keras-hub-nightly 0.16.1.dev202409260340__py3-none-any.whl → 0.16.1.dev202409280337__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (354) hide show
  1. keras_hub/__init__.py +0 -13
  2. keras_hub/api/__init__.py +0 -13
  3. keras_hub/api/bounding_box/__init__.py +0 -13
  4. keras_hub/api/layers/__init__.py +0 -13
  5. keras_hub/api/metrics/__init__.py +0 -13
  6. keras_hub/api/models/__init__.py +0 -13
  7. keras_hub/api/samplers/__init__.py +0 -13
  8. keras_hub/api/tokenizers/__init__.py +0 -13
  9. keras_hub/api/utils/__init__.py +0 -13
  10. keras_hub/src/__init__.py +0 -13
  11. keras_hub/src/api_export.py +0 -14
  12. keras_hub/src/bounding_box/__init__.py +0 -13
  13. keras_hub/src/bounding_box/converters.py +0 -13
  14. keras_hub/src/bounding_box/formats.py +0 -13
  15. keras_hub/src/bounding_box/iou.py +1 -13
  16. keras_hub/src/bounding_box/to_dense.py +0 -14
  17. keras_hub/src/bounding_box/to_ragged.py +0 -13
  18. keras_hub/src/bounding_box/utils.py +0 -13
  19. keras_hub/src/bounding_box/validate_format.py +0 -14
  20. keras_hub/src/layers/__init__.py +0 -13
  21. keras_hub/src/layers/modeling/__init__.py +0 -13
  22. keras_hub/src/layers/modeling/alibi_bias.py +0 -13
  23. keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -14
  24. keras_hub/src/layers/modeling/f_net_encoder.py +0 -14
  25. keras_hub/src/layers/modeling/masked_lm_head.py +0 -14
  26. keras_hub/src/layers/modeling/position_embedding.py +0 -14
  27. keras_hub/src/layers/modeling/reversible_embedding.py +0 -14
  28. keras_hub/src/layers/modeling/rotary_embedding.py +0 -14
  29. keras_hub/src/layers/modeling/sine_position_encoding.py +0 -14
  30. keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -14
  31. keras_hub/src/layers/modeling/transformer_decoder.py +0 -14
  32. keras_hub/src/layers/modeling/transformer_encoder.py +0 -14
  33. keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -14
  34. keras_hub/src/layers/preprocessing/__init__.py +0 -13
  35. keras_hub/src/layers/preprocessing/audio_converter.py +0 -13
  36. keras_hub/src/layers/preprocessing/image_converter.py +0 -13
  37. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -15
  38. keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -14
  39. keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -14
  40. keras_hub/src/layers/preprocessing/random_deletion.py +0 -14
  41. keras_hub/src/layers/preprocessing/random_swap.py +0 -14
  42. keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -13
  43. keras_hub/src/layers/preprocessing/start_end_packer.py +0 -15
  44. keras_hub/src/metrics/__init__.py +0 -13
  45. keras_hub/src/metrics/bleu.py +0 -14
  46. keras_hub/src/metrics/edit_distance.py +0 -14
  47. keras_hub/src/metrics/perplexity.py +0 -14
  48. keras_hub/src/metrics/rouge_base.py +0 -14
  49. keras_hub/src/metrics/rouge_l.py +0 -14
  50. keras_hub/src/metrics/rouge_n.py +0 -14
  51. keras_hub/src/models/__init__.py +0 -13
  52. keras_hub/src/models/albert/__init__.py +0 -14
  53. keras_hub/src/models/albert/albert_backbone.py +0 -14
  54. keras_hub/src/models/albert/albert_masked_lm.py +0 -14
  55. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -14
  56. keras_hub/src/models/albert/albert_presets.py +0 -14
  57. keras_hub/src/models/albert/albert_text_classifier.py +0 -14
  58. keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -14
  59. keras_hub/src/models/albert/albert_tokenizer.py +0 -14
  60. keras_hub/src/models/backbone.py +0 -14
  61. keras_hub/src/models/bart/__init__.py +0 -14
  62. keras_hub/src/models/bart/bart_backbone.py +0 -14
  63. keras_hub/src/models/bart/bart_presets.py +0 -13
  64. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -15
  65. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -15
  66. keras_hub/src/models/bart/bart_tokenizer.py +0 -15
  67. keras_hub/src/models/bert/__init__.py +0 -14
  68. keras_hub/src/models/bert/bert_backbone.py +0 -14
  69. keras_hub/src/models/bert/bert_masked_lm.py +0 -14
  70. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -14
  71. keras_hub/src/models/bert/bert_presets.py +0 -13
  72. keras_hub/src/models/bert/bert_text_classifier.py +0 -14
  73. keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -14
  74. keras_hub/src/models/bert/bert_tokenizer.py +0 -14
  75. keras_hub/src/models/bloom/__init__.py +0 -14
  76. keras_hub/src/models/bloom/bloom_attention.py +0 -13
  77. keras_hub/src/models/bloom/bloom_backbone.py +0 -14
  78. keras_hub/src/models/bloom/bloom_causal_lm.py +0 -15
  79. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -15
  80. keras_hub/src/models/bloom/bloom_decoder.py +0 -13
  81. keras_hub/src/models/bloom/bloom_presets.py +0 -13
  82. keras_hub/src/models/bloom/bloom_tokenizer.py +0 -15
  83. keras_hub/src/models/causal_lm.py +0 -14
  84. keras_hub/src/models/causal_lm_preprocessor.py +0 -13
  85. keras_hub/src/models/clip/__init__.py +0 -13
  86. keras_hub/src/models/clip/clip_encoder_block.py +0 -13
  87. keras_hub/src/models/clip/clip_preprocessor.py +1 -14
  88. keras_hub/src/models/clip/clip_text_encoder.py +0 -13
  89. keras_hub/src/models/clip/clip_tokenizer.py +4 -19
  90. keras_hub/src/models/csp_darknet/__init__.py +0 -13
  91. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -13
  92. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -13
  93. keras_hub/src/models/deberta_v3/__init__.py +0 -14
  94. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -15
  95. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -15
  96. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -14
  97. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -13
  98. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -15
  99. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -14
  100. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -15
  101. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -14
  102. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -14
  103. keras_hub/src/models/deberta_v3/relative_embedding.py +0 -14
  104. keras_hub/src/models/densenet/__init__.py +0 -14
  105. keras_hub/src/models/densenet/densenet_backbone.py +0 -13
  106. keras_hub/src/models/densenet/densenet_image_classifier.py +0 -13
  107. keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -13
  108. keras_hub/src/models/densenet/densenet_image_converter.py +0 -13
  109. keras_hub/src/models/densenet/densenet_presets.py +0 -13
  110. keras_hub/src/models/distil_bert/__init__.py +0 -14
  111. keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -15
  112. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -15
  113. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -14
  114. keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -13
  115. keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -15
  116. keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -15
  117. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -15
  118. keras_hub/src/models/efficientnet/__init__.py +0 -13
  119. keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -13
  120. keras_hub/src/models/efficientnet/fusedmbconv.py +0 -14
  121. keras_hub/src/models/efficientnet/mbconv.py +0 -14
  122. keras_hub/src/models/electra/__init__.py +0 -14
  123. keras_hub/src/models/electra/electra_backbone.py +0 -14
  124. keras_hub/src/models/electra/electra_presets.py +0 -13
  125. keras_hub/src/models/electra/electra_tokenizer.py +0 -14
  126. keras_hub/src/models/f_net/__init__.py +0 -14
  127. keras_hub/src/models/f_net/f_net_backbone.py +0 -15
  128. keras_hub/src/models/f_net/f_net_masked_lm.py +0 -15
  129. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -14
  130. keras_hub/src/models/f_net/f_net_presets.py +0 -13
  131. keras_hub/src/models/f_net/f_net_text_classifier.py +0 -15
  132. keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -15
  133. keras_hub/src/models/f_net/f_net_tokenizer.py +0 -15
  134. keras_hub/src/models/falcon/__init__.py +0 -14
  135. keras_hub/src/models/falcon/falcon_attention.py +0 -13
  136. keras_hub/src/models/falcon/falcon_backbone.py +0 -13
  137. keras_hub/src/models/falcon/falcon_causal_lm.py +0 -14
  138. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -14
  139. keras_hub/src/models/falcon/falcon_presets.py +0 -13
  140. keras_hub/src/models/falcon/falcon_tokenizer.py +0 -15
  141. keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -13
  142. keras_hub/src/models/feature_pyramid_backbone.py +0 -13
  143. keras_hub/src/models/gemma/__init__.py +0 -14
  144. keras_hub/src/models/gemma/gemma_attention.py +0 -13
  145. keras_hub/src/models/gemma/gemma_backbone.py +0 -15
  146. keras_hub/src/models/gemma/gemma_causal_lm.py +0 -15
  147. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -14
  148. keras_hub/src/models/gemma/gemma_decoder_block.py +0 -13
  149. keras_hub/src/models/gemma/gemma_presets.py +0 -13
  150. keras_hub/src/models/gemma/gemma_tokenizer.py +0 -14
  151. keras_hub/src/models/gemma/rms_normalization.py +0 -14
  152. keras_hub/src/models/gpt2/__init__.py +0 -14
  153. keras_hub/src/models/gpt2/gpt2_backbone.py +0 -15
  154. keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -15
  155. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -14
  156. keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -15
  157. keras_hub/src/models/gpt2/gpt2_presets.py +0 -13
  158. keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -15
  159. keras_hub/src/models/gpt_neo_x/__init__.py +0 -13
  160. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -14
  161. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -14
  162. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -14
  163. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -14
  164. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -14
  165. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -14
  166. keras_hub/src/models/image_classifier.py +0 -13
  167. keras_hub/src/models/image_classifier_preprocessor.py +0 -13
  168. keras_hub/src/models/image_segmenter.py +0 -13
  169. keras_hub/src/models/llama/__init__.py +0 -14
  170. keras_hub/src/models/llama/llama_attention.py +0 -13
  171. keras_hub/src/models/llama/llama_backbone.py +0 -13
  172. keras_hub/src/models/llama/llama_causal_lm.py +0 -13
  173. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -15
  174. keras_hub/src/models/llama/llama_decoder.py +0 -13
  175. keras_hub/src/models/llama/llama_layernorm.py +0 -13
  176. keras_hub/src/models/llama/llama_presets.py +0 -13
  177. keras_hub/src/models/llama/llama_tokenizer.py +0 -14
  178. keras_hub/src/models/llama3/__init__.py +0 -14
  179. keras_hub/src/models/llama3/llama3_backbone.py +0 -14
  180. keras_hub/src/models/llama3/llama3_causal_lm.py +0 -13
