keras-hub-nightly 0.15.0.dev20240911134614__py3-none-any.whl → 0.16.0.dev2024092017__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. keras_hub/__init__.py +0 -6
  2. keras_hub/api/__init__.py +1 -0
  3. keras_hub/api/models/__init__.py +22 -17
  4. keras_hub/{src/models/llama3/llama3_preprocessor.py → api/utils/__init__.py} +7 -8
  5. keras_hub/src/api_export.py +15 -9
  6. keras_hub/src/models/albert/albert_text_classifier.py +6 -1
  7. keras_hub/src/models/bert/bert_text_classifier.py +6 -1
  8. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +6 -1
  9. keras_hub/src/models/densenet/densenet_backbone.py +1 -1
  10. keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +6 -1
  11. keras_hub/src/models/f_net/f_net_text_classifier.py +6 -1
  12. keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
  13. keras_hub/src/models/gpt2/gpt2_preprocessor.py +7 -78
  14. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +1 -1
  15. keras_hub/src/models/preprocessor.py +1 -5
  16. keras_hub/src/models/resnet/resnet_backbone.py +3 -16
  17. keras_hub/src/models/resnet/resnet_image_classifier.py +26 -3
  18. keras_hub/src/models/resnet/resnet_presets.py +12 -12
  19. keras_hub/src/models/retinanet/__init__.py +13 -0
  20. keras_hub/src/models/retinanet/anchor_generator.py +175 -0
  21. keras_hub/src/models/retinanet/box_matcher.py +259 -0
  22. keras_hub/src/models/retinanet/non_max_supression.py +578 -0
  23. keras_hub/src/models/roberta/roberta_text_classifier.py +6 -1
  24. keras_hub/src/models/task.py +6 -6
  25. keras_hub/src/models/text_classifier.py +12 -1
  26. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +6 -1
  27. keras_hub/src/tests/test_case.py +21 -0
  28. keras_hub/src/tokenizers/byte_pair_tokenizer.py +1 -0
  29. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +1 -0
  30. keras_hub/src/tokenizers/word_piece_tokenizer.py +1 -0
  31. keras_hub/src/utils/imagenet/__init__.py +13 -0
  32. keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
  33. keras_hub/src/utils/preset_utils.py +24 -33
  34. keras_hub/src/utils/tensor_utils.py +14 -14
  35. keras_hub/src/utils/timm/convert_resnet.py +0 -1
  36. keras_hub/src/utils/timm/preset_loader.py +6 -7
  37. keras_hub/src/version_utils.py +1 -1
  38. keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA +202 -0
  39. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/RECORD +41 -45
  40. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/WHEEL +1 -1
  41. keras_hub/src/models/bart/bart_preprocessor.py +0 -264
  42. keras_hub/src/models/bloom/bloom_preprocessor.py +0 -178
  43. keras_hub/src/models/electra/electra_preprocessor.py +0 -155
  44. keras_hub/src/models/falcon/falcon_preprocessor.py +0 -180
  45. keras_hub/src/models/gemma/gemma_preprocessor.py +0 -184
  46. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -138
  47. keras_hub/src/models/llama/llama_preprocessor.py +0 -182
  48. keras_hub/src/models/mistral/mistral_preprocessor.py +0 -183
  49. keras_hub/src/models/opt/opt_preprocessor.py +0 -181
  50. keras_hub/src/models/phi3/phi3_preprocessor.py +0 -183
  51. keras_hub_nightly-0.15.0.dev20240911134614.dist-info/METADATA +0 -33
  52. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/top_level.txt +0 -0
@@ -1,14 +1,15 @@
1
- keras_hub/__init__.py,sha256=uHOd4ucottkl7ZGHcyIP2ajuIozrBQ0uct9FoDRO2Q0,1562
