keras-hub-nightly 0.16.1.dev202409260340__py3-none-any.whl → 0.16.1.dev202409280337__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (354) hide show
  1. keras_hub/__init__.py +0 -13
  2. keras_hub/api/__init__.py +0 -13
  3. keras_hub/api/bounding_box/__init__.py +0 -13
  4. keras_hub/api/layers/__init__.py +0 -13
  5. keras_hub/api/metrics/__init__.py +0 -13
  6. keras_hub/api/models/__init__.py +0 -13
  7. keras_hub/api/samplers/__init__.py +0 -13
  8. keras_hub/api/tokenizers/__init__.py +0 -13
  9. keras_hub/api/utils/__init__.py +0 -13
  10. keras_hub/src/__init__.py +0 -13
  11. keras_hub/src/api_export.py +0 -14
  12. keras_hub/src/bounding_box/__init__.py +0 -13
  13. keras_hub/src/bounding_box/converters.py +0 -13
  14. keras_hub/src/bounding_box/formats.py +0 -13
  15. keras_hub/src/bounding_box/iou.py +1 -13
  16. keras_hub/src/bounding_box/to_dense.py +0 -14
  17. keras_hub/src/bounding_box/to_ragged.py +0 -13
  18. keras_hub/src/bounding_box/utils.py +0 -13
  19. keras_hub/src/bounding_box/validate_format.py +0 -14
  20. keras_hub/src/layers/__init__.py +0 -13
  21. keras_hub/src/layers/modeling/__init__.py +0 -13
  22. keras_hub/src/layers/modeling/alibi_bias.py +0 -13
  23. keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -14
  24. keras_hub/src/layers/modeling/f_net_encoder.py +0 -14
  25. keras_hub/src/layers/modeling/masked_lm_head.py +0 -14
  26. keras_hub/src/layers/modeling/position_embedding.py +0 -14
  27. keras_hub/src/layers/modeling/reversible_embedding.py +0 -14
  28. keras_hub/src/layers/modeling/rotary_embedding.py +0 -14
  29. keras_hub/src/layers/modeling/sine_position_encoding.py +0 -14
  30. keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -14
  31. keras_hub/src/layers/modeling/transformer_decoder.py +0 -14
  32. keras_hub/src/layers/modeling/transformer_encoder.py +0 -14
  33. keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -14
  34. keras_hub/src/layers/preprocessing/__init__.py +0 -13
  35. keras_hub/src/layers/preprocessing/audio_converter.py +0 -13
  36. keras_hub/src/layers/preprocessing/image_converter.py +0 -13
  37. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -15
  38. keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -14
  39. keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -14
  40. keras_hub/src/layers/preprocessing/random_deletion.py +0 -14
  41. keras_hub/src/layers/preprocessing/random_swap.py +0 -14
  42. keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -13
  43. keras_hub/src/layers/preprocessing/start_end_packer.py +0 -15
  44. keras_hub/src/metrics/__init__.py +0 -13
  45. keras_hub/src/metrics/bleu.py +0 -14
  46. keras_hub/src/metrics/edit_distance.py +0 -14
  47. keras_hub/src/metrics/perplexity.py +0 -14
  48. keras_hub/src/metrics/rouge_base.py +0 -14
  49. keras_hub/src/metrics/rouge_l.py +0 -14
  50. keras_hub/src/metrics/rouge_n.py +0 -14
  51. keras_hub/src/models/__init__.py +0 -13
  52. keras_hub/src/models/albert/__init__.py +0 -14
  53. keras_hub/src/models/albert/albert_backbone.py +0 -14
  54. keras_hub/src/models/albert/albert_masked_lm.py +0 -14
  55. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -14
  56. keras_hub/src/models/albert/albert_presets.py +0 -14
  57. keras_hub/src/models/albert/albert_text_classifier.py +0 -14
  58. keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -14
  59. keras_hub/src/models/albert/albert_tokenizer.py +0 -14
  60. keras_hub/src/models/backbone.py +0 -14
  61. keras_hub/src/models/bart/__init__.py +0 -14
  62. keras_hub/src/models/bart/bart_backbone.py +0 -14
  63. keras_hub/src/models/bart/bart_presets.py +0 -13
  64. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -15
  65. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -15
  66. keras_hub/src/models/bart/bart_tokenizer.py +0 -15
  67. keras_hub/src/models/bert/__init__.py +0 -14
  68. keras_hub/src/models/bert/bert_backbone.py +0 -14
  69. keras_hub/src/models/bert/bert_masked_lm.py +0 -14
  70. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -14
  71. keras_hub/src/models/bert/bert_presets.py +0 -13
  72. keras_hub/src/models/bert/bert_text_classifier.py +0 -14
  73. keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -14
  74. keras_hub/src/models/bert/bert_tokenizer.py +0 -14
  75. keras_hub/src/models/bloom/__init__.py +0 -14
  76. keras_hub/src/models/bloom/bloom_attention.py +0 -13
  77. keras_hub/src/models/bloom/bloom_backbone.py +0 -14
  78. keras_hub/src/models/bloom/bloom_causal_lm.py +0 -15
  79. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -15
  80. keras_hub/src/models/bloom/bloom_decoder.py +0 -13
  81. keras_hub/src/models/bloom/bloom_presets.py +0 -13
  82. keras_hub/src/models/bloom/bloom_tokenizer.py +0 -15
  83. keras_hub/src/models/causal_lm.py +0 -14
  84. keras_hub/src/models/causal_lm_preprocessor.py +0 -13
  85. keras_hub/src/models/clip/__init__.py +0 -13
  86. keras_hub/src/models/clip/clip_encoder_block.py +0 -13
  87. keras_hub/src/models/clip/clip_preprocessor.py +1 -14
  88. keras_hub/src/models/clip/clip_text_encoder.py +0 -13
  89. keras_hub/src/models/clip/clip_tokenizer.py +4 -19
  90. keras_hub/src/models/csp_darknet/__init__.py +0 -13
  91. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -13
  92. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -13
  93. keras_hub/src/models/deberta_v3/__init__.py +0 -14
