keras-hub-nightly 0.15.0.dev20240911134614__py3-none-any.whl → 0.16.0.dev2024092017__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. keras_hub/__init__.py +0 -6
  2. keras_hub/api/__init__.py +1 -0
  3. keras_hub/api/models/__init__.py +22 -17
  4. keras_hub/{src/models/llama3/llama3_preprocessor.py → api/utils/__init__.py} +7 -8
  5. keras_hub/src/api_export.py +15 -9
  6. keras_hub/src/models/albert/albert_text_classifier.py +6 -1
  7. keras_hub/src/models/bert/bert_text_classifier.py +6 -1
  8. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +6 -1
  9. keras_hub/src/models/densenet/densenet_backbone.py +1 -1
  10. keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +6 -1
  11. keras_hub/src/models/f_net/f_net_text_classifier.py +6 -1
  12. keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
  13. keras_hub/src/models/gpt2/gpt2_preprocessor.py +7 -78
  14. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +1 -1
  15. keras_hub/src/models/preprocessor.py +1 -5
  16. keras_hub/src/models/resnet/resnet_backbone.py +3 -16
  17. keras_hub/src/models/resnet/resnet_image_classifier.py +26 -3
  18. keras_hub/src/models/resnet/resnet_presets.py +12 -12
  19. keras_hub/src/models/retinanet/__init__.py +13 -0
  20. keras_hub/src/models/retinanet/anchor_generator.py +175 -0
  21. keras_hub/src/models/retinanet/box_matcher.py +259 -0
  22. keras_hub/src/models/retinanet/non_max_supression.py +578 -0
  23. keras_hub/src/models/roberta/roberta_text_classifier.py +6 -1
  24. keras_hub/src/models/task.py +6 -6
  25. keras_hub/src/models/text_classifier.py +12 -1
  26. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +6 -1
  27. keras_hub/src/tests/test_case.py +21 -0
  28. keras_hub/src/tokenizers/byte_pair_tokenizer.py +1 -0
  29. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +1 -0
  30. keras_hub/src/tokenizers/word_piece_tokenizer.py +1 -0
  31. keras_hub/src/utils/imagenet/__init__.py +13 -0
  32. keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
  33. keras_hub/src/utils/preset_utils.py +24 -33
  34. keras_hub/src/utils/tensor_utils.py +14 -14
  35. keras_hub/src/utils/timm/convert_resnet.py +0 -1
  36. keras_hub/src/utils/timm/preset_loader.py +6 -7
  37. keras_hub/src/version_utils.py +1 -1
  38. keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA +202 -0
  39. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/RECORD +41 -45
  40. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/WHEEL +1 -1
  41. keras_hub/src/models/bart/bart_preprocessor.py +0 -264
  42. keras_hub/src/models/bloom/bloom_preprocessor.py +0 -178
  43. keras_hub/src/models/electra/electra_preprocessor.py +0 -155
  44. keras_hub/src/models/falcon/falcon_preprocessor.py +0 -180
  45. keras_hub/src/models/gemma/gemma_preprocessor.py +0 -184
  46. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -138
  47. keras_hub/src/models/llama/llama_preprocessor.py +0 -182
  48. keras_hub/src/models/mistral/mistral_preprocessor.py +0 -183
  49. keras_hub/src/models/opt/opt_preprocessor.py +0 -181
  50. keras_hub/src/models/phi3/phi3_preprocessor.py +0 -183
  51. keras_hub_nightly-0.15.0.dev20240911134614.dist-info/METADATA +0 -33
  52. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/top_level.txt +0 -0
@@ -1,178 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import keras
17
-
18
- from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
- from keras_hub.src.models.bloom.bloom_backbone import BloomBackbone
21
- from keras_hub.src.models.bloom.bloom_tokenizer import BloomTokenizer
22
- from keras_hub.src.models.preprocessor import Preprocessor
23
- from keras_hub.src.utils.tensor_utils import preprocessing_function
24
-
25
-
26
- @keras_hub_export("keras_hub.models.BloomPreprocessor")
27
- class BloomPreprocessor(Preprocessor):
28
- """BLOOM preprocessing layer which tokenizes and packs inputs.