2
- keras_hub/api/__init__.py,sha256=je2H9ewlE0Dg3f0Dbjou6ah-VHrS2TsIXN1HRoWz0Z8,1077
1
+ keras_hub/__init__.py,sha256=La-s5SQDd0312puWDSbPJ2XYxFXtg0jsCdUa2LMY-Z8,1440
2
+ keras_hub/api/__init__.py,sha256=8EwhEBO-o-92lvGv6M5zOdkNL9Bd3xfutlfGNJ8QwBE,1109
3
3
  keras_hub/api/bounding_box/__init__.py,sha256=LNSVZLB1WJ9hMg0wxt7HTfFFd9uAFviH9x9CnfJYzBA,1682
4
4
  keras_hub/api/layers/__init__.py,sha256=4OlmzaQ0I8RuHp7Ot9580loeElsV4QeB2Lon8ZB_a1Q,2600
5
5
  keras_hub/api/metrics/__init__.py,sha256=tgQfooPHzlq6w34RHfro6vO8IUITLTf-jU2IWEBxxUM,966
6
- keras_hub/api/models/__init__.py,sha256=3VHQRqlFRGr3eEuXodbRESNJdbSyVxBGZMOuK_fDJwA,13366
6
+ keras_hub/api/models/__init__.py,sha256=0BRVIXtv8DrIbE5n1JeAR_gVeF1_sG_zeMI0cR0rjBI,13396
7
7
  keras_hub/api/samplers/__init__.py,sha256=l56H4y3h_HlRn_PpeMyZ6vC7228EH_BVFo4Caay-zQ8,1315
8
8
  keras_hub/api/tokenizers/__init__.py,sha256=nzMwKmxkMCOiYB35BIgxHNveCM9WoYRp7ChhmVK8MIM,3042
9
+ keras_hub/api/utils/__init__.py,sha256=4IXDgmXqFzqrCK2MPgkih0Ye1s-8hrlBaUk-n5Kqwl4,800
9
10
  keras_hub/src/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
10
- keras_hub/src/api_export.py,sha256=4vXS_G7iezVVk9FsJLM97AwOiU35W_wum_-uBSvXrZk,1658
11
- keras_hub/src/version_utils.py,sha256=zOo_7jr4J1soOeUY2PNDS1fRK0lz2nrPJWTzi1h-Mlk,810
11
+ keras_hub/src/api_export.py,sha256=agkICNX5rGcJy_Bj29vaNmhH3no9KqJBO-V3MaqR6HQ,2062
12
+ keras_hub/src/version_utils.py,sha256=vh5ESN52dm8BwVQf6-R6UvY3JMG3DW8LHanrErKekC8,806
12
13
  keras_hub/src/bounding_box/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
13
14
  keras_hub/src/bounding_box/converters.py,sha256=V2ti6xPpaBgeLKbTpCsHsABdYOYASerIKX9oWqeOjHo,18450
14
15
  keras_hub/src/bounding_box/formats.py,sha256=5bbHO-n2ADsKIOBJDHMvIPCeNBaV1_mj-NVCgBKNiu8,4453
@@ -57,23 +58,22 @@ keras_hub/src/models/image_classifier.py,sha256=72qxEL01DSKE-Ugg4tpZqkLQpYf15bPf
57
58
  keras_hub/src/models/image_classifier_preprocessor.py,sha256=Az9596ow470lqCzYF0I-GUkHbVfWx4GiynvpwGws6f0,3199
58
59
  keras_hub/src/models/masked_lm.py,sha256=x8jeqgYsKsgeVPAirVRPHDdT21FAhqJ45pb8mIPc410,4161
59
60
  keras_hub/src/models/masked_lm_preprocessor.py,sha256=Z6mo0szZp5Kfn6LmtY7EjZWGxLdR4c75hfw97V310Kc,6241
60
- keras_hub/src/models/preprocessor.py,sha256=0Hm-OjW9GGuQqbdp-AKGxQj5L8f6SjIG1ZzOHQAVL_o,7459
61
+ keras_hub/src/models/preprocessor.py,sha256=PZruA4xHS_w0-9hWLD1iJ79aOQMP81aJPYXl5SpjXak,7174
61
62
  keras_hub/src/models/seq_2_seq_lm.py,sha256=PmdgShThfg2VIYMviKsU11jD3KgBZnYZGZp9HXVO4LU,2449
62
63
  keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=fQv-zg7vvIpy3ucCbIkiey8AGH7rEuhDpCilul2JjsE,10272
63
- keras_hub/src/models/task.py,sha256=gmJtqFVB1kZZszdjC87RybQ8yGBrBIxpxrTGIO-3hQg,14442
64
- keras_hub/src/models/text_classifier.py,sha256=7sXAIDZnxC77saRW-4QR7CJ-0ZBQe22IRMXNdHJZkVg,4329
64
+ keras_hub/src/models/task.py,sha256=elkNVXUAbUskRprIBmTDiJkFheLo1mLTX9lppelHucc,14432
65
+ keras_hub/src/models/text_classifier.py,sha256=BhsLovKyIVslm4ibrzFqtxrqljyNehk1lTpQ-r3bq5k,4744
65
66
  keras_hub/src/models/text_classifier_preprocessor.py,sha256=6Mkypx3UUj4gUmLlocaLZBc2Addk_pshKPWwy7wb788,5307
66
67
  keras_hub/src/models/albert/__init__.py,sha256=RuIE1aGly5hA0OHBu_QA09XairoViM1kvS6K3kzVB3Q,843
67
68
  keras_hub/src/models/albert/albert_backbone.py,sha256=MNurFI3ansonMPJi8gmRf0dXwMwE38C-DJzqdkuLs9o,10659
68
69