  94. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -15
  95. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -15
  96. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -14
  97. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -13
  98. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -15
  99. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -14
  100. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -15
  101. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -14
  102. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -14
  103. keras_hub/src/models/deberta_v3/relative_embedding.py +0 -14
  104. keras_hub/src/models/densenet/__init__.py +0 -14
  105. keras_hub/src/models/densenet/densenet_backbone.py +0 -13
  106. keras_hub/src/models/densenet/densenet_image_classifier.py +0 -13
  107. keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -13
  108. keras_hub/src/models/densenet/densenet_image_converter.py +0 -13
  109. keras_hub/src/models/densenet/densenet_presets.py +0 -13
  110. keras_hub/src/models/distil_bert/__init__.py +0 -14
  111. keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -15
  112. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -15
  113. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -14
  114. keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -13
  115. keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -15
  116. keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -15
  117. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -15
  118. keras_hub/src/models/efficientnet/__init__.py +0 -13
  119. keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -13
  120. keras_hub/src/models/efficientnet/fusedmbconv.py +0 -14
  121. keras_hub/src/models/efficientnet/mbconv.py +0 -14
  122. keras_hub/src/models/electra/__init__.py +0 -14
  123. keras_hub/src/models/electra/electra_backbone.py +0 -14
  124. keras_hub/src/models/electra/electra_presets.py +0 -13
  125. keras_hub/src/models/electra/electra_tokenizer.py +0 -14
  126. keras_hub/src/models/f_net/__init__.py +0 -14
  127. keras_hub/src/models/f_net/f_net_backbone.py +0 -15
  128. keras_hub/src/models/f_net/f_net_masked_lm.py +0 -15
  129. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -14
  130. keras_hub/src/models/f_net/f_net_presets.py +0 -13
  131. keras_hub/src/models/f_net/f_net_text_classifier.py +0 -15
  132. keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -15
  133. keras_hub/src/models/f_net/f_net_tokenizer.py +0 -15
  134. keras_hub/src/models/falcon/__init__.py +0 -14
  135. keras_hub/src/models/falcon/falcon_attention.py +0 -13
  136. keras_hub/src/models/falcon/falcon_backbone.py +0 -13
  137. keras_hub/src/models/falcon/falcon_causal_lm.py +0 -14
  138. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -14
  139. keras_hub/src/models/falcon/falcon_presets.py +0 -13
  140. keras_hub/src/models/falcon/falcon_tokenizer.py +0 -15
  141. keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -13
  142. keras_hub/src/models/feature_pyramid_backbone.py +0 -13
  143. keras_hub/src/models/gemma/__init__.py +0 -14
  144. keras_hub/src/models/gemma/gemma_attention.py +0 -13
  145. keras_hub/src/models/gemma/gemma_backbone.py +0 -15
  146. keras_hub/src/models/gemma/gemma_causal_lm.py +0 -15
  147. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -14
  148. keras_hub/src/models/gemma/gemma_decoder_block.py +0 -13
  149. keras_hub/src/models/gemma/gemma_presets.py +0 -13
  150. keras_hub/src/models/gemma/gemma_tokenizer.py +0 -14
  151. keras_hub/src/models/gemma/rms_normalization.py +0 -14
  152. keras_hub/src/models/gpt2/__init__.py +0 -14
  153. keras_hub/src/models/gpt2/gpt2_backbone.py +0 -15
  154. keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -15
  155. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -14
  156. keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -15
  157. keras_hub/src/models/gpt2/gpt2_presets.py +0 -13
  158. keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -15
  159. keras_hub/src/models/gpt_neo_x/__init__.py +0 -13
  160. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -14
  161. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -14
  162. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -14
  163. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -14
  164. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -14
  165. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -14
  166. keras_hub/src/models/image_classifier.py +0 -13
  167. keras_hub/src/models/image_classifier_preprocessor.py +0 -13
  168. keras_hub/src/models/image_segmenter.py +0 -13
  169. keras_hub/src/models/llama/__init__.py +0 -14
  170. keras_hub/src/models/llama/llama_attention.py +0 -13
  171. keras_hub/src/models/llama/llama_backbone.py +0 -13
  172. keras_hub/src/models/llama/llama_causal_lm.py +0 -13
  173. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -15
  174. keras_hub/src/models/llama/llama_decoder.py +0 -13
  175. keras_hub/src/models/llama/llama_layernorm.py +0 -13
  176. keras_hub/src/models/llama/llama_presets.py +0 -13
  177. keras_hub/src/models/llama/llama_tokenizer.py +0 -14
  178. keras_hub/src/models/llama3/__init__.py +0 -14
  179. keras_hub/src/models/llama3/llama3_backbone.py +0 -14
  180. keras_hub/src/models/llama3/llama3_causal_lm.py +0 -13
  181. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -14
