keras-hub-nightly 0.16.1.dev202410080341__py3-none-any.whl → 0.16.1.dev202410100339__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. keras_hub/api/layers/__init__.py +3 -0
  2. keras_hub/api/models/__init__.py +11 -0
  3. keras_hub/src/layers/preprocessing/image_converter.py +2 -1
  4. keras_hub/src/models/image_to_image.py +411 -0
  5. keras_hub/src/models/inpaint.py +513 -0
  6. keras_hub/src/models/mix_transformer/__init__.py +12 -0
  7. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +4 -0
  8. keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py +16 -0
  9. keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py +8 -0
  10. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +9 -5
  11. keras_hub/src/models/mix_transformer/mix_transformer_presets.py +151 -0
  12. keras_hub/src/models/preprocessor.py +4 -4
  13. keras_hub/src/models/stable_diffusion_3/mmdit.py +308 -177
  14. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +87 -55
  15. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +171 -0
  16. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +194 -0
  17. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +1 -1
  18. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +13 -8
  19. keras_hub/src/models/task.py +1 -1
  20. keras_hub/src/models/text_to_image.py +89 -36
  21. keras_hub/src/tests/test_case.py +3 -1
  22. keras_hub/src/tokenizers/tokenizer.py +7 -7
  23. keras_hub/src/utils/preset_utils.py +7 -7
  24. keras_hub/src/utils/timm/preset_loader.py +1 -3
  25. keras_hub/src/version_utils.py +1 -1
  26. {keras_hub_nightly-0.16.1.dev202410080341.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/METADATA +1 -1
  27. {keras_hub_nightly-0.16.1.dev202410080341.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/RECORD +29 -22
  28. {keras_hub_nightly-0.16.1.dev202410080341.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/WHEEL +0 -0
  29. {keras_hub_nightly-0.16.1.dev202410080341.dist-info → keras_hub_nightly-0.16.1.dev202410100339.dist-info}/top_level.txt +0 -0
@@ -40,6 +40,9 @@ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
40
40
  from keras_hub.src.models.densenet.densenet_image_converter import (
41
41
  DenseNetImageConverter,
42
42
  )
43
+ from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
44
+ MiTImageConverter,
45
+ )
43
46
  from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
44
47
  PaliGemmaImageConverter,
45
48
  )
@@ -180,6 +180,8 @@ from keras_hub.src.models.image_segmenter import ImageSegmenter
180
180
  from keras_hub.src.models.image_segmenter_preprocessor import (
181
181
  ImageSegmenterPreprocessor,
182
182
  )
183
+ from keras_hub.src.models.image_to_image import ImageToImage
184
+ from keras_hub.src.models.inpaint import Inpaint
183
185
  from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
184
186
  from keras_hub.src.models.llama3.llama3_causal_lm import Llama3CausalLM
185
187
  from keras_hub.src.models.llama3.llama3_causal_lm_preprocessor import (
@@ -206,6 +208,9 @@ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
206
208
  from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
207
209
  MiTImageClassifier,
208
210
  )
211
+ from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
212
+ MiTImageClassifierPreprocessor,
213
+ )
209
214
  from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
210
215
  from keras_hub.src.models.mobilenet.mobilenet_image_classifier import (
211
216
  MobileNetImageClassifier,
@@ -270,6 +275,12 @@ from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
270
275
  from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
271
276
  StableDiffusion3Backbone,
272
277
  )
278
+ from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_image_to_image import (
279
+ StableDiffusion3ImageToImage,
280
+ )
281
+ from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_inpaint import (
282
+ StableDiffusion3Inpaint,
283
+ )
273
284
  from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_text_to_image import (
274
285
  StableDiffusion3TextToImage,
275
286
  )
@@ -145,8 +145,9 @@ class ImageConverter(PreprocessingLayer):
145
145
 
146
146
  @preprocessing_function
147
147
  def call(self, inputs):
148
+ x = inputs
148
149
  if self.image_size is not None:
149
- x = self.resizing(inputs)
150
+ x = self.resizing(x)
150
151
  if self.scale is not None:
151
152
  x = x * self._expand_non_channel_dims(self.scale, x)
152
153
  if self.offset is not None:
@@ -0,0 +1,411 @@
1
+ import itertools
2
+ from functools import partial
3
+
4
+ import keras
5
+ from keras import ops
6
+ from keras import random
7
+
8
+ from keras_hub.src.api_export import keras_hub_export
9
+ from keras_hub.src.models.task import Task
10
+ from keras_hub.src.utils.keras_utils import standardize_data_format
11
+
12
+ try:
13
+ import tensorflow as tf
14
+ except ImportError:
15
+ tf = None
16
+
17
+
18
+ @keras_hub_export("keras_hub.models.ImageToImage")
19
+ class ImageToImage(Task):
20
+ """Base class for image-to-image tasks.