  keras_hub/src/models/albert/albert_masked_lm.py,sha256=Y8N5HqQ3fUl4lUG4T_vbn_zI-Pink8oDFRKlxfGm6S8,4712
69
70
  keras_hub/src/models/albert/albert_masked_lm_preprocessor.py,sha256=v85sOAogJ4u4kfN0oq8_oVFf9AoFmqY7E48Czbucb6Y,5061
70
71
  keras_hub/src/models/albert/albert_presets.py,sha256=LLn1rJQXFPee2QCM6z4EnrkZBYw7qe3vmLn5XvDFfSA,2795
71
- keras_hub/src/models/albert/albert_text_classifier.py,sha256=3b75_FLtCSnKOaAhKo803T8lF2h_2AqTN-FVOT-f6sU,7163
72
+ keras_hub/src/models/albert/albert_text_classifier.py,sha256=xWRu-JNfMSbtRL38yBWPOz1KA-BJAvVjL4FxntRnQ7A,7231
72
73
  keras_hub/src/models/albert/albert_text_classifier_preprocessor.py,sha256=gy8BlsAhYSmkfn3CItViJT7MGDk-4b9MpnlZivKqa7g,6125
73
74
  keras_hub/src/models/albert/albert_tokenizer.py,sha256=_PSU17dxw79NeINVYv_CA225aSE5lIHn09wxJJt7XM0,3570
74
75
  keras_hub/src/models/bart/__init__.py,sha256=QniU0N7lU_FWZxGPyHqqOAeNOoBM0BEvuQVv_s9GH0E,831
75
76
  keras_hub/src/models/bart/bart_backbone.py,sha256=4hCYeOZF8kYdO9-ev8OASYSdrqDApk2XHiSl9hue_VM,10286
76
- keras_hub/src/models/bart/bart_preprocessor.py,sha256=rQG4xplQWvT2uDQARgajxQyWFr2vF9WpCP0CGxjByxY,9264
77
77
  keras_hub/src/models/bart/bart_presets.py,sha256=TvSPseluMhV233tlXiZAs_8ecOka-N4ZNSS_WPfP0vI,2736
78
78
  keras_hub/src/models/bart/bart_seq_2_seq_lm.py,sha256=7Q-O23PjFz5BU5lGHUYUIRkv8kxnRGHkfV79JK-jcdg,19910
79
79
  keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=sR5SjoB4e3nuYgAMtuhM8s__6Ii3lCESUOdchGLXfEY,4960
@@ -83,7 +83,7 @@ keras_hub/src/models/bert/bert_backbone.py,sha256=mxnxa5cVfM9fNGnhblguSYcQh62nlR
83
83
  keras_hub/src/models/bert/bert_masked_lm.py,sha256=6-sZP4anfiVWq_EwbfMbbz1bcZF1uP7lolCz_6O6rao,4631
84
84
  keras_hub/src/models/bert/bert_masked_lm_preprocessor.py,sha256=wp80B97OTQMGgonsRhtnpiFBMmCFqbzZwPna6BMWlkc,5160
85
85
  keras_hub/src/models/bert/bert_presets.py,sha256=4NmCoYQuX0j-G-6rPeHTpv7uV-1kIFmTb9cdjuCxnTI,5609
86
- keras_hub/src/models/bert/bert_text_classifier.py,sha256=JCu3LUVuxAK0HSXnf4LbGXFQa68V03E-VerpUbOHIQA,6318
86
+ keras_hub/src/models/bert/bert_text_classifier.py,sha256=YIjJ4FTycOA6ZtJ0xwgcviz4tPa1YKc_bx5NWy29Ilc,6384
87
87
  keras_hub/src/models/bert/bert_text_classifier_preprocessor.py,sha256=gVu-XE9doX7V5VYCVpWtpVv0ILWkv2umInF0wb4ehP8,5299
88
88
  keras_hub/src/models/bert/bert_tokenizer.py,sha256=XP58gh3zxDQgrK5y5cVvuPwIO75U7l7Xopt5n79pUuU,3611
89
89
  keras_hub/src/models/bloom/__init__.py,sha256=ck7AqlWlHHTslBEZCxa_ps-nOC-7hyEsu4uielO0SIU,837
@@ -92,7 +92,6 @@ keras_hub/src/models/bloom/bloom_backbone.py,sha256=i2Dc2FeYSPYVyKNc9XhfDTX6mV3P
92
92
  keras_hub/src/models/bloom/bloom_causal_lm.py,sha256=7uxEnEZFIlmZgHg7D-EArr459kka6ljWEUotPhSyi3U,11548
93
93
  keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py,sha256=WVTWRUbQXUBlfC80JucV6ifcI5t6jjN5MtVsxNEYluk,3598
94
94
  keras_hub/src/models/bloom/bloom_decoder.py,sha256=hSoeVnwRQvGbpVhYmf7-k8FB3Wg4auwZWdr2ubiNtxc,7157
95
- keras_hub/src/models/bloom/bloom_preprocessor.py,sha256=buBx8Rt6i-_pMYakoFgA4l6a2KpwPlffFN7QBFbkNgA,6377
96
95
  keras_hub/src/models/bloom/bloom_presets.py,sha256=7GiGFPmcXd_UraNsWGQffpzjKDRF-7nqIoUsic78xf0,4696
97
96
  keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=ZMx8mHhw0D50zmmvYdmpg-Lk2GcvHz7pPlRpPlhS_2s,3161
98
97
  keras_hub/src/models/csp_darknet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -103,21 +102,21 @@ keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=_J-PpSLubay58YO51B