  182. keras_hub/src/models/llama3/llama3_presets.py +0 -13
  183. keras_hub/src/models/llama3/llama3_tokenizer.py +0 -14
  184. keras_hub/src/models/masked_lm.py +0 -13
  185. keras_hub/src/models/masked_lm_preprocessor.py +0 -13
  186. keras_hub/src/models/mistral/__init__.py +0 -14
  187. keras_hub/src/models/mistral/mistral_attention.py +0 -13
  188. keras_hub/src/models/mistral/mistral_backbone.py +0 -14
  189. keras_hub/src/models/mistral/mistral_causal_lm.py +0 -14
  190. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -14
  191. keras_hub/src/models/mistral/mistral_layer_norm.py +0 -13
  192. keras_hub/src/models/mistral/mistral_presets.py +0 -13
  193. keras_hub/src/models/mistral/mistral_tokenizer.py +0 -14
  194. keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -13
  195. keras_hub/src/models/mix_transformer/__init__.py +0 -13
  196. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -13
  197. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -13
  198. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -13
  199. keras_hub/src/models/mobilenet/__init__.py +0 -13
  200. keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -13
  201. keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -13
  202. keras_hub/src/models/opt/__init__.py +0 -14
  203. keras_hub/src/models/opt/opt_backbone.py +0 -15
  204. keras_hub/src/models/opt/opt_causal_lm.py +0 -15
  205. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -13
  206. keras_hub/src/models/opt/opt_presets.py +0 -13
  207. keras_hub/src/models/opt/opt_tokenizer.py +0 -15
  208. keras_hub/src/models/pali_gemma/__init__.py +0 -13
  209. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -13
  210. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -13
  211. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -13
  212. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -14
  213. keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -13
  214. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -13
  215. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -13
  216. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -13
  217. keras_hub/src/models/phi3/__init__.py +0 -14
  218. keras_hub/src/models/phi3/phi3_attention.py +0 -13
  219. keras_hub/src/models/phi3/phi3_backbone.py +0 -13
  220. keras_hub/src/models/phi3/phi3_causal_lm.py +0 -13
  221. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -14
  222. keras_hub/src/models/phi3/phi3_decoder.py +0 -13
  223. keras_hub/src/models/phi3/phi3_layernorm.py +0 -13
  224. keras_hub/src/models/phi3/phi3_presets.py +0 -13
  225. keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -13
  226. keras_hub/src/models/phi3/phi3_tokenizer.py +0 -13
  227. keras_hub/src/models/preprocessor.py +51 -32
  228. keras_hub/src/models/resnet/__init__.py +0 -14
  229. keras_hub/src/models/resnet/resnet_backbone.py +0 -13
  230. keras_hub/src/models/resnet/resnet_image_classifier.py +0 -13
  231. keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -14
  232. keras_hub/src/models/resnet/resnet_image_converter.py +0 -13
  233. keras_hub/src/models/resnet/resnet_presets.py +0 -13
  234. keras_hub/src/models/retinanet/__init__.py +0 -13
  235. keras_hub/src/models/retinanet/anchor_generator.py +28 -30
  236. keras_hub/src/models/retinanet/box_matcher.py +0 -14
  237. keras_hub/src/models/retinanet/feature_pyramid.py +373 -0
  238. keras_hub/src/models/retinanet/non_max_supression.py +0 -14
  239. keras_hub/src/models/retinanet/retinanet_label_encoder.py +270 -0
  240. keras_hub/src/models/roberta/__init__.py +0 -14
  241. keras_hub/src/models/roberta/roberta_backbone.py +0 -15
  242. keras_hub/src/models/roberta/roberta_masked_lm.py +0 -15
  243. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -14
  244. keras_hub/src/models/roberta/roberta_presets.py +0 -13
  245. keras_hub/src/models/roberta/roberta_text_classifier.py +0 -15
  246. keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -14
  247. keras_hub/src/models/roberta/roberta_tokenizer.py +0 -15
  248. keras_hub/src/models/sam/__init__.py +0 -13
  249. keras_hub/src/models/sam/sam_backbone.py +0 -14
  250. keras_hub/src/models/sam/sam_image_segmenter.py +0 -14
  251. keras_hub/src/models/sam/sam_layers.py +0 -14
  252. keras_hub/src/models/sam/sam_mask_decoder.py +0 -14
  253. keras_hub/src/models/sam/sam_prompt_encoder.py +0 -14
  254. keras_hub/src/models/sam/sam_transformer.py +0 -14
  255. keras_hub/src/models/seq_2_seq_lm.py +0 -13
  256. keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -13
  257. keras_hub/src/models/stable_diffusion_3/__init__.py +9 -13
  258. keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -13
  259. keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -13
  260. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +15 -14
  261. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +18 -0
  262. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -13
  263. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +23 -17
  264. keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -13
  265. keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -13
  266. keras_hub/src/models/t5/__init__.py +0 -14
  267. keras_hub/src/models/t5/t5_backbone.py +0 -14
  268. keras_hub/src/models/t5/t5_layer_norm.py +0 -14
  269. keras_hub/src/models/t5/t5_multi_head_attention.py +0 -14