29
-
30
- This preprocessing layer will do 2 things:
31
-
32
- - Tokenize the inputs using the `tokenizer`.
33
- - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`, that can
34
- be passed directly to a `keras_hub.models.BloomBackbone`.
35
-
36
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
37
- string data in the `(x, y, sample_weight)` format used by
38
- `keras.Model.fit`.
39
-
40
- The call method of this layer accepts three arguments, `x`, `y`, and
41
- `sample_weight`. `x` can be a python string or tensor representing a single
42
- segment, a list of python strings representing a batch of single segments,
43
- or a list of tensors representing multiple segments to be packed together.
44
- `y` and `sample_weight` are both optional, can have any format, and will be
45
- passed through unaltered.
46
-
47
- Args:
48
- tokenizer: A `keras_hub.models.BloomTokenizer` instance.
49
- sequence_length: The length of the packed inputs.
50
- add_start_token: If `True`, the preprocessor will prepend the tokenizer
51
- start token to each input sequence.
52
- add_end_token: If `True`, the preprocessor will append the tokenizer
53
- end token to each input sequence.
54
-
55
- Call arguments:
56
- x: A string, `tf.Tensor` or list of python strings.
57
- y: Any label data. Will be passed through unaltered.
58
- sample_weight: Any label weight data. Will be passed through unaltered.
59
- sequence_length: Pass to override the configured `sequence_length` of
60
- the layer.
61
-
62
- Examples:
63
-
64
- Directly calling the layer on data.
65
- ```python
66
- preprocessor = keras_hub.models.BloomPreprocessor.from_preset(
67
- "bloom_560m_multi"
68
- )
69
- # Tokenize and pack a single sentence.
70
- preprocessor("The quick brown fox jumped.")
71
-
72
- # Tokenize a batch of single sentences.
73
- preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
74
-
75
- # Custom vocabulary.
76
- features = ["a quick fox.", "a fox quick."]
77
- vocab = {"<pad>": 0, "<s>":1, "</s>":2, "a": 3, "Ġquick": 4, "Ġfox": 5}
78
- merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
79
- merges += ["Ġ f", "o x", "Ġf ox"]
80
- tokenizer = keras_hub.models.BloomTokenizer(
81
- vocabulary=vocab,
82
- merges=merges,
83
- )
84
- preprocessor = keras_hub.models.BloomPreprocessor(tokenizer=tokenizer)
85
- preprocessor("The quick brown fox jumped.")
86
- ```
87
-
88
- Mapping with `tf.data.Dataset`.
89
- ```python
90
- preprocessor = keras_hub.models.BloomPreprocessor.from_preset(
91
- "bloom_560m_multi"
92
- )
93
-
94
- text = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
95
- label = tf.constant([1, 1])
96
-
97
- # Map labeled single sentences.
98
- ds = tf.data.Dataset.from_tensor_slices((text, label))
99
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
100
-
101
- # Map unlabeled single sentences.
102
- ds = tf.data.Dataset.from_tensor_slices(text)
103
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
104
- ```
105
- """
106
-
107
- backbone_cls = BloomBackbone
108
- tokenizer_cls = BloomTokenizer
109
-
110
- def __init__(
111
- self,
112
- tokenizer,
113
- sequence_length=1024,
114
- add_start_token=True,
115
- add_end_token=True,
116
- **kwargs,
117
- ):
118
- super().__init__(**kwargs)
119
- self.tokenizer = tokenizer
120
- self.packer = None
121
- self.sequence_length = sequence_length
122
- self.add_start_token = add_start_token
123
- self.add_end_token = add_end_token
124
-
125
- def build(self, input_shape):
126
- # Defer packer creation to `build()` so that we can be sure tokenizer
127
- # assets have loaded when restoring a saved model.