103
102
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=urcktTsXN3kDWnppplnC8yISGx37qGW5HdwHSC7VDLE,4773
104
103
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py,sha256=l-hcoKKQPz_VB-CJNq0oLxEd5hxLHb2DU9-TqE28Fz8,5552
105
104
  keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=pDcdjJ7mIz8QdTxLxllmY7_9hsgCRdVlsYREKnHw5Ek,3300
106
- keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=zdeMmoHi07CJDXcne7Zzcg9D-RGKz1D9o_7w_FcUUK0,7754
105
+ keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=lQla4R7UH5olF8xs5By6aKwpGtpoE3IPlovjrhB-hYQ,7825
107
106
  keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=z_PynLHhc2OFasaV1DMHEyyKEC4miK4KqWj1-2WAEOc,6561
108
107
  keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=NLLkMvotpPZUdRELaSRuJuVmiOGxwmnjmjuswa6NJdw,5574
109
108
  keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=Zt10UPxYsr_x8isO_OrXeaquWVJbcE49raM6_BkDdEs,9142
110
109
  keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=MxpWy30h9JB8nlEk7V9_wETzP-tpv1Sd1Wiz_pHGpkI,13708
111
110
  keras_hub/src/models/deberta_v3/relative_embedding.py,sha256=QT5MAnheJ1wSKFeN49pdnZzWkztz5K2oYYuNEtB_5xM,3472
112
111
  keras_hub/src/models/densenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
113
- keras_hub/src/models/densenet/densenet_backbone.py,sha256=IoZsMjfbFVsnc5p6jyMGLoX-UJDaw2cxtBKm1NTSs_0,7660
112
+ keras_hub/src/models/densenet/densenet_backbone.py,sha256=cMTTaI1WogaSjt8x8bpPMvApYp5NVmeHTfupUmZZ774,7661
114
113
  keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=bmmkNNpxwkwfqI_ZMmoEATClmgmmkW6NO5tDK8BCt2Y,4336
115
114
  keras_hub/src/models/distil_bert/__init__.py,sha256=EiJUA3y_b22rMacMbBD7jD0eBSzR-wbVtF73k2RsQow,889
116
115
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=ZW2OgNlWXeRlfI5BrcJLYr4Oc2qNJZoDxjoL7-cGuIQ,7027
117
116
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=1BFS1At_HYlLK21VWyhQPrPtActpmR52A8LJG2c6N8Y,4862
118
117
  keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py,sha256=2vge8ivK7Fl8iFKm1Si2MMru9yKOo27J0UUsFRuAdOk,5816
119
118
  keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=jrLwBwTaxofI5jTEV3UTPTeVePdzbJtVO9OclP-Mf4w,2312
120
- keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=3R-n2s43x77naKh6ONosVa0wLbFVySiBKRXCbV0nSG0,7252
119
+ keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=Q-qGmyl6i2JUFZI59KUWzlzLTIRmYtgahFHo3pUE9g4,7324
121
120
  keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=sad3XpW2HfjG2iQ4JRm1tw2jp4pZCN4LYwF1mM4GUps,5480
122
121
  keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=VK7kZJEbsClp20uWVb6pj-WSUU5IMdRBk0jyUIM_RIg,3698
123
122
  keras_hub/src/models/efficientnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -126,7 +125,6 @@ keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=_6aNQKL2XdVNgoAdKvvTh_ND
126
125
  keras_hub/src/models/efficientnet/mbconv.py,sha256=LNbEj7RpEZ0SqzEu-7ZpH1BKm6Ne2sXPckc5c2DMqUk,8212
127
126
  keras_hub/src/models/electra/__init__.py,sha256=ixE5hAkfTFfErqbYVyIUKMT8MUz-u_175QXxEBIiGBU,849
128
127
  keras_hub/src/models/electra/electra_backbone.py,sha256=nLKE67xffbyWSmHtSsR6SZQId2BJ03pjSACMx9fa6do,9590
129
- keras_hub/src/models/electra/electra_preprocessor.py,sha256=Jcc8RO6gMoHxS8TQzypQjvW76NZuGXAIcsBG1WURblg,6151
130
128
  keras_hub/src/models/electra/electra_presets.py,sha256=7UxPjVFmNM6jbzJxXlnNzYZCdrC9JIz39FWlHvG7ubM,3954