  270. keras_hub/src/models/t5/t5_preprocessor.py +0 -13
  271. keras_hub/src/models/t5/t5_presets.py +0 -13
  272. keras_hub/src/models/t5/t5_tokenizer.py +0 -14
  273. keras_hub/src/models/t5/t5_transformer_layer.py +0 -14
  274. keras_hub/src/models/task.py +0 -14
  275. keras_hub/src/models/text_classifier.py +0 -13
  276. keras_hub/src/models/text_classifier_preprocessor.py +0 -13
  277. keras_hub/src/models/text_to_image.py +0 -13
  278. keras_hub/src/models/vgg/__init__.py +0 -13
  279. keras_hub/src/models/vgg/vgg_backbone.py +0 -13
  280. keras_hub/src/models/vgg/vgg_image_classifier.py +0 -13
  281. keras_hub/src/models/vit_det/__init__.py +0 -13
  282. keras_hub/src/models/vit_det/vit_det_backbone.py +0 -14
  283. keras_hub/src/models/vit_det/vit_layers.py +0 -15
  284. keras_hub/src/models/whisper/__init__.py +0 -14
  285. keras_hub/src/models/whisper/whisper_audio_converter.py +0 -15
  286. keras_hub/src/models/whisper/whisper_backbone.py +0 -15
  287. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -13
  288. keras_hub/src/models/whisper/whisper_decoder.py +0 -14
  289. keras_hub/src/models/whisper/whisper_encoder.py +0 -14
  290. keras_hub/src/models/whisper/whisper_presets.py +0 -14
  291. keras_hub/src/models/whisper/whisper_tokenizer.py +0 -14
  292. keras_hub/src/models/xlm_roberta/__init__.py +0 -14
  293. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -15
  294. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -15
  295. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -14
  296. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -13
  297. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -15
  298. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -15
  299. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -15
  300. keras_hub/src/models/xlnet/__init__.py +0 -13
  301. keras_hub/src/models/xlnet/relative_attention.py +0 -14
  302. keras_hub/src/models/xlnet/xlnet_backbone.py +0 -14
  303. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -14
  304. keras_hub/src/models/xlnet/xlnet_encoder.py +0 -14
  305. keras_hub/src/samplers/__init__.py +0 -13
  306. keras_hub/src/samplers/beam_sampler.py +0 -14
  307. keras_hub/src/samplers/contrastive_sampler.py +0 -14
  308. keras_hub/src/samplers/greedy_sampler.py +0 -14
  309. keras_hub/src/samplers/random_sampler.py +0 -14
  310. keras_hub/src/samplers/sampler.py +0 -14
  311. keras_hub/src/samplers/serialization.py +0 -14
  312. keras_hub/src/samplers/top_k_sampler.py +0 -14
  313. keras_hub/src/samplers/top_p_sampler.py +0 -14
  314. keras_hub/src/tests/__init__.py +0 -13
  315. keras_hub/src/tests/test_case.py +23 -20
  316. keras_hub/src/tokenizers/__init__.py +0 -13
  317. keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -14
  318. keras_hub/src/tokenizers/byte_tokenizer.py +0 -14
  319. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -14
  320. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -14
  321. keras_hub/src/tokenizers/tokenizer.py +23 -27
  322. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -15
  323. keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -14
  324. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -15
  325. keras_hub/src/utils/__init__.py +0 -13
  326. keras_hub/src/utils/imagenet/__init__.py +0 -13
  327. keras_hub/src/utils/imagenet/imagenet_utils.py +0 -13
  328. keras_hub/src/utils/keras_utils.py +0 -14
  329. keras_hub/src/utils/pipeline_model.py +0 -14
  330. keras_hub/src/utils/preset_utils.py +32 -76
  331. keras_hub/src/utils/python_utils.py +0 -13
  332. keras_hub/src/utils/tensor_utils.py +106 -14
  333. keras_hub/src/utils/timm/__init__.py +0 -13
  334. keras_hub/src/utils/timm/convert_densenet.py +0 -13
  335. keras_hub/src/utils/timm/convert_resnet.py +0 -13
  336. keras_hub/src/utils/timm/preset_loader.py +0 -13
  337. keras_hub/src/utils/transformers/__init__.py +0 -13
  338. keras_hub/src/utils/transformers/convert_albert.py +0 -13
  339. keras_hub/src/utils/transformers/convert_bart.py +0 -13
  340. keras_hub/src/utils/transformers/convert_bert.py +0 -13
  341. keras_hub/src/utils/transformers/convert_distilbert.py +0 -13
  342. keras_hub/src/utils/transformers/convert_gemma.py +0 -13
  343. keras_hub/src/utils/transformers/convert_gpt2.py +0 -13
  344. keras_hub/src/utils/transformers/convert_llama3.py +0 -13
  345. keras_hub/src/utils/transformers/convert_mistral.py +0 -13
  346. keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -13
  347. keras_hub/src/utils/transformers/preset_loader.py +1 -15
  348. keras_hub/src/utils/transformers/safetensor_utils.py +9 -15
  349. keras_hub/src/version_utils.py +1 -15
  350. {keras_hub_nightly-0.16.1.dev202409260340.dist-info → keras_hub_nightly-0.16.1.dev202409280337.dist-info}/METADATA +30 -27
  351. keras_hub_nightly-0.16.1.dev202409280337.dist-info/RECORD +353 -0
  352. keras_hub_nightly-0.16.1.dev202409260340.dist-info/RECORD +0 -350
  353. {keras_hub_nightly-0.16.1.dev202409260340.dist-info → keras_hub_nightly-0.16.1.dev202409280337.dist-info}/WHEEL +0 -0
  354. {keras_hub_nightly-0.16.1.dev202409260340.dist-info → keras_hub_nightly-0.16.1.dev202409280337.dist-info}/top_level.txt +0 -0
@@ -1,17 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
1
  import collections
16
2
  import datetime
17
3
  import inspect
@@ -55,7 +41,8 @@ KAGGLE_SCHEME = "kaggle"
55
41
  GS_SCHEME = "gs"
56
42
  HF_SCHEME = "hf"
57
43
 