128
- self.packer = StartEndPacker(
129
- start_value=self.tokenizer.start_token_id,
130
- end_value=self.tokenizer.end_token_id,
131
- pad_value=self.tokenizer.pad_token_id,
132
- sequence_length=self.sequence_length,
133
- return_padding_mask=True,
134
- )
135
- self.built = True
136
-
137
- @preprocessing_function
138
- def call(
139
- self,
140
- x,
141
- y=None,
142
- sample_weight=None,
143
- sequence_length=None,
144
- ):
145
- sequence_length = sequence_length or self.sequence_length
146
- token_ids, padding_mask = self.packer(
147
- self.tokenizer(x),
148
- sequence_length=sequence_length,
149
- add_start_value=self.add_start_token,
150
- add_end_value=self.add_end_token,
151
- )
152
- x = {
153
- "token_ids": token_ids,
154
- "padding_mask": padding_mask,
155
- }
156
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
157
-
158
- def get_config(self):
159
- config = super().get_config()
160
- config.update(
161
- {
162
- "sequence_length": self.sequence_length,
163
- "add_start_token": self.add_start_token,
164
- "add_end_token": self.add_end_token,
165
- }
166
- )
167
- return config
168
-
169
- @property
170
- def sequence_length(self):
171
- """The padded length of model input sequences."""
172
- return self._sequence_length
173
-
174
- @sequence_length.setter
175
- def sequence_length(self, value):
176
- self._sequence_length = value
177
- if self.packer is not None:
178
- self.packer.sequence_length = value
@@ -1,155 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import keras
16
-
17
- from keras_hub.src.api_export import keras_hub_export
18
- from keras_hub.src.layers.preprocessing.multi_segment_packer import (
19
- MultiSegmentPacker,
20
- )
21
- from keras_hub.src.models.electra.electra_backbone import ElectraBackbone
22
- from keras_hub.src.models.electra.electra_tokenizer import ElectraTokenizer
23
- from keras_hub.src.models.preprocessor import Preprocessor
24
- from keras_hub.src.utils.tensor_utils import preprocessing_function
25
-
26
-
27
- @keras_hub_export("keras_hub.models.ElectraPreprocessor")
28
- class ElectraPreprocessor(Preprocessor):
29
- """A ELECTRA preprocessing layer which tokenizes and packs inputs.
30
-
31
- This preprocessing layer will do three things:
32
-
33
- 1. Tokenize any number of input segments using the `tokenizer`.
34
- 2. Pack the inputs together using a `keras_hub.layers.MultiSegmentPacker`.
35
- with the appropriate `"[CLS]"`, `"[SEP]"` and `"[PAD]"` tokens.
36
- 3. Construct a dictionary of with keys `"token_ids"` and `"padding_mask"`,
37
- that can be passed directly to a ELECTRA model.
38
-
39
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
40
- string data in the `(x, y, sample_weight)` format used by
41
- `keras.Model.fit`.
42
-
43
- Args:
44
- tokenizer: A `keras_hub.models.ElectraTokenizer` instance.
45
- sequence_length: The length of the packed inputs.
46
- truncate: string. The algorithm to truncate a list of batched segments
47
- to fit within `sequence_length`. The value can be either
48
- `round_robin` or `waterfall`:
49
- - `"round_robin"`: Available space is assigned one token at a
50
- time in a round-robin fashion to the inputs that still need
51
- some, until the limit is reached.
52
- - `"waterfall"`: The allocation of the budget is done using a
53
- "waterfall" algorithm that allocates quota in a
54
- left-to-right manner and fills up the buckets until we run
55
- out of budget. It supports an arbitrary number of segments.