131
129
  keras_hub/src/models/electra/electra_tokenizer.py,sha256=WjGhKVxtDMMcm-bMUNSvcR2z1O9nWeuMPWZQa9Dc2x0,3315
132
130
  keras_hub/src/models/f_net/__init__.py,sha256=MrkNt4swYV-pWb4biE1ITcYxEwWxiKRwCukhbgNo_Lg,835
@@ -134,7 +132,7 @@ keras_hub/src/models/f_net/f_net_backbone.py,sha256=h1IqRGEHKKhDiFUnqhaM2Rxs2yk6
134
132
  keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GHdUf5PNUzT-YH9ZMf5FxmGx7NExFfTISnScf74zIKk,4565
135
133
  keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py,sha256=rKh-a2EB2GfUX1osmDoBy6apzUdjiCKJc8CDxKQLlfI,5667
136
134
  keras_hub/src/models/f_net/f_net_presets.py,sha256=IP_ImbHzZScyMJBeWWgGDXduAbjddwdFpGGwO5JQwIE,1640
137
- keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=IwgxMpYGNHS6KNZ-d-2ecxjbX4zSMyDD4qWSUdXYhl0,5390
135
+ keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=p6zZehLEywEpIMqolHhZHna2V0RlSiMcSv0TCOCJVCQ,5456
138
136
  keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=zERq-1mayzI6FHMlwckHlruN406jswxu0jWq1i9VnE0,5408
139
137
  keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=kqjxe_G8_4mEXsICcJC2HSwvhtIfwdaq1Q8bTTqkZps,2872
140
138
  keras_hub/src/models/falcon/__init__.py,sha256=Djjo5fD8XJTMQA8x5DOVbqzaHPsWos45BvxTuGuFvPE,843
@@ -142,7 +140,6 @@ keras_hub/src/models/falcon/falcon_attention.py,sha256=1U__Yfv0BcEm61zMsqHIGu6XZ
142
140
  keras_hub/src/models/falcon/falcon_backbone.py,sha256=fyV1ssWMSq87_Rt13kWpwiIpRRRlGm3qTKgCYvK991Q,6012
143
141
  keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=Fdh_36XpFiItwk9Gy_wxForY9LtoA8-OkosTU3VG3_E,11419
144
142
  keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=rGZ9kWVbb0NnncvgRoQ2BfcBCwIDBLIewCbeq7fuXzo,3619
145
- keras_hub/src/models/falcon/falcon_preprocessor.py,sha256=5DbKNLwks_zXXoFG46tVpKumXEpJS0JMS4M4xY5IIjQ,6613
146
143
  keras_hub/src/models/falcon/falcon_presets.py,sha256=Ab6pydPHFSDK-3iuKPa8SI9Zfdf9iOcqBMhhCQlLUQo,1159
147
144
  keras_hub/src/models/falcon/falcon_tokenizer.py,sha256=LHJI2hXGO9f83NVMjoM-irWa01KynCjVcmo-CPNPf8M,3141
148
145
  keras_hub/src/models/falcon/falcon_transformer_decoder.py,sha256=uPtU0PC5XndPs6ak5mxAaGTmkQVlVrrEy_G4SwlkZ78,8710
@@ -151,8 +148,7 @@ keras_hub/src/models/gemma/gemma_attention.py,sha256=mKwcU_s0epJzRllxGVg-Bbc1CuC
151
148
  keras_hub/src/models/gemma/gemma_backbone.py,sha256=RO9O_AhUlboUzBYxYFDFFdYBjaXaDifPB-Yz2idnYZ8,13501
152
149
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=jOy_X0QR-olMfCPyFtmXRZSllWz3oy10JYwLzAPtXAg,17357
153
150
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=uZdYAAMIeABh339U9qmSPVRxVXtU4Ko4nrih1nN0QX4,3498
154
- keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=GcMv7Xibgxliu2sGJWaZ_PXRJRuvexxE-NSQq4nbYmk,8172
155
- keras_hub/src/models/gemma/gemma_preprocessor.py,sha256=RlMu4Xsd5Vn24ReokzJDNuuAx3m-AfldMclNLgZWPX0,6503
151
+ keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=OgvSypSaKXNKatmua62HITyUzl79enh4x_sUZhBRItY,8173
156
152
  keras_hub/src/models/gemma/gemma_presets.py,sha256=7N5dcMjMb4gOb9ysCLdVqLFDpvV3bETiB6Hq2XrdGWA,9867
157
153
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=JZ3XDScSsAV9y8uM-uKrO-lyu3PNyXNynrJqVJQbJo0,3208
158
154
  keras_hub/src/models/gemma/rms_normalization.py,sha256=27nA9BjNVkwI-icHISK57qJl8wxRdWGM5g4K_DzjAeI,1419
@@ -160,7 +156,7 @@ keras_hub/src/models/gpt2/__init__.py,sha256=Oy1WReI1aRiW_EU-TMdhs5Srr-KNaYOfXAx