  181. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -14
  182. keras_hub/src/models/llama3/llama3_presets.py +0 -13
  183. keras_hub/src/models/llama3/llama3_tokenizer.py +0 -14
  184. keras_hub/src/models/masked_lm.py +0 -13
  185. keras_hub/src/models/masked_lm_preprocessor.py +0 -13
  186. keras_hub/src/models/mistral/__init__.py +0 -14
  187. keras_hub/src/models/mistral/mistral_attention.py +0 -13
  188. keras_hub/src/models/mistral/mistral_backbone.py +0 -14
  189. keras_hub/src/models/mistral/mistral_causal_lm.py +0 -14
  190. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -14
  191. keras_hub/src/models/mistral/mistral_layer_norm.py +0 -13
  192. keras_hub/src/models/mistral/mistral_presets.py +0 -13
  193. keras_hub/src/models/mistral/mistral_tokenizer.py +0 -14
  194. keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -13
  195. keras_hub/src/models/mix_transformer/__init__.py +0 -13
  196. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -13
  197. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -13
  198. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -13
  199. keras_hub/src/models/mobilenet/__init__.py +0 -13
  200. keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -13
  201. keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -13
  202. keras_hub/src/models/opt/__init__.py +0 -14
  203. keras_hub/src/models/opt/opt_backbone.py +0 -15
  204. keras_hub/src/models/opt/opt_causal_lm.py +0 -15
  205. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -13
  206. keras_hub/src/models/opt/opt_presets.py +0 -13
  207. keras_hub/src/models/opt/opt_tokenizer.py +0 -15
  208. keras_hub/src/models/pali_gemma/__init__.py +0 -13
  209. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -13
  210. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -13
  211. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -13
  212. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -14
  213. keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -13
  214. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -13
  215. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -13
  216. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -13
  217. keras_hub/src/models/phi3/__init__.py +0 -14
  218. keras_hub/src/models/phi3/phi3_attention.py +0 -13
  219. keras_hub/src/models/phi3/phi3_backbone.py +0 -13
  220. keras_hub/src/models/phi3/phi3_causal_lm.py +0 -13
  221. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -14
  222. keras_hub/src/models/phi3/phi3_decoder.py +0 -13
  223. keras_hub/src/models/phi3/phi3_layernorm.py +0 -13
  224. keras_hub/src/models/phi3/phi3_presets.py +0 -13
  225. keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -13
  226. keras_hub/src/models/phi3/phi3_tokenizer.py +0 -13
  227. keras_hub/src/models/preprocessor.py +51 -32
  228. keras_hub/src/models/resnet/__init__.py +0 -14
  229. keras_hub/src/models/resnet/resnet_backbone.py +0 -13
  230. keras_hub/src/models/resnet/resnet_image_classifier.py +0 -13
  231. keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -14
  232. keras_hub/src/models/resnet/resnet_image_converter.py +0 -13
  233. keras_hub/src/models/resnet/resnet_presets.py +0 -13
  234. keras_hub/src/models/retinanet/__init__.py +0 -13
  235. keras_hub/src/models/retinanet/anchor_generator.py +28 -30
  236. keras_hub/src/models/retinanet/box_matcher.py +0 -14
  237. keras_hub/src/models/retinanet/feature_pyramid.py +373 -0
  238. keras_hub/src/models/retinanet/non_max_supression.py +0 -14
  239. keras_hub/src/models/retinanet/retinanet_label_encoder.py +270 -0
  240. keras_hub/src/models/roberta/__init__.py +0 -14
  241. keras_hub/src/models/roberta/roberta_backbone.py +0 -15
  242. keras_hub/src/models/roberta/roberta_masked_lm.py +0 -15
  243. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -14
  244. keras_hub/src/models/roberta/roberta_presets.py +0 -13
  245. keras_hub/src/models/roberta/roberta_text_classifier.py +0 -15
  246. keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -14
  247. keras_hub/src/models/roberta/roberta_tokenizer.py +0 -15
  248. keras_hub/src/models/sam/__init__.py +0 -13
  249. keras_hub/src/models/sam/sam_backbone.py +0 -14
  250. keras_hub/src/models/sam/sam_image_segmenter.py +0 -14
  251. keras_hub/src/models/sam/sam_layers.py +0 -14
  252. keras_hub/src/models/sam/sam_mask_decoder.py +0 -14
  253. keras_hub/src/models/sam/sam_prompt_encoder.py +0 -14
  254. keras_hub/src/models/sam/sam_transformer.py +0 -14
  255. keras_hub/src/models/seq_2_seq_lm.py +0 -13
  256. keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -13
  257. keras_hub/src/models/stable_diffusion_3/__init__.py +9 -13
  258. keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -13
  259. keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -13
  260. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +15 -14
  261. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +18 -0
  262. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -13
  263. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +23 -17
  264. keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -13
  265. keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -13
  266. keras_hub/src/models/t5/__init__.py +0 -14
  267. keras_hub/src/models/t5/t5_backbone.py +0 -14
  268. keras_hub/src/models/t5/t5_layer_norm.py +0 -14
  269. keras_hub/src/models/t5/t5_multi_head_attention.py +0 -14
  270. keras_hub/src/models/t5/t5_preprocessor.py +0 -13
  271. keras_hub/src/models/t5/t5_presets.py +0 -13
  272. keras_hub/src/models/t5/t5_tokenizer.py +0 -14
  273. keras_hub/src/models/t5/t5_transformer_layer.py +0 -14
  274. keras_hub/src/models/task.py +0 -14
  275. keras_hub/src/models/text_classifier.py +0 -13
  276. keras_hub/src/models/text_classifier_preprocessor.py +0 -13
  277. keras_hub/src/models/text_to_image.py +0 -13
  278. keras_hub/src/models/vgg/__init__.py +0 -13
  279. keras_hub/src/models/vgg/vgg_backbone.py +0 -13
  280. keras_hub/src/models/vgg/vgg_image_classifier.py +0 -13
  281. keras_hub/src/models/vit_det/__init__.py +0 -13
  282. keras_hub/src/models/vit_det/vit_det_backbone.py +0 -14
  283. keras_hub/src/models/vit_det/vit_layers.py +0 -15
  284. keras_hub/src/models/whisper/__init__.py +0 -14
  285. keras_hub/src/models/whisper/whisper_audio_converter.py +0 -15
  286. keras_hub/src/models/whisper/whisper_backbone.py +0 -15
  287. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -13
  288. keras_hub/src/models/whisper/whisper_decoder.py +0 -14
  289. keras_hub/src/models/whisper/whisper_encoder.py +0 -14
  290. keras_hub/src/models/whisper/whisper_presets.py +0 -14
  291. keras_hub/src/models/whisper/whisper_tokenizer.py +0 -14
  292. keras_hub/src/models/xlm_roberta/__init__.py +0 -14
  293. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -15
  294. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -15
  295. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -14
  296. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -13
  297. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -15
  298. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -15
  299. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -15
  300. keras_hub/src/models/xlnet/__init__.py +0 -13
  301. keras_hub/src/models/xlnet/relative_attention.py +0 -14
  302. keras_hub/src/models/xlnet/xlnet_backbone.py +0 -14
  303. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -14
  304. keras_hub/src/models/xlnet/xlnet_encoder.py +0 -14
  305. keras_hub/src/samplers/__init__.py +0 -13
  306. keras_hub/src/samplers/beam_sampler.py +0 -14
  307. keras_hub/src/samplers/contrastive_sampler.py +0 -14
  308. keras_hub/src/samplers/greedy_sampler.py +0 -14
  309. keras_hub/src/samplers/random_sampler.py +0 -14
  310. keras_hub/src/samplers/sampler.py +0 -14
  311. keras_hub/src/samplers/serialization.py +0 -14
  312. keras_hub/src/samplers/top_k_sampler.py +0 -14
  313. keras_hub/src/samplers/top_p_sampler.py +0 -14
  314. keras_hub/src/tests/__init__.py +0 -13
  315. keras_hub/src/tests/test_case.py +23 -20
  316. keras_hub/src/tokenizers/__init__.py +0 -13
  317. keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -14
  318. keras_hub/src/tokenizers/byte_tokenizer.py +0 -14
  319. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -14
  320. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -14
  321. keras_hub/src/tokenizers/tokenizer.py +23 -27
  322. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -15
  323. keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -14
  324. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -15
  325. keras_hub/src/utils/__init__.py +0 -13
  326. keras_hub/src/utils/imagenet/__init__.py +0 -13
  327. keras_hub/src/utils/imagenet/imagenet_utils.py +0 -13
  328. keras_hub/src/utils/keras_utils.py +0 -14
  329. keras_hub/src/utils/pipeline_model.py +0 -14
  330. keras_hub/src/utils/preset_utils.py +32 -76
  331. keras_hub/src/utils/python_utils.py +0 -13
  332. keras_hub/src/utils/tensor_utils.py +106 -14
  333. keras_hub/src/utils/timm/__init__.py +0 -13
  334. keras_hub/src/utils/timm/convert_densenet.py +0 -13
  335. keras_hub/src/utils/timm/convert_resnet.py +0 -13
  336. keras_hub/src/utils/timm/preset_loader.py +0 -13
  337. keras_hub/src/utils/transformers/__init__.py +0 -13
  338. keras_hub/src/utils/transformers/convert_albert.py +0 -13
  339. keras_hub/src/utils/transformers/convert_bart.py +0 -13
  340. keras_hub/src/utils/transformers/convert_bert.py +0 -13
  341. keras_hub/src/utils/transformers/convert_distilbert.py +0 -13
  342. keras_hub/src/utils/transformers/convert_gemma.py +0 -13
  343. keras_hub/src/utils/transformers/convert_gpt2.py +0 -13
  344. keras_hub/src/utils/transformers/convert_llama3.py +0 -13
  345. keras_hub/src/utils/transformers/convert_mistral.py +0 -13
  346. keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -13
  347. keras_hub/src/utils/transformers/preset_loader.py +1 -15
  348. keras_hub/src/utils/transformers/safetensor_utils.py +9 -15
  349. keras_hub/src/version_utils.py +1 -15
  350. {keras_hub_nightly-0.16.1.dev202409260340.dist-info → keras_hub_nightly-0.16.1.dev202409280337.dist-info}/METADATA +30 -27
  351. keras_hub_nightly-0.16.1.dev202409280337.dist-info/RECORD +353 -0
  352. keras_hub_nightly-0.16.1.dev202409260340.dist-info/RECORD +0 -350
  353. {keras_hub_nightly-0.16.1.dev202409260340.dist-info → keras_hub_nightly-0.16.1.dev202409280337.dist-info}/WHEEL +0 -0
  354. {keras_hub_nightly-0.16.1.dev202409260340.dist-info → keras_hub_nightly-0.16.1.dev202409280337.dist-info}/top_level.txt +0 -0
@@ -1,21 +1,7 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
1
  from keras_hub.src.api_export import keras_hub_export
16
2
 