21
+
22
+ `ImageToImage` tasks wrap a `keras_hub.models.Backbone` and
23
+ a `keras_hub.models.Preprocessor` to create a model that can be used for
24
+ generation and generative fine-tuning.
25
+
26
+ `ImageToImage` tasks provide an additional, high-level `generate()` function
27
+ which can be used to generate image by token with a (image, string) in,
28
+ image out signature.
29
+
30
+ All `ImageToImage` tasks include a `from_preset()` constructor which can be
31
+ used to load a pre-trained config and weights.
32
+
33
+ Example:
34
+
35
+ ```python
36
+ # Load a Stable Diffusion 3 backbone with pre-trained weights.
37
+ reference_image = np.ones((1024, 1024, 3), dtype="float32")
38
+ image_to_image = keras_hub.models.ImageToImage.from_preset(
39
+ "stable_diffusion_3_medium",
40
+ )
41
+ image_to_image.generate(
42
+ reference_image,
43
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
+ )
45
+
46
+ # Load a Stable Diffusion 3 backbone at bfloat16 precision.
47
+ image_to_image = keras_hub.models.ImageToImage.from_preset(
48
+ "stable_diffusion_3_medium",
49
+ dtype="bfloat16",
50
+ )
51
+ image_to_image.generate(
52
+ reference_image,
53
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
54
+ )
55
+ ```
56
+ """
57
+
58
+ def __init__(self, *args, **kwargs):
59
+ super().__init__(*args, **kwargs)
60
+ # Default compilation.
61
+ self.compile()
62
+
63
+ @property
64
+ def support_negative_prompts(self):
65
+ """Whether the model supports `negative_prompts` key in `generate()`."""
66
+ return bool(True)
67
+
68
+ @property
69
+ def image_shape(self):
70
+ return tuple(self.backbone.image_shape)
71
+
72
+ @property
73
+ def latent_shape(self):
74
+ return tuple(self.backbone.latent_shape)
75
+
76
+ def compile(
77
+ self,
78
+ optimizer="auto",
79
+ loss="auto",
80
+ *,
81
+ metrics="auto",
82
+ **kwargs,
83
+ ):
84
+ """Configures the `ImageToImage` task for training.
85
+
86
+ The `ImageToImage` task extends the default compilation signature of
87
+ `keras.Model.compile` with defaults for `optimizer`, `loss`, and
88
+ `metrics`. To override these defaults, pass any value
89
+ to these arguments during compilation.
90
+
91
+ Args:
92
+ optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
93
+ instance. Defaults to `"auto"`, which uses the default optimizer
94
+ for the given model and task. See `keras.Model.compile` and
95
+ `keras.optimizers` for more info on possible `optimizer` values.
96
+ loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
97
+ Defaults to `"auto"`, where a
98
+ `keras.losses.MeanSquaredError` loss will be applied. See
99
+ `keras.Model.compile` and `keras.losses` for more info on
100
+ possible `loss` values.
101
+ metrics: `"auto"`, or a list of metrics to be evaluated by
102
+ the model during training and testing. Defaults to `"auto"`,
103
+ where a `keras.metrics.MeanSquaredError` will be applied to
104
+ track the loss of the model during training. See
105
+ `keras.Model.compile` and `keras.metrics` for more info on
106
+ possible `metrics` values.
107
+ **kwargs: See `keras.Model.compile` for a full list of arguments
108
+ supported by the compile method.