160
156
  keras_hub/src/models/gpt2/gpt2_backbone.py,sha256=WK0mJ1CRGIE0jfc7A3toslt_cFcynyU2jczjUJVSazc,7548
161
157
  keras_hub/src/models/gpt2/gpt2_causal_lm.py,sha256=88Dpewafe9lmLgkHNqxhk6TeLjX1uMx2Q2geU5xUPGY,17352
162
158
  keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py,sha256=-TE1IBKuHwbLbD--UKUsJq18IjRJDCM8DjRShWl3KMA,3578
163
- keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=rRgK8C0RNhbExRqpREVRluV1jxTK6tNsrGeZoA-BYqs,6575
159
+ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=gLIndASgIBxKRYzFjclAhMUkrSFUtZEVFsPXUXpiIyU,3766
164
160
  keras_hub/src/models/gpt2/gpt2_presets.py,sha256=v5OJ5A0oUfxJamPFOkhoQvsrcqmkhOH7fFzHiQroR-w,3020
165
161
  keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=Xq_Du7TiR6IntGZzsmj1rtNQq7yFa1U-E4Do95qsS68,3202
166
162
  keras_hub/src/models/gpt_neo_x/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -169,7 +165,6 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=OhsAHoR7lYRlu38jB3YR
169
165
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=YO_fc5AcGYmaGC8z0Ehpws_SuUCcdtozyBlbcjVRn9s,8276
170
166
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=Ugl9p6q7Pts3x0tboH2ZpL79RmNPpeitSNszcs88Wmk,2543
171
167
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=vss1MngY_SQ2nSUjHsZkDDmpeASQOVscTb1-7jpTosM,10314
172
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py,sha256=NGLHuh61iRt3uEScua06YJE7eHVirEJ1wjIQjc-bH8I,5230
173
168
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=b6uu6xlKVBUdBwsw5t2vP5OisXk5QJd4mvjiizPAds8,2577
174
169
  keras_hub/src/models/llama/__init__.py,sha256=XBMAoTkyvCPk4ia7ODOy_AdxahE-BWon7wxXGv_bF-E,837
175
170
  keras_hub/src/models/llama/llama_attention.py,sha256=m8DmMnYhl9zCXJFN_UGh7MHgyy8l3_FZcecAoKSJg8o,7779
@@ -178,14 +173,12 @@ keras_hub/src/models/llama/llama_causal_lm.py,sha256=i7o4vNO_tnY_hHD11V6mdkRJxkK
178
173
  keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=PHABWx2GMAwbr676JMYLkKMsV6KCA_Ry8-8wv5gUw_c,3634
179
174
  keras_hub/src/models/llama/llama_decoder.py,sha256=42Pc6lpwM6ycnYR2PW6CO3C8lyn6N7vop9KcAIow1II,9208
180
175
  keras_hub/src/models/llama/llama_layernorm.py,sha256=VifoRNrwWmLimQ4cWbJpVCPSegkijpxFERZcoObtV9o,1635
181
- keras_hub/src/models/llama/llama_preprocessor.py,sha256=iOiiIqafYByXAoz70TIKX7w8qpBWAIAYj0hffHxuXIs,6741
182
176
  keras_hub/src/models/llama/llama_presets.py,sha256=8ZaxSmDTRif8BMGKs8Ib3ijwspSIiV_arNzCwg5P5-U,3015
183
177
  keras_hub/src/models/llama/llama_tokenizer.py,sha256=W80pMsE2cAl_DE5u2Bzig9GM0viPS4nWQaw4rfslvHY,2567
184
178
  keras_hub/src/models/llama3/__init__.py,sha256=g2n4QAR2tpn5waeeFgpUV4xgW7tnwnZ1An_Mqg0D09M,843
185
179
  keras_hub/src/models/llama3/llama3_backbone.py,sha256=VxX3cMpzra7m7TaG2W-gTllWE5Kvl8yOkES3GSUzXl8,3441
186
180
  keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=tSJQGbKY09bJMnLfjERrc_0qHFUd9Lp8kxMGJdtkJU8,2126
187
181
  keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=4VknKZdH8-_wVFj-dU6aJxkrHCPyLrICWehbFGroi3k,3650
188
- keras_hub/src/models/llama3/llama3_preprocessor.py,sha256=Pq_FkJiynuzYtAG7JNuDD-s9_fS_8-YM2TTvCvoQRf8,1033
189
182
  keras_hub/src/models/llama3/llama3_presets.py,sha256=5v1MZ77mBMxU4tHGbO03jwHxKflUpjLj0RnCU8Ksa-U,2588
190
183
  keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=Q0EjX3MzxQzo94eEO1EXxfNsyhuQcvl2fX1JfZUSo0w,1375