56
-
57
- Call arguments:
58
- x: A tensor of single string sequences, or a tuple of multiple
59
- tensor sequences to be packed together. Inputs may be batched or
60
- unbatched. For single sequences, raw python inputs will be converted
61
- to tensors. For multiple sequences, pass tensors directly.
62
- y: Any label data. Will be passed through unaltered.
63
- sample_weight: Any label weight data. Will be passed through unaltered.
64
-
65
- Examples:
66
-
67
- Directly calling the layer on data.
68
- ```python
69
- preprocessor = keras_hub.models.ElectraPreprocessor.from_preset(
70
- "electra_base_discriminator_en"
71
- )
72
- preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
73
-
74
- # Custom vocabulary.
75
- vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
76
- vocab += ["The", "quick", "brown", "fox", "jumped", "."]
77
- tokenizer = keras_hub.models.ElectraTokenizer(vocabulary=vocab)
78
- preprocessor = keras_hub.models.ElectraPreprocessor(tokenizer)
79
- preprocessor("The quick brown fox jumped.")
80
- ```
81
-
82
- Mapping with `tf.data.Dataset`.
83
- ```python
84
- preprocessor = keras_hub.models.ElectraPreprocessor.from_preset(
85
- "electra_base_discriminator_en"
86
- )
87
-
88
- first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
89
- second = tf.constant(["The fox tripped.", "Oh look, a whale."])
90
- label = tf.constant([1, 1])
91
- # Map labeled single sentences.
92
- ds = tf.data.Dataset.from_tensor_slices((first, label))
93
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
94
-
95
-
96
- # Map unlabeled single sentences.
97
- ds = tf.data.Dataset.from_tensor_slices(first)
98
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
99
-
100
- # Map labeled sentence pairs.
101
- ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
102
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
103
- # Map unlabeled sentence pairs.
104
- ds = tf.data.Dataset.from_tensor_slices((first, second))
105
-
106
- # Watch out for tf.data's default unpacking of tuples here!
107
- # Best to invoke the `preprocessor` directly in this case.
108
- ds = ds.map(
109
- lambda first, second: preprocessor(x=(first, second)),
110
- num_parallel_calls=tf.data.AUTOTUNE,
111
- )
112
- ```
113
- """
114
-
115
- backbone_cls = ElectraBackbone
116
- tokenizer_cls = ElectraTokenizer
117
-
118
- def __init__(
119
- self,
120
- tokenizer,
121
- sequence_length=512,
122
- truncate="round_robin",
123
- **kwargs,
124
- ):
125
- super().__init__(**kwargs)
126
- self.tokenizer = tokenizer
127
- self.packer = MultiSegmentPacker(
128
- start_value=self.tokenizer.cls_token_id,
129
- end_value=self.tokenizer.sep_token_id,
130
- pad_value=self.tokenizer.pad_token_id,
131
- truncate=truncate,
132
- sequence_length=sequence_length,
133
- )
134
-
135
- def get_config(self):
136
- config = super().get_config()
137
- config.update(
138
- {
139
- "sequence_length": self.packer.sequence_length,
140
- "truncate": self.packer.truncate,
141
- }
142
- )
143
- return config
144
-
145
- @preprocessing_function
146
- def call(self, x, y=None, sample_weight=None):
147
- x = x if isinstance(x, tuple) else (x,)
148
- x = tuple(self.tokenizer(segment) for segment in x)
149
- token_ids, segment_ids = self.packer(x)
150
- x = {
151
- "token_ids": token_ids,
152
- "segment_ids": segment_ids,
153
- "padding_mask": token_ids != self.tokenizer.pad_token_id,
154
- }
155
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
@@ -1,180 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import keras
17
-
18
- from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
- from keras_hub.src.models.falcon.falcon_backbone import FalconBackbone
21
- from keras_hub.src.models.falcon.falcon_tokenizer import FalconTokenizer
22
- from keras_hub.src.models.preprocessor import Preprocessor
23
- from keras_hub.src.utils.tensor_utils import preprocessing_function
24
-
25
-
26
- @keras_hub_export("keras_hub.models.FalconPreprocessor")
27
- class FalconPreprocessor(Preprocessor):
28
- """Falcon preprocessing layer which tokenizes and packs inputs.
