
214
+ else:
215
+ inputs, input_is_scalar = normalize(inputs)
216
+
217
+ return inputs, input_is_scalar
218
+
219
+ def _normalize_generate_masks(self, inputs):
220
+ """Normalize user masks to the generate function.
221
+
222
+ This function converts all inputs to tensors, adds a batch dimension if
223
+ necessary, and returns a iterable "dataset like" object (either an
224
+ actual `tf.data.Dataset` or a list with a single batch element).
225
+ """
226
+ if tf and isinstance(inputs, tf.data.Dataset):
227
+ return inputs.as_numpy_iterator(), False
228
+
229
+ def normalize(x):
230
+ data_format = getattr(
231
+ self.backbone, "data_format", standardize_data_format(None)
232
+ )
233
+ input_is_scalar = False
234
+ x = ops.convert_to_tensor(x)
235
+ if len(ops.shape(x)) < 3:
236
+ x = ops.expand_dims(x, axis=0)
237
+ input_is_scalar = True
238
+ x = ops.expand_dims(x, axis=-1)
239
+ if keras.backend.standardize_dtype(x.dtype) == "bool":
240
+ x = ops.cast(x, "float32")
241
+ x = ops.image.resize(
242
+ x,
243
+ (self.backbone.height, self.backbone.width),
244
+ interpolation="nearest",
245
+ data_format=data_format,
246
+ )
247
+ x = ops.squeeze(x, axis=-1)
248
+ return x, input_is_scalar
249
+
250
+ if isinstance(inputs, dict):
251
+ for key in inputs:
252
+ inputs[key], input_is_scalar = normalize(inputs[key])
253
+ else:
254
+ inputs, input_is_scalar = normalize(inputs)
255
+
256
+ return inputs, input_is_scalar
257
+
258
+ def _normalize_generate_inputs(self, inputs):
259
+ """Normalize user input to the generate function.
260
+
261
+ This function converts all inputs to tensors, adds a batch dimension if
262
+ necessary, and returns a iterable "dataset like" object (either an
263
+ actual `tf.data.Dataset` or a list with a single batch element).
264
+
265
+ The input format must be one of the following:
266
+ - A dict with "images", "masks", "prompts" and/or "negative_prompts"
267
+ keys
268
+ - A tf.data.Dataset with "images", "masks", "prompts" and/or
269
+ "negative_prompts" keys
270
+
271
+ The output will be a dict with "images", "masks", "prompts" and/or
272
+ "negative_prompts" keys.
273
+ """
274
+ if tf and isinstance(inputs, tf.data.Dataset):
275
+ _inputs = {
276
+ "images": inputs.map(lambda x: x["images"]).as_numpy_iterator(),
277
+ "masks": inputs.map(lambda x: x["masks"]).as_numpy_iterator(),
278
+ "prompts": inputs.map(
279
+ lambda x: x["prompts"]
280
+ ).as_numpy_iterator(),
281
+ }
282
+ if self.support_negative_prompts:
283
+ _inputs["negative_prompts"] = inputs.map(
284
+ lambda x: x["negative_prompts"]
285
+ ).as_numpy_iterator()
286
+ return _inputs, False
287
+
288
+ def normalize(x):
289
+ if isinstance(x, str):
290
+ return [x], True
291
+ if tf and isinstance(x, tf.Tensor) and x.shape.rank == 0:
292
+ return x[tf.newaxis], True
293
+ return x, False
294
+
295
+ def normalize_images(x):
296
+ data_format = getattr(
297
+ self.backbone, "data_format", standardize_data_format(None)
298
+ )
299
+ input_is_scalar = False
300
+ x = ops.convert_to_tensor(x)
301
+ if len(ops.shape(x)) < 4:
302
+ x = ops.expand_dims(x, axis=0)
303
+ input_is_scalar = True
304
+ x = ops.image.resize(
305
+ x,
306
+ (self.backbone.height, self.backbone.width),
307
+ interpolation="nearest",
308
+ data_format=data_format,
309
+ )
310
+ return x, input_is_scalar
311
+
312
+ def normalize_masks(x):
313
+ data_format = getattr(
314
+ self.backbone, "data_format", standardize_data_format(None)