17
3
  # Unique source of truth for the version number.
18
- __version__ = "0.16.1.dev202409260340"
4
+ __version__ = "0.16.1.dev202409280337"
19
5
 
20
6
 
21
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202409260340
3
+ Version: 0.16.1.dev202409280337
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -31,7 +31,7 @@ Provides-Extra: extras
31
31
  Requires-Dist: rouge-score ; extra == 'extras'
32
32
  Requires-Dist: sentencepiece ; extra == 'extras'
33
33
 
34
- # KerasNLP: Multi-framework NLP Models
34
+ # KerasHub: Multi-framework Models
35
35
  [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
36
36
  ![Python](https://img.shields.io/badge/python-v3.9.0+-success.svg)
37
37
  [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/keras-team/keras-hub/issues)
@@ -43,16 +43,17 @@ Requires-Dist: sentencepiece ; extra == 'extras'
43
43
  > We have renamed the repo to KerasHub in preparation for the release, but have not yet
44
44
  > released the new package. Follow the announcement for news.
45
45
 
46
- KerasNLP is a natural language processing library that works natively
47
- with TensorFlow, JAX, or PyTorch. KerasNLP provides a repository of pre-trained
48
- models and a collection of lower-level building blocks for language modeling.
49
- Built on Keras 3, models can be trained and serialized in any framework
50
- and re-used in another without costly migrations.
46
+ KerasHub is a library that supports natural language processing, computer
47
+ vision, audio, and multimodal backbones and task models, working natively with
48
+ TensorFlow, JAX, or PyTorch. KerasHub provides a repository of pre-trained
49
+ models and a collection of lower-level building blocks for these tasks. Built
50
+ on Keras 3, models can be trained and serialized in any framework and re-used
51
+ in another without costly migrations.
51
52
 
52
53
  This library is an extension of the core Keras API; all high-level modules are
53
54
  Layers and Models that receive that same level of polish as core Keras.
54
55
  If you are familiar with Keras, congratulations! You already understand most of
55
- KerasNLP.
56
+ KerasHub.
56
57
 
57
58
  All models support JAX, TensorFlow, and PyTorch from a single model
58
59
  definition and can be fine-tuned on GPUs and TPUs out of the box. Models can
@@ -88,7 +89,7 @@ Fine-tune BERT on IMDb movie reviews:
88
89
  import os
89
90
  os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
90
91
 
91
- import keras_nlp
92
+ import keras_hub
92
93
  import tensorflow_datasets as tfds
93
94
 
94
95
  imdb_train, imdb_test = tfds.load(
@@ -98,8 +99,8 @@ imdb_train, imdb_test = tfds.load(
98
99
  batch_size=16,
99
100
  )
100
101
  # Load a BERT model.
101
- classifier = keras_nlp.models.Classifier.from_preset(
102
- "bert_base_en",
102
+ classifier = keras_hub.models.Classifier.from_preset(
103
+ "bert_base_en",
103
104
  num_classes=2,
104
105
  activation="softmax",
105
106
  )
@@ -115,20 +116,20 @@ For more in depth guides and examples, visit
115
116
 
116
117
  ## Installation
117
118
 
118
- To install the latest KerasNLP release with Keras 3, simply run:
119
+ To install the latest KerasHub release with Keras 3, simply run:
119
120
 
120
121
  ```
121
- pip install --upgrade keras-nlp
122
+ pip install --upgrade keras-hub
122
123
  ```
123
124
 
124
- To install the latest nightly changes for both KerasNLP and Keras, you can use
125
+ To install the latest nightly changes for both KerasHub and Keras, you can use
125
126
  our nightly package.
126
127
 
127
128
  ```
128
- pip install --upgrade keras-nlp-nightly
129
+ pip install --upgrade keras-hub-nightly
129
130
  ```
130
131
 
131
- Note that currently, installing KerasNLP will always pull in TensorFlow for use
132
+ Note that currently, installing KerasHub will always pull in TensorFlow for use
132
133
  of the `tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
133
134
  training can still happen on any backend.
134
135
 
@@ -136,13 +137,13 @@ Read [Getting started with Keras](https://keras.io/getting_started/) for more
136
137
  information on installing Keras 3 and compatibility with different frameworks.
137
138
 
138
139
  > [!IMPORTANT]
139
- > We recommend using KerasNLP with TensorFlow 2.16 or later, as TF 2.16 packages
140
+ > We recommend using KerasHub with TensorFlow 2.16 or later, as TF 2.16 packages
140
141
  > Keras 3 by default.
141
142
 
142
143
  ## Configuring your backend
143
144
 
144
145
  If you have Keras 3 installed in your environment (see installation above),
145
- you can use KerasNLP with any of JAX, TensorFlow and PyTorch. To do so, set the
146
+ you can use KerasHub with any of JAX, TensorFlow and PyTorch. To do so, set the
146
147
  `KERAS_BACKEND` environment variable. For example:
147
148
 
148
149
  ```shell
@@ -155,7 +156,7 @@ Or in Colab, with:
155
156
  import os
156
157
  os.environ["KERAS_BACKEND"] = "jax"
157
158
 
158
- import keras_nlp
159
+ import keras_hub
159
160
  ```
160
161
 
161
162
  > [!IMPORTANT]
@@ -171,24 +172,26 @@ may break compatibility at any time and APIs should not be consider stable.
171
172
 
172
173
  ## Disclaimer
173
174
 
174
- KerasNLP provides access to pre-trained models via the `keras_nlp.models` API.
175
+ KerasHub provides access to pre-trained models via the `keras_hub.models` API.
175
176
  These pre-trained models are provided on an "as is" basis, without warranties
176
177
  or conditions of any kind. The following underlying models are provided by third
177
178
  parties, and subject to separate licenses:
178
179
  BART, BLOOM, DeBERTa, DistilBERT, GPT-2, Llama, Mistral, OPT, RoBERTa, Whisper,
179
180
  and XLM-RoBERTa.
180
181
 
181
- ## Citing KerasNLP
182
+ ## Citing KerasHub
182
183
 
183
- If KerasNLP helps your research, we appreciate your citations.
184
+ If KerasHub helps your research, we appreciate your citations.
184
185
  Here is the BibTeX entry:
185
186
 