29
-
30
- This preprocessing layer will do 2 things:
31
-
32
- - Tokenize the inputs using the `tokenizer`.
33
- - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`, that can
34
- be passed directly to a `keras_hub.models.FalconBackbone`.
35
-
36
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
37
- string data in the `(x, y, sample_weight)` format used by
38
- `keras.Model.fit`.
39
-
40
- The call method of this layer accepts three arguments, `x`, `y`, and
41
- `sample_weight`. `x` can be a python string or tensor representing a single
42
- segment, a list of python strings representing a batch of single segments,
43
- or a list of tensors representing multiple segments to be packed together.
44
- `y` and `sample_weight` are both optional, can have any format, and will be
45
- passed through unaltered.
46
-
47
- `FalconPreprocessor` forces the input to have only one segment, as Falcon is
48
- mainly used for generation tasks. For tasks having multi-segment inputs
49
- like "glue/mnli", please use a model designed for classification purposes
50
- such as BERT or RoBERTa.
51
-
52
- Args:
53
- tokenizer: A `keras_hub.models.FalconTokenizer` instance.
54
- sequence_length: The length of the packed inputs.
55
- add_start_token: If `True`, the preprocessor will prepend the tokenizer
56
- start token to each input sequence.
57
- add_end_token: If `True`, the preprocessor will append the tokenizer
58
- end token to each input sequence.
59
-
60
- Call arguments:
61
- x: A string, `tf.Tensor` or list of python strings.
62
- y: Any label data. Will be passed through unaltered.
63
- sample_weight: Any label weight data. Will be passed through unaltered.
64
- sequence_length: Pass to override the configured `sequence_length` of
65
- the layer.
66
-
67
- Examples:
68
-
69
- Directly calling the layer on data.
70
- ```python
71
- preprocessor = keras_hub.models.FalconPreprocessor.from_preset("falcon_rw_1b")
72
-
73
- # Tokenize and pack a single sentence.
74
- preprocessor("The quick brown fox jumped.")
75
-
76
- # Tokenize a batch of single sentences.
77
- preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
78
-
79
- # Custom vocabulary.
80
- features = ["a quick fox.", "a fox quick."]
81
- vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
82
- merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
83
- merges += ["Ġ f", "o x", "Ġf ox"]
84
- tokenizer = keras_hub.models.FalconTokenizer(
85
- vocabulary=vocab,
86
- merges=merges,
87
- )
88
- preprocessor = keras_hub.models.FalconPreprocessor(tokenizer=tokenizer)
89
- preprocessor("The quick brown fox jumped.")
90
- ```
91
-
92
- Mapping with `tf.data.Dataset`.
93
- ```python
94
- preprocessor = keras_hub.models.FalconPreprocessor.from_preset("falcon_rw_1b")
95
-
96
- text = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
97
- label = tf.constant([1, 1])
98
-
99
- # Map labeled single sentences.
100
- ds = tf.data.Dataset.from_tensor_slices((text, label))
101
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
102
-
103
- # Map unlabeled single sentences.
104
- ds = tf.data.Dataset.from_tensor_slices(text)
105
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
106
- ```
107
- """
108
-
109
- backbone_cls = FalconBackbone
110
- tokenizer_cls = FalconTokenizer
111
-
112
- def __init__(
113
- self,
114
- tokenizer,
115
- sequence_length=1024,
116
- add_start_token=True,
117
- add_end_token=True,
118
- **kwargs,
119
- ):
120
- super().__init__(**kwargs)
121
- self.tokenizer = tokenizer
122
- self.packer = None
123
- self.sequence_length = sequence_length
124
- self.add_start_token = add_start_token
125
- self.add_end_token = add_end_token
126
-
127
- def build(self, input_shape):
128
- # Defer packer creation to `build()` so that we can be sure tokenizer
129
- # assets have loaded when restoring a saved model.