315
+ )
316
+ input_is_scalar = False
317
+ x = ops.convert_to_tensor(x)
318
+ if len(ops.shape(x)) < 3:
319
+ x = ops.expand_dims(x, axis=0)
320
+ input_is_scalar = True
321
+ x = ops.expand_dims(x, axis=-1)
322
+ if keras.backend.standardize_dtype(x.dtype) == "bool":
323
+ x = ops.cast(x, "float32")
324
+ x = ops.image.resize(
325
+ x,
326
+ (self.backbone.height, self.backbone.width),
327
+ interpolation="nearest",
328
+ data_format=data_format,
329
+ )
330
+ x = ops.squeeze(x, axis=-1)
331
+ return x, input_is_scalar
332
+
333
+ def get_dummy_prompts(x):
334
+ dummy_prompts = [""] * len(x)
335
+ if tf and isinstance(x, tf.Tensor):
336
+ return tf.convert_to_tensor(dummy_prompts)
337
+ else:
338
+ return dummy_prompts
339
+
340
+ for key in inputs:
341
+ if key == "images":
342
+ inputs[key], input_is_scalar = normalize_images(inputs[key])
343
+ elif key == "masks":
344
+ inputs[key], input_is_scalar = normalize_masks(inputs[key])
345
+ else:
346
+ inputs[key], input_is_scalar = normalize(inputs[key])
347
+
348
+ if self.support_negative_prompts and "negative_prompts" not in inputs:
349
+ inputs["negative_prompts"] = get_dummy_prompts(inputs["prompts"])
350
+
351
+ return [inputs], input_is_scalar
352
+
353
+ def _normalize_generate_outputs(self, outputs, input_is_scalar):
354
+ """Normalize user output from the generate function.
355
+
356
+ This function converts all output to numpy with a value range of
357
+ `[0, 255]`. If a batch dimension was added to the input, it is removed
358
+ from the output.
359
+ """
360
+
361
+ def normalize(x):
362
+ outputs = ops.concatenate(x, axis=0)
363
+ outputs = ops.clip(ops.divide(ops.add(outputs, 1.0), 2.0), 0.0, 1.0)
364
+ outputs = ops.cast(ops.round(ops.multiply(outputs, 255.0)), "uint8")
365
+ outputs = ops.squeeze(outputs, 0) if input_is_scalar else outputs
366
+ return ops.convert_to_numpy(outputs)
367
+
368
+ if isinstance(outputs[0], dict):
369
+ normalized = {}
370
+ for key in outputs[0]:
371
+ normalized[key] = normalize([x[key] for x in outputs])
372
+ return normalized
373
+ return normalize([x for x in outputs])
374
+
375
+ def generate(
376
+ self,
377
+ inputs,
378
+ num_steps,
379
+ guidance_scale,
380
+ strength,
381
+ seed=None,
382
+ ):
383
+ """Generate image based on the provided `inputs`.
384
+
385
+ Typically, `inputs` is a dict with `"images"` `"masks"` and `"prompts"`
386
+ keys. `"images"` are reference images within a value range of
387
+ `[-1.0, 1.0]`, which will be resized to `self.backbone.height` and
388
+ `self.backbone.width`, then encoded into latent space by the VAE
389
+ encoder. `"masks"` are mask images with a boolean dtype, where white
390
+ pixels are repainted while black pixels are preserved. `"prompts"` are
391
+ strings that will be tokenized and encoded by the text encoder.
392
+
393
+ Some models support a `"negative_prompts"` key, which helps steer the
394
+ model away from generating certain styles and elements. To enable this,
395
+ add `"negative_prompts"` to the input dict.
396
+
397
+ If `inputs` are a `tf.data.Dataset`, outputs will be generated
398
+ "batch-by-batch" and concatenated. Otherwise, all inputs will be
399
+ processed as batches.
400
+
401
+ Args:
402
+ inputs: python data, tensor data, or a `tf.data.Dataset`. The format
403
+ must be one of the following:
404
+ - A dict with `"images"`, `"masks"`, `"prompts"` and/or
405
+ `"negative_prompts"` keys.