109
+ """
110
+ # Ref: https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py#L410-L414
111
+ if optimizer == "auto":
112
+ optimizer = keras.optimizers.AdamW(
113
+ 1e-4, weight_decay=1e-2, epsilon=1e-8, clipnorm=1.0
114
+ )
115
+ if loss == "auto":
116
+ loss = keras.losses.MeanSquaredError()
117
+ if metrics == "auto":
118
+ metrics = [keras.metrics.MeanSquaredError()]
119
+ super().compile(
120
+ optimizer=optimizer,
121
+ loss=loss,
122
+ metrics=metrics,
123
+ **kwargs,
124
+ )
125
+ self.generate_function = None
126
+
127
+ def generate_step(self, *args, **kwargs):
128
+ """Run generation on batches of input."""
129
+ raise NotImplementedError
130
+
131
+ def make_generate_function(self):
132
+ """Create or return the compiled generation function."""
133
+ if self.generate_function is not None:
134
+ return self.generate_function
135
+
136
+ self.generate_function = self.generate_step
137
+ if keras.config.backend() == "torch":
138
+ import torch
139
+
140
+ def wrapped_function(*args, **kwargs):
141
+ with torch.no_grad():
142
+ return self.generate_step(*args, **kwargs)
143
+
144
+ self.generate_function = wrapped_function
145
+ elif keras.config.backend() == "tensorflow" and not self.run_eagerly:
146
+ self.generate_function = tf.function(
147
+ self.generate_step, jit_compile=self.jit_compile
148
+ )
149
+ elif keras.config.backend() == "jax" and not self.run_eagerly:
150
+ import jax
151
+
152
+ @partial(jax.jit)
153
+ def compiled_function(state, *args, **kwargs):
154
+ (
155
+ trainable_variables,
156
+ non_trainable_variables,
157
+ ) = state
158
+ mapping = itertools.chain(
159
+ zip(self.trainable_variables, trainable_variables),
160
+ zip(self.non_trainable_variables, non_trainable_variables),
161
+ )
162
+
163
+ with keras.StatelessScope(state_mapping=mapping):
164
+ outputs = self.generate_step(*args, **kwargs)
165
+ return outputs
166
+
167
+ def wrapped_function(*args, **kwargs):
168
+ # Create an explicit tuple of all variable state.
169
+ state = (
170
+ # Use the explicit variable.value to preserve the
171
+ # sharding spec of distribution.
172
+ [v.value for v in self.trainable_variables],
173
+ [v.value for v in self.non_trainable_variables],
174
+ )
175
+ outputs = compiled_function(state, *args, **kwargs)
176
+ return outputs
177
+
178
+ self.generate_function = wrapped_function
179
+ return self.generate_function
180
+
181
+ def _normalize_generate_inputs(self, inputs):
182
+ """Normalize user input to the generate function.
183
+
184
+ This function converts all inputs to tensors, adds a batch dimension if
185
+ necessary, and returns a iterable "dataset like" object (either an
186
+ actual `tf.data.Dataset` or a list with a single batch element).
187
+
188
+ The input format must be one of the following:
189
+ - A dict with "images", "prompts" and/or "negative_prompts" keys
190
+ - A tf.data.Dataset with "images", "prompts" and/or "negative_prompts"
191
+ keys
192
+
193
+ The output will be a dict with "images", "prompts" and/or
194
+ "negative_prompts" keys.