130
- self.packer = StartEndPacker(
131
- start_value=self.tokenizer.start_token_id,
132
- end_value=self.tokenizer.end_token_id,
133
- pad_value=self.tokenizer.pad_token_id,
134
- sequence_length=self.sequence_length,
135
- return_padding_mask=True,
136
- )
137
- self.built = True
138
-
139
- @preprocessing_function
140
- def call(
141
- self,
142
- x,
143
- y=None,
144
- sample_weight=None,
145
- sequence_length=None,
146
- ):
147
- sequence_length = sequence_length or self.sequence_length
148
- token_ids, padding_mask = self.packer(
149
- self.tokenizer(x),
150
- sequence_length=sequence_length,
151
- add_start_value=self.add_start_token,
152
- add_end_value=self.add_end_token,
153
- )
154
- x = {
155
- "token_ids": token_ids,
156
- "padding_mask": padding_mask,
157
- }
158
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
159
-
160
- def get_config(self):
161
- config = super().get_config()
162
- config.update(
163
- {
164
- "sequence_length": self.sequence_length,
165
- "add_start_token": self.add_start_token,
166
- "add_end_token": self.add_end_token,
167
- }
168
- )
169
- return config
170
-
171
- @property
172
- def sequence_length(self):
173
- """The padded length of model input sequences."""
174
- return self._sequence_length
175
-
176
- @sequence_length.setter
177
- def sequence_length(self, value):
178
- self._sequence_length = value
179
- if self.packer is not None:
180
- self.packer.sequence_length = value
@@ -1,184 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import keras
17
-
18
- from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
- from keras_hub.src.models.gemma.gemma_backbone import GemmaBackbone
21
- from keras_hub.src.models.gemma.gemma_tokenizer import GemmaTokenizer
22
- from keras_hub.src.models.preprocessor import Preprocessor
23
- from keras_hub.src.utils.tensor_utils import preprocessing_function
24
-
25
-
26
- @keras_hub_export("keras_hub.models.GemmaPreprocessor")
27
- class GemmaPreprocessor(Preprocessor):
28
- """Gemma preprocessing layer which tokenizes and packs inputs.
29
-
30
- This preprocessing layer will do 2 things:
31
-
32
- - Tokenize the inputs using the `tokenizer`.
33
- - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`, that can
34
- be passed directly to a `keras_hub.models.GemmaBackbone`.
35
-
36
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
37
- string data in the `(x, y, sample_weight)` format used by
38
- `keras.Model.fit`.
39
-
40
- The call method of this layer accepts three arguments, `x`, `y`, and
41
- `sample_weight`. `x` can be a python string or tensor representing a single
42
- segment, a list of python strings representing a batch of single segments,
43
- or a list of tensors representing multiple segments to be packed together.
44
- `y` and `sample_weight` are both optional, can have any format, and will be
45
- passed through unaltered.
46
-
47
- `GemmaPreprocessor` expects the input to have only one segment, as Gemma is
48
- mainly used for generation tasks. For tasks having multi-segment inputs
49
- please combine inputs into a single string input before passing to the
50
- preprocessor layer.
51
-
52
- Args:
53
- tokenizer: A `keras_hub.models.GemmaTokenizer` instance.
54
- sequence_length: The length of the packed inputs.
55
- add_start_token: If `True`, the preprocessor will prepend the tokenizer
56
- start token to each input sequence.
57
- add_end_token: If `True`, the preprocessor will append the tokenizer
58
- end token to each input sequence.
59
-
60
- Call arguments:
61
- x: A string, `tf.Tensor` or list of python strings.
62
- y: Any label data. Will be passed through unaltered.
63
- sample_weight: Any label weight data. Will be passed through unaltered.