406
+ - A `tf.data.Dataset` with `"images"`, `"masks"`, `"prompts"`
407
+ and/or `"negative_prompts"` keys.
408
+ num_steps: int. The number of diffusion steps to take.
409
+ guidance_scale: float. The classifier free guidance scale defined in
410
+ [Classifier-Free Diffusion Guidance](
411
+ https://arxiv.org/abs/2207.12598). A higher scale encourages
412
+ generating images more closely related to the prompts, typically
413
+ at the cost of lower image quality.
414
+ strength: float. Indicates the extent to which the reference
415
+ `images` are transformed. Must be between `0.0` and `1.0`. When
416
+ `strength=1.0`, `images` is essentially ignore and added noise
417
+ is maximum and the denoising process runs for the full number of
418
+ iterations specified in `num_steps`.
419
+ seed: optional int. Used as a random seed.
420
+ """
421
+ num_steps = int(num_steps)
422
+ guidance_scale = float(guidance_scale)
423
+ strength = float(strength)
424
+ if strength < 0.0 or strength > 1.0:
425
+ raise ValueError(
426
+ "`strength` must be between `0.0` and `1.0`. "
427
+ f"Received strength={strength}."
428
+ )
429
+ starting_step = int(num_steps * (1.0 - strength))
430
+ starting_step = ops.convert_to_tensor(starting_step, "int32")
431
+ num_steps = ops.convert_to_tensor(num_steps, "int32")
432
+ guidance_scale = ops.convert_to_tensor(guidance_scale)
433
+
434
+ # Check `inputs` format.
435
+ required_keys = ["images", "masks", "prompts"]
436
+ if tf and isinstance(inputs, tf.data.Dataset):
437
+ spec = inputs.element_spec
438
+ if not all(key in spec for key in required_keys):
439
+ raise ValueError(
440
+ "Expected a `tf.data.Dataset` with the following keys:"
441
+ f"{required_keys}. Received: inputs.element_spec={spec}"
442
+ )
443
+ else:
444
+ if not isinstance(inputs, dict):
445
+ raise ValueError(
446
+ "Expected a `dict` or `tf.data.Dataset`. "
447
+ f"Received: inputs={inputs} of type {type(inputs)}."
448
+ )
449
+ if not all(key in inputs for key in required_keys):
450
+ raise ValueError(
451
+ "Expected a `dict` with the following keys:"
452
+ f"{required_keys}. "
453
+ f"Received: inputs.keys={list(inputs.keys())}"
454
+ )
455
+
456
+ # Setup our three main passes.
457
+ # 1. Preprocessing strings to dense integer tensors.
458
+ # 2. Generate outputs via a compiled function on dense tensors.
459
+ # 3. Postprocess dense tensors to a value range of `[0, 255]`.
460
+ generate_function = self.make_generate_function()
461
+
462
+ def preprocess(x):
463
+ if self.preprocessor is not None:
464
+ return self.preprocessor.generate_preprocess(x)
465
+ else:
466
+ return x
467
+
468
+ def generate(images, masks, x):
469
+ token_ids = x[0] if self.support_negative_prompts else x
470
+
471
+ # Initialize noises.
472
+ if isinstance(token_ids, dict):
473
+ arbitrary_key = list(token_ids.keys())[0]
474
+ batch_size = ops.shape(token_ids[arbitrary_key])[0]
475
+ else:
476
+ batch_size = ops.shape(token_ids)[0]
477
+ noise_shape = (batch_size,) + self.latent_shape[1:]
478
+ noises = random.normal(noise_shape, dtype="float32", seed=seed)
479
+
480
+ return generate_function(
481
+ images,
482
+ masks,
483
+ noises,
484
+ x,
485
+ starting_step,
486
+ num_steps,
487
+ guidance_scale,
488
+ )
489
+
490
+ # Normalize and preprocess inputs.