186
187
  ```bibtex
187
- @misc{kerasnlp2022,
188
- title={KerasNLP},
189
- author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet,
190
- Fran\c{c}ois and others},
191
- year={2022},
188
+ @misc{kerashub2024,
189
+ title={KerasHub},
190
+ author={Watson, Matthew, and Chollet, Fran\c{c}ois and Sreepathihalli,
191
+ Divyashree, and Saadat, Samaneh and Sampath, Ramesh, and Rasskin, Gabriel and
192
+ and Zhu, Scott and Singh, Varun and Wood, Luke and Tan, Zhenyu and Stenbit,
193
+ Ian and Qian, Chen, and Bischof, Jonathan and others},
194
+ year={2024},
192
195
  howpublished={\url{https://github.com/keras-team/keras-hub}},
193
196
  }
194
197
  ```
@@ -0,0 +1,353 @@
1
+ keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
2
+ keras_hub/api/__init__.py,sha256=spMxsgqzjpeuC8rY4WP-2kAZ2qwwKRSbFwddXgUjqQE,524
3
+ keras_hub/api/bounding_box/__init__.py,sha256=T8R_X7BPm0et1xaZq8565uJmid7dylsSFSj4V-rGuFQ,1097
4
+ keras_hub/api/layers/__init__.py,sha256=W42ptsnGJZ9x6I6jfaspKcrv4SSFLokschJDW9CofAM,2256
5
+ keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
6
+ keras_hub/api/models/__init__.py,sha256=71LtPajJXixbdH2BpslAoBoO0S8j64uZWnzZSXUP_0Q,13787
7
+ keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
8
+ keras_hub/api/tokenizers/__init__.py,sha256=_f-r_cyUM2fjBB7iO84ThOdqqsAxHNIewJ2EBDlM0cA,2524
9
+ keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
+ keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
+ keras_hub/src/version_utils.py,sha256=_cruonSgKu676Blc0OOlOmcIohsULlRB-ChH1I8ALXI,222
13
+ keras_hub/src/bounding_box/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
+ keras_hub/src/bounding_box/converters.py,sha256=a5po8DBm87oz2EXfi-0uEZHCMlCJPIb4-MaZIdYx3Dg,17865
15
+ keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
16
+ keras_hub/src/bounding_box/iou.py,sha256=wmBKEUwu7Q-dJMoTO9I493NQAwpU7lF4oWLpccpkQ0I,9116
17
+ keras_hub/src/bounding_box/to_dense.py,sha256=usSkar5PfEoW-ZasacBXNHpJ-XaRHLUTnSagef2sZxo,2775
18
+ keras_hub/src/bounding_box/to_ragged.py,sha256=Z7lZN-wlMIF0FLRknewgqrRlIDhmhvWh8QwLAcNxoek,2874
19
+ keras_hub/src/bounding_box/utils.py,sha256=ejWDLDTsZd_k3cfBqxhKWlYV2vwd0RInLmPNTPYpsLA,6441
20
+ keras_hub/src/bounding_box/validate_format.py,sha256=05hdCs7ICavuEPog2syCuNe8i8r0xPZQSnkQA7ncr2c,3054
21
+ keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
+ keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
+ keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
24
+ keras_hub/src/layers/modeling/cached_multi_head_attention.py,sha256=8IDyP3JMeALV1K7Ot04o6MehyS7zDVpci4uvlTZY1oc,5600
25
+ keras_hub/src/layers/modeling/f_net_encoder.py,sha256=uUDGGuhyNL3m---TRqODmDyUp6LfG0uwzCjO2mq1SMs,6841
26
+ keras_hub/src/layers/modeling/masked_lm_head.py,sha256=nCtn94HXK2nrWOjQRfW_HalKPKnr4Ko_3MOn0Tyw9u4,9003
27
+ keras_hub/src/layers/modeling/position_embedding.py,sha256=FfTS6JGMhnOIzo9bHzvoxBbdQNctc32iRLI7ZjdxoTY,3850
28
+ keras_hub/src/layers/modeling/reversible_embedding.py,sha256=HEkVACePzuHcSuAliyhtu-fsly7t3m1zKOwaMRAUzyE,11810
29
+ keras_hub/src/layers/modeling/rotary_embedding.py,sha256=seLCflCUVZ_JwsEQzcHH6USiOqJBcGySYL-ANHvXJ-E,6054
30
+ keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=NAPW9HaVTMNZgUJNzA3l1B3C_FNvaY7IW-5tQgFgnNg,3453
31
+ keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=uFzsaA_QhrWoQi-THUHXtcY6nEHZMEGwoD5gqUBRNXA,5262
32
+ keras_hub/src/layers/modeling/transformer_decoder.py,sha256=_JbCSdLSn1Am5Gqf32c5VXHMakct_HcbZfyFcEktYPg,21105
33
+ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=howjIXH_vgBOKaXaIa7mTg8xuIeXrmMZS29Zg1vSXOQ,9900
34
+ keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
35
+ keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
+ keras_hub/src/layers/preprocessing/audio_converter.py,sha256=UNai8KPmRrJCeFb7Df7h-uW-5M9A-JoIn5RrBeBe93w,4286
37
+ keras_hub/src/layers/preprocessing/image_converter.py,sha256=isBi_EkzLTCElTczsetiqomX60eLBI5ykMc4bC-Hnd4,4763
38
+ keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
39
+ keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
40
+ keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
41
+ keras_hub/src/layers/preprocessing/random_deletion.py,sha256=x23nRo0ir2J4Ps42i9Xo9dVEkD22P9tZNhI2hXvREbM,9763
42
+ keras_hub/src/layers/preprocessing/random_swap.py,sha256=w2z7yNQsII5g4sEFi4GXfgxIc1S6UUt3a8YWZew_f4U,9504
43
+ keras_hub/src/layers/preprocessing/resizing_image_converter.py,sha256=2v_wAcryc2yWUzuseTdqmZxamEtHLsdnHRV-_radGRU,5855
44
+ keras_hub/src/layers/preprocessing/start_end_packer.py,sha256=lY2K937z6JucxNe7VknynhhjrcUfFigU6mqIdv2gS-Y,7973
45
+ keras_hub/src/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
+ keras_hub/src/metrics/bleu.py,sha256=9ch4_HnrQpmpkeip022hQDetMjJY853zB-0-kXM5Ev4,13673
47
+ keras_hub/src/metrics/edit_distance.py,sha256=kjhe8uNjvv8aN49RyrKAbNi7a8_OlB8fMza0J_CfNQg,6353
48
+ keras_hub/src/metrics/perplexity.py,sha256=dDUQcfE5JbAruG3spEkgue6IjHcynqgmGpJAqWg22Tw,6139
49
+ keras_hub/src/metrics/rouge_base.py,sha256=Pt2DUznhTTeR-fX1nQ_wSbPtmuTgxQTvrGpu8LRVapE,6264
50
+ keras_hub/src/metrics/rouge_l.py,sha256=JlZhMBV6wS_6zMd57pkTc6yxHkEJT9fVQMlPZKekQzQ,2729
51
+ keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemupRc,3620
52
+ keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
+ keras_hub/src/models/backbone.py,sha256=vGyEgW_qu1GilcqhZLzHNd-pJcwuF3J0J-tlDD-TKns,11489
54
+ keras_hub/src/models/causal_lm.py,sha256=p3C5R6hbe1BARHNXJZqtgwlp3bDqkv3gguO19PeJC2c,14791
55
+ keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
56
+ keras_hub/src/models/feature_pyramid_backbone.py,sha256=2Mh0G5y3CYjSyWqyw5X-NvtJf2cDegd7j4VVMSO7Nws,2247
57
+ keras_hub/src/models/image_classifier.py,sha256=PFbuXXYDzryfvftsCJs2eLJ8IoSAwIbsMSiAW-zn-8M,3169
58
+ keras_hub/src/models/image_classifier_preprocessor.py,sha256=BRAdFfK4oQ0TsvGDM-Dpjj38eV0xmpKdQwdnGZOvt_c,2614
59
+ keras_hub/src/models/image_segmenter.py,sha256=OngkYiqvgs49Q-bNQ86TE1w_HYTorcgSg_mkmwbhO00,3014
60
+ keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
61
+ keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
62
+ keras_hub/src/models/preprocessor.py,sha256=_hNy2qWRK_vcycS1eDB_Dz9r33T3eZ7dUwB85f7FzOs,8133
63
+ keras_hub/src/models/seq_2_seq_lm.py,sha256=w0gX-5YZjatfvAJmFAgSHyqS_BLqc8FF8DPLGK8mrgI,1864
64
+ keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=HUHRbWRG5SF1pPpotGzBhXlrMh4pLFxgAoFk05FIrB4,9687
65
+ keras_hub/src/models/task.py,sha256=I-kkHbvzCu2A4aMdQDd8hFMKAXHWom8MxBlKNQm_5cs,13846
66
+ keras_hub/src/models/text_classifier.py,sha256=VBDvQUHTpJPqKp7A4VAtm35FOmJ3yMo0DW6GdX67xG0,4159
67
+ keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
68
+ keras_hub/src/models/text_to_image.py,sha256=N42l1W8YEUBHOdGiT4BQNqzTpgjB2O5dtLU5FbKpMy0,10792
69
+ keras_hub/src/models/albert/__init__.py,sha256=rR6q_-8FujB1FXp6r4KOI7xi4gFjtAhQwXjp-MIhiyg,257
70
+ keras_hub/src/models/albert/albert_backbone.py,sha256=4NQFo8lhv8rFiNIwQeZxxKxFwT3nKcCt36FUa6oPGok,10073
71
+ keras_hub/src/models/albert/albert_masked_lm.py,sha256=jG6FttE_MAyBe8GzOEXMjEem3wo6UFGvxM3lRmXuS70,4126
72