64
- sequence_length: Pass to override the configured `sequence_length` of
65
- the layer.
66
-
67
- Examples:
68
-
69
- Directly calling the layer on data.
70
- ```python
71
- preprocessor = keras_hub.models.GemmaPreprocessor.from_preset(
72
- "gemma_2b_en"
73
- )
74
-
75
- # Tokenize and pack a single sentence.
76
- preprocessor("The quick brown fox jumped.")
77
-
78
- # Tokenize a batch of sentences.
79
- preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
80
-
81
- # Custom vocabulary.
82
- bytes_io = io.BytesIO()
83
- ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
84
- sentencepiece.SentencePieceTrainer.train(
85
- sentence_iterator=ds.as_numpy_iterator(),
86
- model_writer=bytes_io,
87
- vocab_size=8,
88
- model_type="WORD",
89
- pad_id=0,
90
- bos_id=1,
91
- eos_id=2,
92
- unk_id=3,
93
- pad_piece="<pad>",
94
- bos_piece="<bos>",
95
- eos_piece="<eos>",
96
- unk_piece="<unk>",
97
- )
98
- tokenizer = keras_hub.models.GemmaTokenizer(
99
- proto=bytes_io.getvalue(),
100
- )
101
- preprocessor = keras_hub.models.GemmaPreprocessor(tokenizer=tokenizer)
102
- preprocessor("The quick brown fox jumped.")
103
- ```
104
-
105
- Apply preprocessing to a `tf.data.Dataset`.
106
- ```python
107
- preprocessor = keras_hub.models.GemmaPreprocessor.from_preset(
108
- "gemma_2b_en"
109
- )
110
-
111
- text = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
112
- label = tf.constant([1, 1])
113
-
114
- # Map labeled single sentences.
115
- ds = tf.data.Dataset.from_tensor_slices((text, label))
116
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
117
-
118
- # Map unlabeled single sentences.
119
- ds = tf.data.Dataset.from_tensor_slices(text)
120
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
121
- ```
122
- """
123
-
124
- backbone_cls = GemmaBackbone
125
- tokenizer_cls = GemmaTokenizer
126
-
127
- def __init__(
128
- self,
129
- tokenizer,
130
- sequence_length=1024,
131
- add_start_token=True,
132
- add_end_token=True,
133
- **kwargs,
134
- ):
135
- super().__init__(**kwargs)
136
-
137
- self.tokenizer = tokenizer
138
- self.sequence_length = sequence_length
139
- self.add_start_token = add_start_token
140
- self.add_end_token = add_end_token
141
-
142
- def build(self, input_shape):
143
- # Defer packer creation to `build()` so that we can be sure tokenizer
144
- # assets have loaded when restoring a saved model.
145
- self.packer = StartEndPacker(
146
- start_value=self.tokenizer.start_token_id,
147
- end_value=self.tokenizer.end_token_id,
148
- pad_value=self.tokenizer.pad_token_id,
149
- sequence_length=self.sequence_length,
150
- return_padding_mask=True,
151
- )
152
- self.built = True
153
-
154
- @preprocessing_function
155
- def call(
156
- self,
157
- x,
158
- y=None,
159
- sample_weight=None,
160
- sequence_length=None,
161
- ):
162
- sequence_length = sequence_length or self.sequence_length
163
- token_ids, padding_mask = self.packer(
164
- self.tokenizer(x),
165
- sequence_length=sequence_length,
166
- add_start_value=self.add_start_token,
167
- add_end_value=self.add_end_token,
168
- )
169
- x = {
170
- "token_ids": token_ids,
171
- "padding_mask": padding_mask,
172
- }
173
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
174
-
175
- def get_config(self):
176
- config = super().get_config()
177
- config.update(
178
- {
179
- "sequence_length": self.sequence_length,
180
- "add_start_token": self.add_start_token,
181
- "add_end_token": self.add_end_token,
182
- }
183
- )
184
- return config