58
- TOKENIZER_ASSET_DIR = "assets/tokenizer"
44
+ ASSET_DIR = "assets"
45
+ TOKENIZER_ASSET_DIR = f"{ASSET_DIR}/tokenizer"
59
46
 
60
47
  # Config file names.
61
48
  CONFIG_FILE = "config.json"
@@ -307,13 +294,6 @@ def make_preset_dir(preset):
307
294
  os.makedirs(preset, exist_ok=True)
308
295
 
309
296
 
310
- def save_tokenizer_assets(tokenizer, preset):
311
- if tokenizer:
312
- asset_dir = os.path.join(preset, TOKENIZER_ASSET_DIR)
313
- os.makedirs(asset_dir, exist_ok=True)
314
- tokenizer.save_assets(asset_dir)
315
-
316
-
317
297
  def save_serialized_object(
318
298
  layer,
319
299
  preset,
@@ -345,37 +325,6 @@ def save_metadata(layer, preset):
345
325
  metadata_file.write(json.dumps(metadata, indent=4))
346
326
 
347
327
 
348
- def _validate_tokenizer(preset):
349
- if not check_file_exists(preset, TOKENIZER_CONFIG_FILE):
350
- return
351
- config_path = get_file(preset, TOKENIZER_CONFIG_FILE)
352
- try:
353
- with open(config_path, encoding="utf-8") as config_file:
354
- config = json.load(config_file)
355
- except Exception as e:
356
- raise ValueError(
357
- f"Tokenizer config file `{config_path}` is an invalid json file. "
358
- f"Error message: {e}"
359
- )
360
- layer = keras.saving.deserialize_keras_object(config)
361
-
362
- for asset in layer.file_assets:
363
- asset_path = get_file(preset, os.path.join(TOKENIZER_ASSET_DIR, asset))
364
- if not os.path.exists(asset_path):
365
- tokenizer_asset_dir = os.path.dirname(asset_path)
366
- raise FileNotFoundError(
367
- f"Asset `{asset}` doesn't exist in the tokenizer asset direcotry"
368
- f" `{tokenizer_asset_dir}`."
369
- )
370
- config_dir = os.path.dirname(config_path)
371
- asset_dir = os.path.join(config_dir, TOKENIZER_ASSET_DIR)
372
-
373
- tokenizer = get_tokenizer(layer)
374
- if not tokenizer:
375
- raise ValueError(f"Model or layer `{layer}` is missing tokenizer.")
376
- tokenizer.load_assets(asset_dir)
377
-
378
-
379
328
  def _validate_backbone(preset):
380
329
  config_path = os.path.join(preset, CONFIG_FILE)
381
330
  if not os.path.exists(config_path):
@@ -493,7 +442,6 @@ def upload_preset(
493
442
  raise FileNotFoundError(f"The preset directory {preset} doesn't exist.")
494
443
 