+ keras_hub/src/models/albert/albert_masked_lm_preprocessor.py,sha256=OxAr-PwU2eELevV7uNJPpXNPpSySOouMfUJXbWKOyEE,4475
73
+ keras_hub/src/models/albert/albert_presets.py,sha256=o_CbZCrixGInt2ofc-2S_b7pXnn1Ek-IoG8OH-SMHE0,2209
74
+ keras_hub/src/models/albert/albert_text_classifier.py,sha256=B5vE3S3XTt7oc7v-MTDTQGP1R4QFH2nqLak6jE0EZ5s,6645
75
+ keras_hub/src/models/albert/albert_text_classifier_preprocessor.py,sha256=SPpjxnei4YMHqPuY6P4T8t7MPQgzyqtDxTMqsMllRtA,5539
76
+ keras_hub/src/models/albert/albert_tokenizer.py,sha256=dNEkjqUHJXBgprMCNH8qsjhoXuxtqa0510iEa_tNsmU,2984
77
+ keras_hub/src/models/bart/__init__.py,sha256=foekeZj_Z4I75KI2oB8AuyzXfRdEb8Fcvn-dbv9cTjs,245
78
+ keras_hub/src/models/bart/bart_backbone.py,sha256=QIOYBBdIMLJPvCtSV235zN9TrViJEbTk8kIf3DM4o1E,9700
79
+ keras_hub/src/models/bart/bart_presets.py,sha256=A4IkhcCHYn7pgcPv8gbedCRdpwxIubFXwEjzGnL-aVo,2151
80
+ keras_hub/src/models/bart/bart_seq_2_seq_lm.py,sha256=u-BFAMDND5ZPC0uc6HwWHmyJIs6Uz2CnFpyqo5A3atg,19323
81
+ keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=3_e-ULIcm_3DKgt7X7cvyLZEDIEkpu9HdANgH6MjZgg,4373
82
+ keras_hub/src/models/bart/bart_tokenizer.py,sha256=Q7IXmIwXzhPSN427oQRyF9ufoExQGS184Yo_4boaOZo,2811
83
+ keras_hub/src/models/bert/__init__.py,sha256=K_UmCqDgOFFvXgzjXRn5oG0WWi53rAsQMOmUrsiBe1k,245
84
+ keras_hub/src/models/bert/bert_backbone.py,sha256=o8GXUpoKPXLpfFzx5u9wI_3rZJeabPfYJEYSI09Clos,8069
85
+ keras_hub/src/models/bert/bert_masked_lm.py,sha256=8gb1g8h5VFVLmKNEPfLe26z7SOlFnzf9R9okK3rp8AU,4045
86
+ keras_hub/src/models/bert/bert_masked_lm_preprocessor.py,sha256=UAtj1gTxvrzTTueGts_9fkAyHeJ6cp269YwE69p7vys,4574
87
+ keras_hub/src/models/bert/bert_presets.py,sha256=Q5IHXEovcLh0T1o0noTrE6L5s4alGulSt8taAYVFfXk,5024
88
+ keras_hub/src/models/bert/bert_text_classifier.py,sha256=TFot0fgGkESWLxBxFTcPF4apg-51J8bQQnJ04KJfCt0,5798
89
+ keras_hub/src/models/bert/bert_text_classifier_preprocessor.py,sha256=0KIVajjOUDBagJIA9dfXdlQZB08h2XumUVec5OZauAI,4713
90
+ keras_hub/src/models/bert/bert_tokenizer.py,sha256=hCyhRg_QTdexiaw23vcl1brxYJ-sPEImXSBCSTNwV9M,3025
91
+ keras_hub/src/models/bloom/__init__.py,sha256=_ljORJs8JQkGzLu-yRGLNISCQbV0Z4PfOF_vc7cEnjI,251
92
+ keras_hub/src/models/bloom/bloom_attention.py,sha256=vkiDDmlWPf6BshIcBfGDA0yxeBu7o0rx-nJxeCC9etk,6074
93
+ keras_hub/src/models/bloom/bloom_backbone.py,sha256=dvSXekDbukixkeKxTo8yvRPpxVjFMp387lynKuCSFi0,5820
94
+ keras_hub/src/models/bloom/bloom_causal_lm.py,sha256=dq8WjkGZgj5kc4wqsZCxXrHk-nAVgwMVL0ur__Y2Bx8,10961
95
+ keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py,sha256=KRvp3_lhRFPg8C028qEOJ9V2taI-07h5jj4DfkD7qoU,3011
96
+ keras_hub/src/models/bloom/bloom_decoder.py,sha256=fda8iX4wzx2M8AoLX7fDHkyoir89KLJXrKbOZf70SX8,6572
97
+ keras_hub/src/models/bloom/bloom_presets.py,sha256=b-H9lNQiVDNJDCqsRWgxcS36ARBPG1GT9mEmJyK5y9Q,4111
98
+ keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=6Konh7B_L9BqgjkA0z8-APFpr9sQmQPuAJFZSsCIClU,2574
99
+ keras_hub/src/models/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
100
+ keras_hub/src/models/clip/clip_encoder_block.py,sha256=y1b9rhkCIaNPZNhOyGMslU1g0eANx9uw64ChE629lOE,3208
101
+ keras_hub/src/models/clip/clip_preprocessor.py,sha256=nUYu8Bgf3TU7jrR10kr0BIe7ph3aABvGtIqnjqrIb9k,4752
102
+ keras_hub/src/models/clip/clip_text_encoder.py,sha256=0bBiBnDLkm2Dsyogcpb6nudL16fPS-TAF9yxbwe-Jqk,5327
103
+ keras_hub/src/models/clip/clip_tokenizer.py,sha256=X68w_-Bq-UHhQ_O-n_T3QIA6WwUqbnxk22J_rqRX97w,7061
104
+ keras_hub/src/models/csp_darknet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
105
+ keras_hub/src/models/csp_darknet/csp_darknet_backbone.py,sha256=7Lmk98S7PLI3ONeVNRPAPshbs6zWrzfaGgvoAS9CRkQ,13727
106
+ keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py,sha256=AqzL7TIjCz3sB3bNRcNr0A4KA6uYoPWofneTUgi4Y7k,3770
107
+ keras_hub/src/models/deberta_v3/__init__.py,sha256=6E-QtAD1uvTBobrn5bUoyB1qtaCJU-t73TtbAEH6i9g,288
108
+ keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=jAxG0XQ4CrHwzqruvYh2ZixC5ML09M4uhy0pWipgt0Y,7244
109
+ keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=ADBktf1DdiP9T6LCaMhdFiZ_mUbBRKMekY5mGwAeJIo,4186
110
+ keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py,sha256=qoUCmhHAqx_YW0GzHsE44u2AT8ms-HFBwkFovPqZdD0,4966
111
+ keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=eU0M8RrTZ5VE2hyNBdfv6Dx37I1mKzG2SitSr2XS9ZY,2715
112
+ keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=G1ymonB7nqSBOs-afGTofm6-BAtH7muTxMvrIupSusA,7238
113
+ keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=3U2x8Nr7HhwdhAyd3duYo8jj0JDYuB8Z1WMzArzQpKI,5975
114
+ keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=zEMCLy9eCiBEpA_xM2j8ACg7YJunD3bAruEK-1beElk,4987
115
+ keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=JbdQV1ZHFX4_PcJhemuHQ5YPkJC-XujgbTyjCrdL7nk,8556
116
+ keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=3l7Hy7JfiZDDDFE6uTqSuFjg802kXD9acA7aHKRdzJk,13122
117
+ keras_hub/src/models/deberta_v3/relative_embedding.py,sha256=3WIQ1nWcEhfWF0U9DcKyYz3AAhO3Pmg7ykpzrYe0Jgw,2886
118
+ keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
119
+ keras_hub/src/models/densenet/densenet_backbone.py,sha256=dN9lUwKzO3E2HthNV2x54ozeBEQ0ilNs5uYHshFQpT0,6723
120
+ keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=oWjN_Rn5ffOF8WW8U_KJJFn-EcJbqyyuAbgmr0lp2gk,4742
121
+ keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
122
+ keras_hub/src/models/densenet/densenet_image_converter.py,sha256=dJEMrevAL7F3OF6W-Xh7h0AZLtgUoa1BFTP963Bj3Ao,388
123
+ keras_hub/src/models/densenet/densenet_presets.py,sha256=GawLJOd_Kn_Kj_1ue7DYFLx7UPYvPGGOYKrNIqhQe2I,1534
124
+ keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
125
+ keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
126
+ keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=L0DvOl01MIwqc2f6H_E8si9qVUXPd0OKknJ5Rha33TA,4275
127
+ keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py,sha256=N3e94EtJJeg1B-2GYpgn1vsRSte-R95pAqPp_qqKJCg,5230
128
+ keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=w8XZPp0rNfa2wiIZWienkmsH2PRcjdXbUDrkXgCnQ7c,1727
129
+ keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=Ig9P5Benk1PJjIEpuQl60c2XkUXk7T-7WeG-gVBiQ68,6737
130
+ keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=Z51X2EkimPN1qeWfwa0Ie7d3fmNe7J34D0YsRNUsj_k,4893
131
+ keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=LiS9_1nMVbZ0IcPaHbs2gBesdBUP8Dq8aJLLWLFAJxs,3111
132
+ keras_hub/src/models/efficientnet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
133
+ keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=SFwTC5JwmE9fqIheCTYAdFNmUOhdtqFWDuQ4LpYPOAs,20807
134
+ keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=583SrYroSarRlmXSFX2xR83niX-bMZItpkFe19TKlzw,7347
135
+ keras_hub/src/models/efficientnet/mbconv.py,sha256=bR-kVEmFaBcF2h8h3ZHB02Uh4s5svb7PXceB_ytZmCY,7626
136
+ keras_hub/src/models/electra/__init__.py,sha256=vaXl_uQx_oLeKZWxmc1NRgCJfHpYJ35JeF9as8U0q5M,263
137
+ keras_hub/src/models/electra/electra_backbone.py,sha256=sO4W8t8hr6OreemtkTIe1cNBpiTZ4ArT9eiHyxf2ytg,9004
138
+ keras_hub/src/models/electra/electra_presets.py,sha256=d6cgPoRApnGJ_dwYmfysYni-yKALipmBaOUhlaH4qRM,3369
139