195
+ """
196
+ if tf and isinstance(inputs, tf.data.Dataset):
197
+ _inputs = {
198
+ "images": inputs.map(lambda x: x["images"]).as_numpy_iterator(),
199
+ "prompts": inputs.map(
200
+ lambda x: x["prompts"]
201
+ ).as_numpy_iterator(),
202
+ }
203
+ if self.support_negative_prompts:
204
+ _inputs["negative_prompts"] = inputs.map(
205
+ lambda x: x["negative_prompts"]
206
+ ).as_numpy_iterator()
207
+ return _inputs, False
208
+
209
+ if (
210
+ not isinstance(inputs, dict)
211
+ or "images" not in inputs
212
+ or "prompts" not in inputs
213
+ ):
214
+ raise ValueError(
215
+ '`inputs` must be a dict with "images" and "prompts" keys or a'
216
+ f"tf.data.Dataset. Received: inputs={inputs}"
217
+ )
218
+
219
+ def normalize(x):
220
+ if isinstance(x, str):
221
+ return [x], True
222
+ if tf and isinstance(x, tf.Tensor) and x.shape.rank == 0:
223
+ return x[tf.newaxis], True
224
+ return x, False
225
+
226
+ def normalize_images(x):
227
+ data_format = getattr(
228
+ self.backbone, "data_format", standardize_data_format(None)
229
+ )
230
+ input_is_scalar = False
231
+ x = ops.convert_to_tensor(x)
232
+ if len(ops.shape(x)) < 4:
233
+ x = ops.expand_dims(x, axis=0)
234
+ input_is_scalar = True
235
+ x = ops.image.resize(
236
+ x,
237
+ (self.backbone.height, self.backbone.width),
238
+ interpolation="nearest",
239
+ data_format=data_format,
240
+ )
241
+ return x, input_is_scalar
242
+
243
+ def get_dummy_prompts(x):
244
+ dummy_prompts = [""] * len(x)
245
+ if tf and isinstance(x, tf.Tensor):
246
+ return tf.convert_to_tensor(dummy_prompts)
247
+ else:
248
+ return dummy_prompts
249
+
250
+ for key in inputs:
251
+ if key == "images":
252
+ inputs[key], input_is_scalar = normalize_images(inputs[key])
253
+ else:
254
+ inputs[key], input_is_scalar = normalize(inputs[key])
255
+
256
+ if self.support_negative_prompts and "negative_prompts" not in inputs:
257
+ inputs["negative_prompts"] = get_dummy_prompts(inputs["prompts"])
258
+
259
+ return [inputs], input_is_scalar
260
+
261
+ def _normalize_generate_outputs(self, outputs, input_is_scalar):
262
+ """Normalize user output from the generate function.
263
+
264
+ This function converts all output to numpy with a value range of
265
+ `[0, 255]`. If a batch dimension was added to the input, it is removed
266
+ from the output.
267
+ """
268
+
269
+ def normalize(x):
270
+ outputs = ops.concatenate(x, axis=0)
271
+ outputs = ops.clip(ops.divide(ops.add(outputs, 1.0), 2.0), 0.0, 1.0)
272
+ outputs = ops.cast(ops.round(ops.multiply(outputs, 255.0)), "uint8")
273
+ outputs = ops.squeeze(outputs, 0) if input_is_scalar else outputs
274
+ return ops.convert_to_numpy(outputs)
275
+
276
+ if isinstance(outputs[0], dict):
277
+ normalized = {}
278
+ for key in outputs[0]:
279
+ normalized[key] = normalize([x[key] for x in outputs])
280
+ return normalized
281
+ return normalize([x for x in outputs])
282
+
283
+ def generate(
284
+ self,
285
+ inputs,
286
+ num_steps,
287
+ guidance_scale,
288
+ strength,
289
+ seed=None,
290
+ ):
291
+ """Generate image based on the provided `inputs`.
292
+
293
+ Typically, `inputs` is a dict with `"images"` and `"prompts"` keys.
294
+ `"images"` are reference images within a value range of
295
+ `[-1.0, 1.0]`, which will be resized to `self.backbone.height` and
296
+ `self.backbone.width`, then encoded into latent space by the VAE
297
+ encoder. `"prompts"` are strings that will be tokenized and encoded by
298
+ the text encoder.
299
+
300
+ Some models support a `"negative_prompts"` key, which helps steer the
301
+ model away from generating certain styles and elements. To enable this,
302
+ add `"negative_prompts"` to the input dict.
303
+
304
+ If `inputs` are a `tf.data.Dataset`, outputs will be generated
305
+ "batch-by-batch" and concatenated. Otherwise, all inputs will be
306
+ processed as batches.
307
+
308
+ Args:
309
+ inputs: python data, tensor data, or a `tf.data.Dataset`. The format
310
+ must be one of the following:
311
+ - A dict with `"images"`, `"prompts"` and/or
312
+ `"negative_prompts"` keys.
313
+ - A `tf.data.Dataset` with `"images"`, `"prompts"` and/or
314
+ `"negative_prompts"` keys.
315
+ num_steps: int. The number of diffusion steps to take.
316
+ guidance_scale: float. The classifier free guidance scale defined in
317
+ [Classifier-Free Diffusion Guidance](
318
+ https://arxiv.org/abs/2207.12598). A higher scale encourages
319
+ generating images more closely related to the prompts, typically
320
+ at the cost of lower image quality.