495
444
  _validate_backbone(preset)
496
- _validate_tokenizer(preset)
497
445
 
498
446
  if uri.startswith(KAGGLE_PREFIX):
499
447
  if kagglehub is None:
@@ -657,6 +605,20 @@ class PresetLoader:
657
605
  self.config = config
658
606
  self.preset = preset
659
607
 
608
+ def get_backbone_kwargs(self, **kwargs):
609
+ backbone_kwargs = {}
610
+
611
+ # Forward `dtype` to backbone.
612
+ backbone_kwargs["dtype"] = kwargs.pop("dtype", None)
613
+
614
+ # Forward `height` and `width` to backbone when using `TextToImage`.
615
+ if "height" in kwargs:
616
+ backbone_kwargs["height"] = kwargs.pop("height", None)
617
+ if "width" in kwargs:
618
+ backbone_kwargs["width"] = kwargs.pop("width", None)
619
+
620
+ return backbone_kwargs, kwargs
621
+
660
622
  def check_backbone_class(self):
661
623
  """Infer the backbone architecture."""
662
624
  raise NotImplementedError
@@ -665,7 +627,7 @@ class PresetLoader:
665
627
  """Load the backbone model from the preset."""
666
628
  raise NotImplementedError
667
629
 
668
- def load_tokenizer(self, cls, **kwargs):
630
+ def load_tokenizer(self, cls, config_name=TOKENIZER_CONFIG_FILE, **kwargs):
669
631
  """Load a tokenizer layer from the preset."""
670
632
  raise NotImplementedError
671
633
 
@@ -685,8 +647,7 @@ class PresetLoader:
685
647
  """
686
648
  if "backbone" not in kwargs:
687
649
  backbone_class = cls.backbone_cls
688
- # Forward dtype to backbone.
689
- backbone_kwargs = {"dtype": kwargs.pop("dtype", None)}
650
+ backbone_kwargs, kwargs = self.get_backbone_kwargs(**kwargs)
690
651
  kwargs["backbone"] = self.load_backbone(
691
652
  backbone_class, load_weights, **backbone_kwargs
692
653
  )
@@ -696,23 +657,16 @@ class PresetLoader:
696
657
  )
697
658
  return cls(**kwargs)
698
659
 
699
- def load_preprocessor(self, cls, **kwargs):
660
+ def load_preprocessor(
661
+ self, cls, config_name=PREPROCESSOR_CONFIG_FILE, **kwargs
662
+ ):
700
663
  """Load a prepocessor layer from the preset.
701
664
 
702
665
  By default, we create a preprocessor from a tokenizer with default
703
666
  arguments. This allow us to support transformers checkpoints by
704
667
  only converting the backbone and tokenizer.
705
668
  """
706
- if "tokenizer" not in kwargs and cls.tokenizer_cls:
707
- kwargs["tokenizer"] = self.load_tokenizer(cls.tokenizer_cls)
708
- if "audio_converter" not in kwargs and cls.audio_converter_cls:
709
- kwargs["audio_converter"] = self.load_audio_converter(
710
- cls.audio_converter_cls
711
- )
712
- if "image_converter" not in kwargs and cls.image_converter_cls:
713
- kwargs["image_converter"] = self.load_image_converter(
714
- cls.image_converter_cls
715
- )
669
+ kwargs = cls._add_missing_kwargs(self, kwargs)
716
670
  return cls(**kwargs)
717
671
 
718
672
 
@@ -727,8 +681,8 @@ class KerasPresetLoader(PresetLoader):
727
681
  backbone.load_weights(get_file(self.preset, MODEL_WEIGHTS_FILE))
728
682
  return backbone
729
683
 