+ keras_hub/src/models/electra/electra_tokenizer.py,sha256=Ll_EW-14i-OZr6appQEt5ceMUCeEadF4yPJHMwaRfVs,2729
140
+ keras_hub/src/models/f_net/__init__.py,sha256=a3OAwgEVy3Rv88ZlBE9RYLrPCNteImhGkW-lSAq5hyI,249
141
+ keras_hub/src/models/f_net/f_net_backbone.py,sha256=6vZEq2UgoJxU2-aEesdXZnyRbACxpMZQ1akyVbGH8wg,8290
142
+ keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GDRtPdF4K2tPtnM6NqmMeZs6PCRwtBN5Bo1qIMeqwCU,3978
143
+ keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py,sha256=eCSaiMCcrrjS51SP5fF0OkWj57C2z_zmg_qGSEbvNNo,5081
144
+ keras_hub/src/models/f_net/f_net_presets.py,sha256=kpvQKINrqI-atOAUld1RMC6ELdrDDr3Bhoj28C-Qrwk,1055
145
+ keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=oUH30T9sb5tIIpVSWnR93OYERlvOiSNusnCCeZFCJTs,4869
146
+ keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=E9DgsDMwA780Suni7GGnYGpYDpbD3gIkYgLxzw3UiVU,4821
147
+ keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=ZRTaSfgZnYLTVXgM51303LpryRsSL5GaC2Cl_D7g27A,2285
148
+ keras_hub/src/models/falcon/__init__.py,sha256=IVwPgPbw0l8XJRPQETmeQNvpdn_SneXhe_3oRMOvdx8,257
149
+ keras_hub/src/models/falcon/falcon_attention.py,sha256=nBpvh3KGElNG062NfqznNJmTqKGN-0k_VZ7j7DryjMI,4497
150
+ keras_hub/src/models/falcon/falcon_backbone.py,sha256=M8_0jKcS-2-8jUr2iktVbAyNUbzHfOwHk4fbVy5V0P4,5427
151
+ keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=1YZcNZMuSgG22qvHhgWn4Okxwd6Z4xnPcwNoAkx3REA,10833
152
+ keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=nI9E8N9enx5DppDHpLwGslb65rqGorL2sEz1jzet4gA,3033
153
+ keras_hub/src/models/falcon/falcon_presets.py,sha256=gnyUq8JQD_kVZB23TmuPIFB4UsD5ugP_4le9IkLeJ_w,574
154
+ keras_hub/src/models/falcon/falcon_tokenizer.py,sha256=2B5vmpakj_iVB7T95_8OVreJbZy780cgSeYAQELnJeE,2554
155
+ keras_hub/src/models/falcon/falcon_transformer_decoder.py,sha256=QqIK6v97uBXZFBG3qS6O8HrP9_93uOFzvHQgOiMO2eY,8125
156
+ keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
157
+ keras_hub/src/models/gemma/gemma_attention.py,sha256=1CVN5z9GKoU8TuNMih2_MweDkpd98xSqdic9F8xIBE8,8317
158
+ keras_hub/src/models/gemma/gemma_backbone.py,sha256=EttzmZHWXWl95__09reVFJxT__MtUSUtJAw15-Dao28,12914
159
+ keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=BNBoQIf0HoqCooalYsWE-28v5BGUNvL9YdUB8_NSkBU,16770
160
+ keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
161
+ keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=tpBfH86Q48EvV0COkd1g2FJg9zHp7ktZBjegs3ehOYo,7588
162
+ keras_hub/src/models/gemma/gemma_presets.py,sha256=HoLRnMh618oXHuTZxqGrwmujRXlbjxCs6_zOVJ_zmHY,9282
163
+ keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
164
+ keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
165
+ keras_hub/src/models/gpt2/__init__.py,sha256=_hqeljpBkW8DLABy4nKBzJxXUh29WIEW27obmDCiH5Q,245
166
+ keras_hub/src/models/gpt2/gpt2_backbone.py,sha256=H1LgDd-bavrWtdCavdI519qlaruE2Jj5H3-SMc-5d14,6961
167
+ keras_hub/src/models/gpt2/gpt2_causal_lm.py,sha256=vLnL2wXscne3EWMvaV-BXgDM5Ye6WAROIVxcBI_Y2x8,16765
168
+ keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py,sha256=3AD1LBFJ-u6bDdrwKa1LbINlEblZkhwB2sMJx-XEUZk,2992
169
+ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLbIK3WnLUxaXj25fFpQ,3179
170
+ keras_hub/src/models/gpt2/gpt2_presets.py,sha256=S_NV9s7jDobmYi0qDFdmZ5wt2ZOwTdQKCHVg8RcSPH8,2435
171
+ keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
172
+ keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
173
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=z6-Hpl5nm4g39fE_w0kk82TpCCVHE1tSyGDkcOkb6KM,8525
174
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=yov92B8j9lXz-9ZOpLa_PLT7WgcRKWG8fwB824Z_1hw,6508
175
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=3d3slwvfv4I6NsW0CEINYi3AHtNEVCtz4ZmcFuj_M_A,7690
176
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9qBHjQlwKgtUVrgBTFitHcX5pbmhhfHwaulyRxY,1957
177
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=xSLDgavOhhm3SZc18VN60S_-28OS-TZpfoUP-unnecc,9728
178
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
179
+ keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
180
+ keras_hub/src/models/llama/llama_attention.py,sha256=HzTWtvTjfN_j0vA9-ComstHpI81tzUrJU3RSSvSCaI4,7194
181
+ keras_hub/src/models/llama/llama_backbone.py,sha256=cpBJD7dnCnfeBSAYPMGwR3gwewMr0oBNSQseUU6Pgao,6599
182
+ keras_hub/src/models/llama/llama_causal_lm.py,sha256=JyTiCt1mxvf6QNxhjCjAW-aopTL4teS1EHTb_K-RGrs,13109
183
+ keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
184
+ keras_hub/src/models/llama/llama_decoder.py,sha256=6iERIblED0ZB5w_EUlHks4UvMnsrWONdO_Xdz2OzhWM,8623
185
+ keras_hub/src/models/llama/llama_layernorm.py,sha256=LfRbePHUJs00Ptf7dvNaw3Aj9n1xBMBpE_rS5zzsYMo,1050
186
+ keras_hub/src/models/llama/llama_presets.py,sha256=8NuEtLS76N7FuNnljt-uMLOwMDKW-KeoJhok0U7m_OE,2430
187
+ keras_hub/src/models/llama/llama_tokenizer.py,sha256=NKWhxTutQ2jd6sd3NSTy9plQyKGCmuNG7U6kVxhZU4Y,1981
188
+ keras_hub/src/models/llama3/__init__.py,sha256=Vqvr2E10cnANkrRQGNBJtVLNAu-Bg9Lx6sqKOZWFy_8,257
189
+ keras_hub/src/models/llama3/llama3_backbone.py,sha256=nR5y51oI2QraL4Q9IxmQZrr0yS3XII7M9gMs52kqns8,2855
190
+ keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=0Kcr0sB78wSNDpeo4AE-PeefJe1DxEIdGRNMzdjk3WM,1541
191
+ keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgGxDAoQhEQuVm2udnEybI4fAQTJzXAuBs,3064
192
+ keras_hub/src/models/llama3/llama3_presets.py,sha256=n-GIQg6tVf9JY9djBqsFZvWAAuDqXHORrRxFg-xcDFw,2003
193
+ keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=BcNHfsT19LUC0PkEEyN22C9zxPNVboQSK9EGMfhtpnk,789
194
+ keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
195
+ keras_hub/src/models/mistral/mistral_attention.py,sha256=HCkUIc2DVIlYC5hhwomENlqLOsKTvbCKF0lx0_OBAyA,7862
196
+ keras_hub/src/models/mistral/mistral_backbone.py,sha256=x4BfyfWTCUXcjPSxdPSl8QITXgzUg1oJlAQt2acZfv4,7245
197
+ keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=OQ3IbdkVlNIXsByZ5ClJoCs0PA86AbMeG6UESbnlfE8,13085
198
+ keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
199
+ keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=nimMZ5CTPK8v9eflfrGuzqmv-2vd2rGlPvcHOMwYZyg,1063
200
+ keras_hub/src/models/mistral/mistral_presets.py,sha256=gucgdaFAiU-vRDS1g9zWGHjbDF_jaCiljPibCF4yVqY,1329
201
+ keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
202
+ keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=RDIIB3FhneHZP11tNUFQT9DcWawCMnrtVxtSvtnP3ts,9542
203
+ keras_hub/src/models/mix_transformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
204
+ keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=Uuuz7G9pwHIEVaJwpUJmRieFak8LvIg275hyvn34lh0,5841
205
+ keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=XF0RvdocC4CPOrIEStw1V9KQ8IKs09Ti3Dd4dbZteac,3692
206
+ keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=SzyJJhuyESlsCgndmZNYuuF0Ogb1FKoYkSfDJnThgT0,9538
207
+ keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
208
+ keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=nlXdMqcj18iahy60aew4ON79EHUEuNIgvKY9dToH284,18191
209
+ keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=v7uuHiJXNgPIH5yaZHY5kVj4ddnrQgCPU0Gfh1DHTks,3174
210