191
184
  keras_hub/src/models/mistral/__init__.py,sha256=EpGh-S5Q7iH9sGxbRi2yKM32_0eClKBt5ZL-2ME-oyo,849
@@ -194,7 +187,6 @@ keras_hub/src/models/mistral/mistral_backbone.py,sha256=2Sp0rtBQKrSM2RvaCVX1ulHq
194
187
  keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=Twx-kzVz0EP2losFCuS03G5J8LBE-BOswPLZ_PZxpd4,13671
195
188
  keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=Cpx2Sns2irEYp_LoTpkKecrZN3KmO8Cn9GnDLZI4AsU,3665
196
189
  keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=Nlo5iYrpOSYDdPODJuXpK5Wpl3INCSuoLzt4MM4ShYc,1648
197
- keras_hub/src/models/mistral/mistral_preprocessor.py,sha256=pmEOhs8Y_O5vr7VsR6dwY3mMZze4FtTEwZwb9QqENaQ,6776
198
190
  keras_hub/src/models/mistral/mistral_presets.py,sha256=uF1Q4zllcV1upIlqmn3gxhVWzot6Olw9PSUi-qwU2cw,1914
199
191
  keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=pO7mpzYgRDFpIrsmLBL3zxkadrOE0xfFj30c2nHN42c,2591
200
192
  keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=6CdaZt1lQ9VcLz_OoYroqiqvsZfq9H5VGaWab25aCRI,10127
@@ -209,7 +201,6 @@ keras_hub/src/models/opt/__init__.py,sha256=DiiylcsbseSQ8te8KWZ6BTIaKYSzXHUPGBgF
209
201
  keras_hub/src/models/opt/opt_backbone.py,sha256=cbm9I7d3QlGD8l2W1eK8esqc5gm77tpwxg4t9nC-FtA,6460
210
202
  keras_hub/src/models/opt/opt_causal_lm.py,sha256=z6M8cQV-c8q7HmikNA9RuvsMMvQYF21-ZcC0nVGfnp8,11438
211
203
  keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=UzjIzQYtPfIjIyQ6PjnOHU2rstiy7J3uRuwnMnuXuRs,3687
212
- keras_hub/src/models/opt/opt_preprocessor.py,sha256=YntudfRQvN6b-R4Ku2XSHOs2Fq0z0fynznTFj883FjM,6553
213
204
  keras_hub/src/models/opt/opt_presets.py,sha256=6sLgktbfdi8aEX4ntGL1y7uBvbrLUlSFSvU0Owg4GR4,2914
214
205
  keras_hub/src/models/opt/opt_tokenizer.py,sha256=TG0tlJ3jryDKXPo8AruKyP51eCdKKjJWv1QtVHfbTOc,3144
215
206
  keras_hub/src/models/pali_gemma/__init__.py,sha256=OFu-CQIlUlUox6tGkKvNePwc3ZkPGcmOVsBqcP-w5Fw,873
@@ -219,7 +210,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=dMCo
219
210
  keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=fXLO4uHtWYTuEPmyN9q-F0AfnA1TAcq2Yl20pFpLt1s,5761
220
211
  keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=Wm1A-HuOMxesAHFbEpP5ZkPbdDaVW5CTTwkyFpI-WdI,990
221
212
  keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=cG5cV2bkiDJlKDiHX76BpnClsY5PcmLDezDg7emeiA4,2986
222
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=PHccqU1vc9S4jtplslt2KlZe2vzcNmcWUIcPurcsEns,3003
213
+ keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=7F1TQql3DEN517iVbNL60u6fQPimrGQvWBYh16ng8JU,3000
223
214
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=JUfJuyobcEb60jp3sIxlq12gIH_qsn97h4hsecimipQ,19092
224
215
  keras_hub/src/models/phi3/__init__.py,sha256=ENAOZhScWf9RbPmkiuICR5gr36ZMUn4AniLvJOrykj8,831
225
216
  keras_hub/src/models/phi3/phi3_attention.py,sha256=BcYApteLjbrCzube7jHVagc0mMpDCReRyvsQhQcJzY8,9828
@@ -228,22 +219,25 @@ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=E-7iZfaQ75R4kAS7Gmsho2-obwQM6
228
219
  keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=QsYrXZ2V3IlqBU-9zu0Ebf5EQZe8fnudVDp-ra0Enwg,3629
229
220
  keras_hub/src/models/phi3/phi3_decoder.py,sha256=x2Bq_lhlPhImloTXDw5w1Cr73tRB8Ta9qpqS44z0EuE,10172
230
221
  keras_hub/src/models/phi3/phi3_layernorm.py,sha256=r8Pqn9uHZSs3CbDbtjxED7cHtqj4a9TvQlGkzX5oxY8,1634
231
- keras_hub/src/models/phi3/phi3_preprocessor.py,sha256=ierCpORmBCZrQknk5uQnpBCcqyFXOrt4NLH2xL0crNo,6775