730
- def load_tokenizer(self, cls, **kwargs):
731
- tokenizer_config = load_json(self.preset, TOKENIZER_CONFIG_FILE)
684
+ def load_tokenizer(self, cls, config_name=TOKENIZER_CONFIG_FILE, **kwargs):
685
+ tokenizer_config = load_json(self.preset, config_name)
732
686
  tokenizer = load_serialized_object(tokenizer_config, **kwargs)
733
687
  tokenizer.load_preset_assets(self.preset)
734
688
  return tokenizer
@@ -755,8 +709,8 @@ class KerasPresetLoader(PresetLoader):
755
709
  )
756
710
  # We found a `task.json` with a complete config for our class.
757
711
  task = load_serialized_object(task_config, **kwargs)
758
- if task.preprocessor and task.preprocessor.tokenizer:
759
- task.preprocessor.tokenizer.load_preset_assets(self.preset)
712
+ if task.preprocessor:
713
+ task.preprocessor.load_preset_assets(self.preset)
760
714
  if load_weights:
761
715
  has_task_weights = check_file_exists(self.preset, TASK_WEIGHTS_FILE)
762
716
  if has_task_weights and load_task_weights:
@@ -769,15 +723,17 @@ class KerasPresetLoader(PresetLoader):
769
723
  task.backbone.load_weights(backbone_weights)
770
724
  return task
771
725
 
772
- def load_preprocessor(self, cls, **kwargs):
726
+ def load_preprocessor(
727
+ self, cls, config_name=PREPROCESSOR_CONFIG_FILE, **kwargs
728
+ ):
773
729
  # If there is no `preprocessing.json` or it's for the wrong class,
774
730
  # delegate to the super class loader.
775
- if not check_file_exists(self.preset, PREPROCESSOR_CONFIG_FILE):
731
+ if not check_file_exists(self.preset, config_name):
776
732
  return super().load_preprocessor(cls, **kwargs)
777
- preprocessor_json = load_json(self.preset, PREPROCESSOR_CONFIG_FILE)
733
+ preprocessor_json = load_json(self.preset, config_name)
778
734
  if not issubclass(check_config_class(preprocessor_json), cls):
779
735
  return super().load_preprocessor(cls, **kwargs)
780
736
  # We found a `preprocessing.json` with a complete config for our class.
781
737
  preprocessor = load_serialized_object(preprocessor_json, **kwargs)
782
- preprocessor.tokenizer.load_preset_assets(self.preset)
738
+ preprocessor.load_preset_assets(self.preset)
783
739
  return preprocessor
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  """Utilities with miscellaneous python extensions."""
15
2
 
16
3
 
@@ -1,17 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
1
  import contextlib
16
2
  import functools
17
3
  import inspect
@@ -322,3 +308,109 @@ def any_equal(inputs, values, padding_mask):
322
308
  output = ops.logical_or(output, value_equality)
323
309
 
324
310
  return ops.logical_and(output, padding_mask)
311
+
312
+
313
+ def target_gather(
314
+ targets,
315
+ indices,
316
+ mask=None,
317
+ mask_val=0.0,
318
+ ):
319
+ """A utility function wrapping `ops.take`, which deals with:
320
+ 1) both batched and unbatched `targets`.
321
+ 2) when unbatched `targets` have empty rows, the result will be filled
322
+ with `mask_val`.
323
+ 3) target masking.
324
+
325
+ Args:
326
+ targets: `[N, ...]` or `[batch_size, N, ...]` Tensor representing
327
+ targets such as boxes, keypoints, etc.
328
+ indices: [M] or [batch_size, M] int32 Tensor representing indices within
329
+ `targets` to gather.
330
+ mask: `[M, ...]` or `[batch_size, M, ...]` boolean Tensor
331
+ representing the masking for each target. `True` means the
332
+ corresponding entity should be masked to `mask_val`, `False`
333
+ means the corresponding entity should be the target value.
334
+ Defaults to `None`.
335
+ mask_val: float. representing the masking value if `mask` is True
336
+ on the entity.
337
+ Defaults to `0.0`
338
+
339
+ Returns:
340
+ targets: `[M, ...]` or `[batch_size, M, ...]` Tensor representing
341
+ selected targets.
342
+
343
+ Raise:
344
+ ValueError: If `targets` is higher than rank 3.
345
+ """
346
+ targets_shape = list(targets.shape)
347
+ if len(targets_shape) > 3:
348
+ raise ValueError(
349
+ f"`target_gather` does not support `targets` with rank "
350
+ f"larger than 3, got {len(targets.shape)}"
351
+ )
352
+
353
+ def gather_unbatched(labels, match_indices, mask, mask_val):
354
+ """Gather based on unbatched labels and boxes."""
355
+ num_gt_boxes = labels.shape[0]
356
+
357
+ def assign_when_rows_empty():
358
+ if len(labels.shape) > 1:
359
+ mask_shape = [match_indices.shape[0], labels.shape[-1]]
360
+ else:
361
+ mask_shape = [match_indices.shape[0]]
362
+ return ops.cast(mask_val, labels.dtype) * ops.ones(
363
+ mask_shape, dtype=labels.dtype
364
+ )
365
+
366
+ def assign_when_rows_not_empty():
367
+ targets = ops.take(labels, match_indices, axis=0)
368
+ if mask is None:
369
+ return targets
370
+ else:
371
+ masked_targets = ops.cast(
372
+ mask_val, labels.dtype
373
+ ) * ops.ones_like(mask, dtype=labels.dtype)
374
+ return ops.where(mask, masked_targets, targets)
375
+
376
+ if num_gt_boxes > 0:
377
+ return assign_when_rows_not_empty()
378
+ else:
379
+ return assign_when_rows_empty()
380
+
381
+ def _gather_batched(labels, match_indices, mask, mask_val):
382
+ """Gather based on batched labels."""
383
+ batch_size = labels.shape[0]
384
+ if batch_size == 1:
385
+ if mask is not None:
386
+ result = gather_unbatched(
387
+ ops.squeeze(labels, axis=0),
388
+ ops.squeeze(match_indices, axis=0),
389
+ ops.squeeze(mask, axis=0),
390
+ mask_val,
391
+ )
392
+ else:
393
+ result = gather_unbatched(
394
+ ops.squeeze(labels, axis=0),
395
+ ops.squeeze(match_indices, axis=0),
396
+ None,
397
+ mask_val,
398
+ )
399
+ return ops.expand_dims(result, axis=0)
400
+ else:
401
+ targets = ops.take_along_axis(
402
+ labels, ops.expand_dims(match_indices, axis=-1), axis=1
403
+ )
404
+
405
+ if mask is None:
406
+ return targets
407
+ else:
408
+ masked_targets = ops.cast(
409
+ mask_val, labels.dtype
410
+ ) * ops.ones_like(mask, dtype=labels.dtype)
411
+ return ops.where(mask, masked_targets, targets)
412
+
413
+ if len(targets_shape) <= 2:
414
+ return gather_unbatched(targets, indices, mask, mask_val)
415
+ elif len(targets_shape) == 3:
416
+ return _gather_batched(targets, indices, mask, mask_val)
@@ -1,13 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHUB Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.resnet.resnet_backbone import ResNetBackbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  """Convert timm models to KerasHub."""
15
2
 