+ keras_hub/src/models/opt/__init__.py,sha256=6Ybj8etxNaPsVcuZvaeHnKB3As92Px--dbiFAqOCIT0,239
211
+ keras_hub/src/models/opt/opt_backbone.py,sha256=mK5z_E5mSiIX5s0w4hr4IVQpT7K46W2ajZBmuMjxwaY,5873
212
+ keras_hub/src/models/opt/opt_causal_lm.py,sha256=DzQuOy3xIXgzPEbcoY_s_CLYpanpghGnS1OFWCx_zxc,10851
213
+ keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=xHfslVMOZlAIj2V2jIc-1GizR8TzEbeg1aggfwFTsPY,3102
214
+ keras_hub/src/models/opt/opt_presets.py,sha256=J1IJ5VRcZZ6UZJSLrxpbWXw39YmbRd_WQujX1a6dxHo,2329
215
+ keras_hub/src/models/opt/opt_tokenizer.py,sha256=oDHeed4xf07tm14hj_C78BkzMuuRwRP2cRHmqYnObrs,2557
216
+ keras_hub/src/models/pali_gemma/__init__.py,sha256=uODWTlttOOchcTLpiYHCEWMXnDxIz8ZVIeYFQN2bd8o,288
217
+ keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=srZyBsA5tulO_Fb03g9FE-vaw2j9ftfxnAy4P8cYB6o,10916
218
+ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=qlcBnFtPgKIRtdHgA4rrhiktBJq4h_uV-HriuuRBVwc,11196
219
+ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
220
+ keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=Q_sPAULiSo_ZJeXklZjCLhvOMXk8MrPZhEXtL5yNOiI,5175
221
+ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=zQxvp1jUK6ASTeDxi5GLOfn26DBOO3El36z73MZ-xz8,405
222
+ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=4D6qfWuxJtY-tyo31gxAaUlhV6wF7BhL1_FgiPmTQT0,2401
223
+ keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
224
+ keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=wP1UtW0WnlRmga-JQRxWTfAZNt_q-vaF1Qy4siJDpyY,18685
225
+ keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
226
+ keras_hub/src/models/phi3/phi3_attention.py,sha256=dN8QwwTP9TxPBDv0MCvObLF3nHm1H6xbYr3T1K0nmg8,9243
227
+ keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
228
+ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=a1TVyDgEv3Sd66Cf7xfa28dESGrUX1bM7pHAw1QfTaw,8240
229
+ keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
230
+ keras_hub/src/models/phi3/phi3_decoder.py,sha256=1raVexz1TkpqvMwW1Zs08KSxTs9gDc6VWUKJ9sM1VFY,9587
231
+ keras_hub/src/models/phi3/phi3_layernorm.py,sha256=Oqu81tGd97Lzx3kG1QEtZ0S6gbfn3GLgRzY8UWGJRBo,1049
232
+ keras_hub/src/models/phi3/phi3_presets.py,sha256=DNyPTDA7PzFC8Ys2QmR2-mxUDa8Y8Idyn3S_mhmz3FU,1610
233
+ keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=WTPCN8IKq3R7kMzsES1b8JEKV-8iNi_49WkhNTXoNUk,5012
234
+ keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
235
+ keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
236
+ keras_hub/src/models/resnet/resnet_backbone.py,sha256=1BD2MqaDi_NZ6PgHrWxzqffbTKY0FZYMRA1Bk0-mTeQ,31866
237
+ keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=7RB-ELo0MW725NLwD38IfMIpcbaS9RLTh5F821gDcGU,4777
238
+ keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
239
+ keras_hub/src/models/resnet/resnet_image_converter.py,sha256=zO1cO76eYR70qQyGm5F9msiF7D08BprItvpvm8VOSuY,376
240
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=eYB6vrtoSd9xC2KzUToa3R9e5G6T-AyuFKZDOKOBbMI,2965
241
+ keras_hub/src/models/retinanet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
242
+ keras_hub/src/models/retinanet/anchor_generator.py,sha256=43NoI7djbRudH98hUm-9fw5OEGQNRXOUYzypIZhLYhE,6750
243
+ keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
244
+ keras_hub/src/models/retinanet/feature_pyramid.py,sha256=Z6-5VB49LXCQBhjFPATd7PBuEg-s3LU7F69WrTo_Lt4,14912
245
+ keras_hub/src/models/retinanet/non_max_supression.py,sha256=jY_j4X24-tStb_Asld3jOo8xrXrThJ90XRbzwarRZZs,20936
246
+ keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=rOEc4jpA7sw8kBRX7gdVzKoKwK8C-NoXbAnYONo5iNM,11217
247
+ keras_hub/src/models/roberta/__init__.py,sha256=3ouSnKdLlMwoDDLVKD9cNtxam6f8XWgCyc0pwWJ0Zjo,263
248
+ keras_hub/src/models/roberta/roberta_backbone.py,sha256=2eBSHuzFF5EJJPU0Ef3S3i396g70WCPtcJ7VLJM1guE,6339
249
+ keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=j2dFANRFHd1MNFP_REchljGWOcpOjCpdSya-WGdRzPA,4176
250
+ keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py,sha256=bk6AYRbVQXGprD1LmDW1N3qYp-Q520X6mnxNF8jFwmQ,5851
251
+ keras_hub/src/models/roberta/roberta_presets.py,sha256=_0kYwJySwPCX5MVRPapT_PE2RXhFEn3HzYEsblQqFk0,1179
252
+ keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=EcxudQle2gW9RB6wmpoIJ7YM4UOzin74fluelSrJ6YY,6681
253
+ keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa8JdPUmT1N7nxBqtaIbnfXV-xlNjTtkEevQhfjNU,5993
254
+ keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
255
+ keras_hub/src/models/sam/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
256
+ keras_hub/src/models/sam/sam_backbone.py,sha256=fbvtGG6du7tnkcGtEsRyT9TRwPBUJ99GBolGkWR5pkc,4351
257
+ keras_hub/src/models/sam/sam_image_segmenter.py,sha256=Lt_RAC7tBxH85dnuSPJoavrvxes_kxXQiCyCOaQKApo,7505
258
+ keras_hub/src/models/sam/sam_layers.py,sha256=SE5e6tYc-lsIVfMp9khewvuA1jY-dEHQmLT00YUok4M,13862
259
+ keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
260
+ keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=2foB7900QbzQfZjBo335XYsdjmhOnVT8fKD1CubJNVE,11801
261
+ keras_hub/src/models/sam/sam_transformer.py,sha256=L2bdxdc2RUF1juRZ0F0Z6r0gTva1sUwEdjItJmKKf6w,5730
262
+ keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
263
+ keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=9SLbOpAv50q8yv8I6H4DHbsIgwNo8TJmwZfAH8Ew6Zw,2827
264
+ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=ntmxjDJtZbHDGVPPAnasVZyoOTp5bbMPhxM30SYmpoQ,25711
265
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=9rWSG0C23_pwN1pymZbial3GX_UM4tmDLXtB4kTQ04w,22599
266
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=gfF5ZOhJx03IQTPnb2Nf65i3pNz-fQlhdAJ3DjKHHZ8,658
267
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=XH4osHG9EE1sJpfj7rf0bCqrIHpeXaswFoEojWnE0pw,4419
268
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=TB0KESt5dnFYiS292PbzB0LdiH23AD6aTSTGmQEuzGM,2742
269
+ keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
270
+ keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py,sha256=j4nrvfYhW-4njhhk4PFf-bWQF-EHzplvaT15Q7s5Pb4,10056
271
+ keras_hub/src/models/t5/__init__.py,sha256=OWyoUeDY3v4DnO8Ry02DWV1bNSVGcC89PF9oCftyi1s,233
272
+ keras_hub/src/models/t5/t5_backbone.py,sha256=AtE2VudEUkm7hE3p6JP_CfEAjt4pwgSKOBQ0B0BggQc,10258
273
+ keras_hub/src/models/t5/t5_layer_norm.py,sha256=R8KPHFOq9N3SD013WjtloLWRzaEMNEyY0fbViNEFVXQ,630
274
+ keras_hub/src/models/t5/t5_multi_head_attention.py,sha256=gStbrTZZx8X3J-bHFgwgugQMP-Wa6SC6kdShrqbUttQ,11859
275
+ keras_hub/src/models/t5/t5_preprocessor.py,sha256=UVOnCHUJF_MBcOyfR9G9oeRUEoN3XotM6M0YQc2WNKU,2253
276
+ keras_hub/src/models/t5/t5_presets.py,sha256=95zU4cTNEZMH2yiCLptA9zhu2D4mE1Cay18K91nt7jM,3005
277
+ keras_hub/src/models/t5/t5_tokenizer.py,sha256=pLTu15JeYSpVmy-2600vBc-Mxn_uHyTKts4PI2MxxBM,2517
278
+ keras_hub/src/models/t5/t5_transformer_layer.py,sha256=uDeP84F1x7xJxki5iKe12Zn6eWD_4yVjoFXMuod-a3A,5347
279
+ keras_hub/src/models/vgg/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
280
+ keras_hub/src/models/vgg/vgg_backbone.py,sha256=rI8pAscWJlda9P9L6gcfROpAo461l3v3foXhJ6uyhBA,4495
281
+ keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=eRJiisvXhO6SK3FPO6aOdI8ipxabktyT9Dt03l-_uxw,3486
282
+ keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
283
+ keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=GzwHXAfttExqDaGU4R2LAvng1gzjuvO3HMqUPwNUy9g,7656
284
+ keras_hub/src/models/vit_det/vit_layers.py,sha256=0DWLSHgEoz3lLPveOEIJ7cNmTCLfSE7p1W_JL2GxDDI,19850
285
+ keras_hub/src/models/whisper/__init__.py,sha256=45vTF01_e-7VzD-zvXPw1NiA9SCgDE8w0cI-6peG9cA,263
286
+ keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=aXqQ6uPI9fBSjuYbo7bMr4C0avPh3iDwrVXHEJ7W_zo,8386
287
+ keras_hub/src/models/whisper/whisper_backbone.py,sha256=5AwhulDC-ius9zJQNqWmOISXRv3hLMurRfnaaj_EXVQ,11514
288
+ keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py,sha256=Dt6m0O5XU5_o4SOmMEkNj2RVqxMGJ3uIhouu_XLw0cc,4948
289
+ keras_hub/src/models/whisper/whisper_decoder.py,sha256=bTA_auMfMtsrFHqXXRa8AHUv8uU0Fejo1gdNJGrTGOA,5270
290
+ keras_hub/src/models/whisper/whisper_encoder.py,sha256=ZJ93D6mP95Mb9cFDZbfMWbB9FlrV3706ZsUwUJMKOdg,3730
291
+ keras_hub/src/models/whisper/whisper_presets.py,sha256=xggQaX_JgpaqL0HYFZ3D3r-7dkoZPg-1sDZxyJKBWKM,5168
292
+ keras_hub/src/models/whisper/whisper_tokenizer.py,sha256=HcF3PMoaLm-bNH9J_mG_iCBWGtJO6ahCRGAjjCptQOs,5575
293
+ keras_hub/src/models/xlm_roberta/__init__.py,sha256=iiCNSvDxPXZdxDyQKRxSLp5qzSpTuodL2TlHfwfqQjQ,303
294
+ keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py,sha256=x7wSDya7M4qcmzAwskd6qx9avSQs8mWhvAMWS4hnpFY,2922
295
+ keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py,sha256=G2RysGG8o2vuggNSrPmU3UA9FBhsAkjLHYby1ZzgWcQ,4378
296
+ keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py,sha256=xf8lggg99D3cO5mlZseQjfYDN9W12V_VgEYS-5BbQlE,5995
297
+ keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=0nN72aH113yS1ADKLfpZ-tB6A2sF62DVKoanKO9w4U8,1177
298
+ keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=RZZBYa3EWmcSpTe4a2qFX87lFIgVjbV7zGBMyawBQyM,7237
299
+ keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py,sha256=YwM-Ravzj_UxWhmm_xREvNxvT3kNTYQgRTkH6g9o2yM,6525
300
+ keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py,sha256=-mQC5j1hCVaDPUkUP8fovQhKGZBcAt-TOTkGFusWIM8,6774
301
+ keras_hub/src/models/xlnet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
302
+ keras_hub/src/models/xlnet/relative_attention.py,sha256=VKMIZ_oHeu5-w7mERyy4diI9WdI7dWXitoRdZKCEISc,18068
303
+ keras_hub/src/models/xlnet/xlnet_backbone.py,sha256=xkANKBbsqa6Azsvfj6koTYpMfoEwuFnicpTo2dRKohU,7811
304
+ keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py,sha256=at8VRO0FTl8bHhcz382JkWCX2ZUHEs0BGOnFhWLtyz4,3939
305
+ keras_hub/src/models/xlnet/xlnet_encoder.py,sha256=Xct3ypi1vPzXtrGFo_lOAxRbSu9Lx8867x92FdzjTsA,12753
306
+ keras_hub/src/samplers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
307
+ keras_hub/src/samplers/beam_sampler.py,sha256=0lWr9jywbXf3h68Vu66_CSLVvqZJw9ji4K5Y7_nvh70,7182
308
+ keras_hub/src/samplers/contrastive_sampler.py,sha256=0jQO8J2J7CTg86Gkj47HuM0PinyAmueSOQH3ICtUUcg,8322
309
+ keras_hub/src/samplers/greedy_sampler.py,sha256=Ldu2-KRLFKeeCSlOP29d9JvQnRW_S4w_GQijP8dhRdw,958
310
+ keras_hub/src/samplers/random_sampler.py,sha256=nQw2ldO0dwRFcz8SIC9xMty0CGc4m6DlAmNZEXMsdAg,1709
311
+ keras_hub/src/samplers/sampler.py,sha256=mssD0uwCylXADhc4HAc64cTOKxI-s8W3lUciBHxHNzQ,8069
312
+ keras_hub/src/samplers/serialization.py,sha256=K6FC4AY1sfOLLIk2k4G783XWnQ_Rk3z1QrO97cZimNw,2770
313
+ keras_hub/src/samplers/top_k_sampler.py,sha256=WSyrhmOCan55X2JYAnNWE88rkx66sXqdoerl87nOrDQ,2250
314
+ keras_hub/src/samplers/top_p_sampler.py,sha256=9r29WdqBlrW_2TBma6QqkRps2Uit4a6iZPmq1Gsiuko,3400
315
+ keras_hub/src/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
316
+ keras_hub/src/tests/test_case.py,sha256=pgjT5CkkkX4BTNfaDD6i-YChO6Ig3But66Ls4RxEymw,25937
317
+ keras_hub/src/tokenizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
318
+ keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=Wocarha6ZuzrfiWHPiQUPLLRLrDITyc0hQzjRupw4xA,23849
319
+ keras_hub/src/tokenizers/byte_tokenizer.py,sha256=vjgrTT8FdtZVAlr0mU13alzADcUhtMrzgOs4lYeHvAQ,10648
320
+ keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=_PaVn4re3AwBkHylJWsvdvOCCYjOnFXLZmj-V34KehU,9562
321
+ keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=8X_IN-hPDiUETGrSX3wPzFnip73xTYcN6FhLNIwfy-Y,4834
322
+ keras_hub/src/tokenizers/tokenizer.py,sha256=22ugg9y_YT9-dUFoxuZHoQ8jMd8C5anjGDkcN_0HDr0,9921
323
+ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=efyjXjUyUCsnh97_kPFq1z2QZENiZSdV0voZytLBffg,13531
324
+ keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
325
+ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=xUhc9EMswarzghNfrDLUFYQBExZOQxbMlfKp9G6A63k,6549
326
+ keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
327
+ keras_hub/src/utils/keras_utils.py,sha256=lrZuC8HL2lmQfbHaS_t1JUyJann_ji2iTYE0Fzos8PU,1969
328
+ keras_hub/src/utils/pipeline_model.py,sha256=33-0vIB9KGYh2mRtyjHxBPvgGZHDusRcRy-xjki3_gg,9024
329
+ keras_hub/src/utils/preset_utils.py,sha256=sfEJm5ia1N5tD_7TWS4e4_Z-luPS1rNAifSVAlgfbis,27613
330
+ keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
331
+ keras_hub/src/utils/tensor_utils.py,sha256=JipeJUDnnvLuT-ToVQC0t9dmSzebwPG6XiZgEwGEGI4,14646
332
+ keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
333
+ keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=MvIvv1WJo51ZXBxy4S7t_DsN3ZMtJWlC4cmRvKM2kIA,39304
334
+ keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
335
+ keras_hub/src/utils/timm/convert_densenet.py,sha256=V-GRjWuDnlh3b1EMxqahwZ3GMwSgOa3v0HOfb2ZZ-d0,3342
336
+ keras_hub/src/utils/timm/convert_resnet.py,sha256=ee8eTml0ffJKE8avzGoLFcpjPF63DsvoIUArAGa8Ngg,5832
337
+ keras_hub/src/utils/timm/preset_loader.py,sha256=toecv57_A1QbmAehNZe4X1Pdf5xU7Ut4AvJc_ptdMPQ,3156
338
+ keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
339
+ keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
340
+ keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
341
+ keras_hub/src/utils/transformers/convert_bert.py,sha256=4gQqXCJzC9QWdLPDUAq741K8t_kjPIET050YjUnLeDA,5977
342
+ keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGiDPiXa5XdOId_DbcnZO9lbwyZ8,6498
343
+ keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
344
+ keras_hub/src/utils/transformers/convert_gpt2.py,sha256=HCeHN_-GiQJRxLCM9OCJJ1watPVpIBF8ujS8pGbBOWc,5703
345
+ keras_hub/src/utils/transformers/convert_llama3.py,sha256=yy7dDtgNESP_W34JgIm5fdlbpybrCqmvB7vtwF_dy6c,4450
346
+ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS7eANJUXIsNy1RxWXy20Gqw,4760
347
+ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
348
+ keras_hub/src/utils/transformers/preset_loader.py,sha256=GS44hZUuGQCtzsyn8z44ZpHdftd3DFemwV2hx2bQa-U,2738
349
+ keras_hub/src/utils/transformers/safetensor_utils.py,sha256=rPK-Uw1CG0DX0d_UAD-r2cG9fw8GI8bvAlrcXfQ9g4c,3323
350
+ keras_hub_nightly-0.16.1.dev202409280337.dist-info/METADATA,sha256=A7W__uoRZmOcL6Z9pxKsFMd8VaSQxoLDocncO9fhaVY,7310
351
+ keras_hub_nightly-0.16.1.dev202409280337.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
352
+ keras_hub_nightly-0.16.1.dev202409280337.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
353
+ keras_hub_nightly-0.16.1.dev202409280337.dist-info/RECORD,,