321
+ strength: float. Indicates the extent to which the reference
322
+ `images` are transformed. Must be between `0.0` and `1.0`. When
323
+ `strength=1.0`, `images` is essentially ignore and added noise
324
+ is maximum and the denoising process runs for the full number of
325
+ iterations specified in `num_steps`.
326
+ seed: optional int. Used as a random seed.
327
+ """
328
+ num_steps = int(num_steps)
329
+ guidance_scale = float(guidance_scale)
330
+ strength = float(strength)
331
+ if strength < 0.0 or strength > 1.0:
332
+ raise ValueError(
333
+ "`strength` must be between `0.0` and `1.0`. "
334
+ f"Received strength={strength}."
335
+ )
336
+ starting_step = int(num_steps * (1.0 - strength))
337
+ starting_step = ops.convert_to_tensor(starting_step, "int32")
338
+ num_steps = ops.convert_to_tensor(num_steps, "int32")
339
+ guidance_scale = ops.convert_to_tensor(guidance_scale)
340
+
341
+ # Check `inputs` format.
342
+ required_keys = ["images", "prompts"]
343
+ if tf and isinstance(inputs, tf.data.Dataset):
344
+ spec = inputs.element_spec
345
+ if not all(key in spec for key in required_keys):
346
+ raise ValueError(
347
+ "Expected a `tf.data.Dataset` with the following keys:"
348
+ f"{required_keys}. Received: inputs.element_spec={spec}"
349
+ )
350
+ else:
351
+ if not isinstance(inputs, dict):
352
+ raise ValueError(
353
+ "Expected a `dict` or `tf.data.Dataset`. "
354
+ f"Received: inputs={inputs} of type {type(inputs)}."
355
+ )
356
+ if not all(key in inputs for key in required_keys):
357
+ raise ValueError(
358
+ "Expected a `dict` with the following keys:"
359
+ f"{required_keys}. "
360
+ f"Received: inputs.keys={list(inputs.keys())}"
361
+ )
362
+
363
+ # Setup our three main passes.
364
+ # 1. Preprocessing strings to dense integer tensors.
365
+ # 2. Generate outputs via a compiled function on dense tensors.
366
+ # 3. Postprocess dense tensors to a value range of `[0, 255]`.
367
+ generate_function = self.make_generate_function()
368
+
369
+ def preprocess(x):
370
+ if self.preprocessor is not None:
371
+ return self.preprocessor.generate_preprocess(x)
372
+ else:
373
+ return x
374
+
375
+ def generate(images, x):
376
+ token_ids = x[0] if self.support_negative_prompts else x
377
+
378
+ # Initialize noises.
379
+ if isinstance(token_ids, dict):
380
+ arbitrary_key = list(token_ids.keys())[0]
381
+ batch_size = ops.shape(token_ids[arbitrary_key])[0]
382
+ else:
383
+ batch_size = ops.shape(token_ids)[0]
384
+ noise_shape = (batch_size,) + self.latent_shape[1:]
385
+ noises = random.normal(noise_shape, dtype="float32", seed=seed)
386
+
387
+ return generate_function(
388
+ images, noises, x, starting_step, num_steps, guidance_scale
389
+ )
390
+
391
+ # Normalize and preprocess inputs.
392
+ inputs, input_is_scalar = self._normalize_generate_inputs(inputs)
393
+ if self.support_negative_prompts:
394
+ images = [x["images"] for x in inputs]
395
+ token_ids = [preprocess(x["prompts"]) for x in inputs]
396
+ negative_token_ids = [
397
+ preprocess(x["negative_prompts"]) for x in inputs
398
+ ]
399
+ # Tuple format: (images, (token_ids, negative_token_ids)).
400
+ inputs = [
401
+ x for x in zip(images, zip(token_ids, negative_token_ids))
402
+ ]
403
+ else:
404
+ images = [x["images"] for x in inputs]
405
+ token_ids = [preprocess(x["prompts"]) for x in inputs]
406
+ # Tuple format: (images, token_ids).
407
+ inputs = [x for x in zip(images, token_ids)]
408
+
409
+ # Image-to-image.
410
+ outputs = [generate(*x) for x in inputs]
411
+ return self._normalize_generate_outputs(outputs, input_is_scalar)