16
3
  from keras_hub.src.models.image_classifier import ImageClassifier
@@ -1,13 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.albert.albert_backbone import AlbertBackbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.bart.bart_backbone import BartBackbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.bert.bert_backbone import BertBackbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.distil_bert.distil_bert_backbone import (
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.gemma.gemma_backbone import GemmaBackbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.mistral.mistral_backbone import MistralBackbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import numpy as np
15
2
 
16
3
  from keras_hub.src.models.pali_gemma.pali_gemma_backbone import (
@@ -1,19 +1,5 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  """Convert huggingface models to KerasHub."""
15
2
 
16
-
17
3
  from keras_hub.src.utils.preset_utils import PresetLoader
18
4
  from keras_hub.src.utils.preset_utils import jax_memory_cleanup
19
5
  from keras_hub.src.utils.transformers import convert_albert
@@ -69,7 +55,7 @@ class TransformersPresetLoader(PresetLoader):
69
55
  self.converter.convert_weights(backbone, loader, self.config)
70
56
  return backbone
71
57
 
72
- def load_tokenizer(self, cls, **kwargs):
58
+ def load_tokenizer(self, cls, config_name="tokenizer.json", **kwargs):
73
59
  return self.converter.convert_tokenizer(cls, self.preset, **kwargs)
74
60
 
75
61
  def load_image_converter(self, cls, **kwargs):
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  import contextlib
15
2
 
16
3
  from keras_hub.src.utils.preset_utils import SAFETENSOR_CONFIG_FILE
@@ -26,7 +13,7 @@ except ImportError:
26
13
 
27
14
 
28
15
  class SafetensorLoader(contextlib.ExitStack):
29
- def __init__(self, preset, prefix=None):
16
+ def __init__(self, preset, prefix=None, fname=None):
30
17
  super().__init__()
31
18
 
32
19
  if safetensors is None:
@@ -44,6 +31,13 @@ class SafetensorLoader(contextlib.ExitStack):
44
31
  self.safetensor_files = {}
45
32
  self.prefix = prefix
46
33
 
34
+ if fname is not None and self.safetensor_config is not None:
35
+ raise ValueError(
36
+ f"Cannot specify `fname` if {SAFETENSOR_CONFIG_FILE} exists. "
37
+ f"Received: fname={fname}"
38
+ )
39
+ self.fname = fname # Specify the name of the safetensor file.
40
+
47
41
  def get_prefixed_key(self, hf_weight_key, dict_like):
48
42
  """
49
43
  Determine and return a prefixed key for a given hf weight key.
@@ -71,7 +65,7 @@ class SafetensorLoader(contextlib.ExitStack):
71
65
 
72
66
  def get_tensor(self, hf_weight_key):
73
67
  if self.safetensor_config is None:
74
- fname = SAFETENSOR_FILE
68
+ fname = self.fname if self.fname is not None else SAFETENSOR_FILE
75
69
  else:
76
70
  full_key = self.get_prefixed_key(
77
71
  hf_weight_key, self.safetensor_config["weight_map"]