491
+ inputs, input_is_scalar = self._normalize_generate_inputs(inputs)
492
+ if self.support_negative_prompts:
493
+ images = [x["images"] for x in inputs]
494
+ masks = [x["masks"] for x in inputs]
495
+ token_ids = [preprocess(x["prompts"]) for x in inputs]
496
+ negative_token_ids = [
497
+ preprocess(x["negative_prompts"]) for x in inputs
498
+ ]
499
+ # Tuple format: (images, masks, (token_ids, negative_token_ids)).
500
+ inputs = [
501
+ x
502
+ for x in zip(images, masks, zip(token_ids, negative_token_ids))
503
+ ]
504
+ else:
505
+ images = [x["images"] for x in inputs]
506
+ masks = [x["masks"] for x in inputs]
507
+ token_ids = [preprocess(x["prompts"]) for x in inputs]
508
+ # Tuple format: (images, masks, token_ids).
509
+ inputs = [x for x in zip(images, masks, token_ids)]
510
+
511
+ # Inpaint.
512
+ outputs = [generate(*x) for x in inputs]
513
+ return self._normalize_generate_outputs(outputs, input_is_scalar)
@@ -0,0 +1,12 @@
1
+ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
2
+ MiTBackbone,
3
+ )
4
+ from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
5
+ MiTImageClassifier,
6
+ )
7
+ from keras_hub.src.models.mix_transformer.mix_transformer_presets import (
8
+ backbone_presets,
9
+ )
10
+ from keras_hub.src.utils.preset_utils import register_presets
11
+
12
+ register_presets(backbone_presets, MiTBackbone)
@@ -3,8 +3,12 @@ from keras_hub.src.models.image_classifier import ImageClassifier
3
3
  from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
4
4
  MiTBackbone,
5
5
  )
6
+ from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
7
+ MiTImageClassifierPreprocessor,
8
+ )
6
9
 
7
10
 
8
11
  @keras_hub_export("keras_hub.models.MiTImageClassifier")
9
12
  class MiTImageClassifier(ImageClassifier):
10
13
  backbone_cls = MiTBackbone
14
+ preprocessor_cls = MiTImageClassifierPreprocessor
@@ -0,0 +1,16 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.image_classifier_preprocessor import (
3
+ ImageClassifierPreprocessor,
4
+ )
5
+ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
6
+ MiTBackbone,
7
+ )
8
+ from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
9
+ MiTImageConverter,
10
+ )
11
+
12
+
13
+ @keras_hub_export("keras_hub.models.MiTImageClassifierPreprocessor")
14
+ class MiTImageClassifierPreprocessor(ImageClassifierPreprocessor):
15
+ backbone_cls = MiTBackbone
16
+ image_converter_cls = MiTImageConverter
@@ -0,0 +1,8 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
+ from keras_hub.src.models.mix_transformer import MiTBackbone
4
+
5
+
6
+ @keras_hub_export("keras_hub.layers.MiTImageConverter")
7
+ class MiTImageConverter(ImageConverter):
8
+ backbone_cls = MiTBackbone
@@ -28,19 +28,23 @@ class OverlappingPatchingAndEmbedding(keras.layers.Layer):
28
28
  self.patch_size = patch_size
29
29
  self.stride = stride
30
30
 
31
+ padding_size = self.patch_size // 2
32
+
33
+ self.padding = keras.layers.ZeroPadding2D(
34
+ padding=(padding_size, padding_size)
35
+ )
31
36
  self.proj = keras.layers.Conv2D(
32
37
  filters=project_dim,
33
38
  kernel_size=patch_size,
34
39
  strides=stride,
35
- padding="same",
40
+ padding="valid",
36
41
  )
37
- self.norm = keras.layers.LayerNormalization()
42
+ self.norm = keras.layers.LayerNormalization(epsilon=1e-5)
38
43
 
39
44
  def call(self, x):
45
+ x = self.padding(x)
40
46
  x = self.proj(x)
41
- # B, H, W, C
42
- shape = x.shape
43
- x = ops.reshape(x, (-1, shape[1] * shape[2], shape[3]))
47
+ x = ops.reshape(x, (-1, x.shape[1] * x.shape[2], x.shape[3]))
44
48
  x = self.norm(x)
45
49
  return x
46
50