232
222
  keras_hub/src/models/phi3/phi3_presets.py,sha256=S7_gIqPxU5FQAEnAE_68UrfGGSLOMvoVxL8SrMig0Ao,2195
233
223
  keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=QVJIgpOw6iMicGrsPdW8eF84vV_stf0Tqm2qBJdsKH0,5597
234
224
  keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=hlA-u2sTRYARDW3ABICPeiOYW1AJwr-5kvZk3EB5z7M,2577
235
225
  keras_hub/src/models/resnet/__init__.py,sha256=41gttaQ7gt_ZaqDa_GKuMPfIk5c88-GrdC1h9fBUTXc,843
236
- keras_hub/src/models/resnet/resnet_backbone.py,sha256=vBQ4H9i3WfWxdfHyZg4ES3t36gf0iIUrSXyp73ZrI18,33709
237
- keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=3F7XGc3C_FOtW7zC0Au5LvPgKzJ2RDs-XzzXQottvyU,4659
226
+ keras_hub/src/models/resnet/resnet_backbone.py,sha256=n9aKIpQcJCsAZrBiiN1vxUMHeQgYudRHdu_MsdRQZqw,33260
227
+ keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=I-dmx0O_ES3m3W5D4ICCux5zzDMZ2cM0vYGM9CDi5AE,5395
238
228
  keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=Vrs9NBZRL5fgDXXY27GZJg5xMa5_wovi8A2z8kFl2nc,1129
239
229
  keras_hub/src/models/resnet/resnet_image_converter.py,sha256=820drIU5Kkib7gC7T418mmrhsBHSkenfEiZ6-fkChv0,961
240
- keras_hub/src/models/resnet/resnet_presets.py,sha256=Tcl_hzHMeYnvEGLbZMaAJ-td0QfZRJ9TtRf7lUqMJiQ,3442
230
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=DZoufeJyrVDL4aHSztQNzZj8Cb_OGX53Fn0Ze4RuZCI,3550
231
+ keras_hub/src/models/retinanet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
232
+ keras_hub/src/models/retinanet/anchor_generator.py,sha256=VQwgIAWh-6s28TU8MHFdl556U6h7rfF9B9iVI_zwI7c,7027
233
+ keras_hub/src/models/retinanet/box_matcher.py,sha256=SvGn_6d5sfjq522UaHpxVCE2S5Nwml_aj5yAKApTNE4,11420
234
+ keras_hub/src/models/retinanet/non_max_supression.py,sha256=5rDXA1Lk27T1TK3cwTrRIAbh8ceZLcbL4Koei96bBVQ,21522
241
235
  keras_hub/src/models/roberta/__init__.py,sha256=P-9HOooyuSriDclHrf0YvdRy95bU08VPU7P8nBsy59U,849
242
236
  keras_hub/src/models/roberta/roberta_backbone.py,sha256=KR3y11RpA4dvKmQ2HaRoWNTLGnLs6Lqx-HXYejQt4G8,6926
243
237
  keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=N0r6XEZAVMNgyTorFQzyT8EiEXtWO3R2PnL6s2P3YDQ,4763
244
238
  keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py,sha256=hHoIHC-VRQN3hskTxlrBwDjKGeUqkm03IjV9IxTdPMQ,6437
245
239
  keras_hub/src/models/roberta/roberta_presets.py,sha256=Ys5WnfBCzrRDLVLrAm412ojHY0yyj6KtSJWslN8re6g,1764
246
- keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=qTxGYSpjmYdHr4CuLf7DlUl1_eM6E61rJqflt-J4kvo,7199
240
+ keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=A4psd1Ef0ZSPMCsBpSLe5xmZqsFSn5XZ8gr_ekL9EoU,7268
247
241
  keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=xK0dGPi3nZ5mUoRtTSE8OhibQSaOvzkGELhPAJAB5sc,6579
248
242
  keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=RlKxa0eo7KYgRH5HSHrflna2LkB9pS6qjm2cr4DbuBg,3299
249
243
  keras_hub/src/models/stable_diffusion_v3/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -283,7 +277,7 @@ keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py,sha256=Msm1U2pJbrC3XfeC
283
277
  keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py,sha256=37_Qn1x-_TTHGG_29VlbQcRb41pAiTK-c88jlrt098s,4965
284
278
  keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py,sha256=a5uVVbROS30hqh2AYmpz0Bo8HWfuwOXSS5pPoEQzJlE,6581
285
279
  keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=LsaoAJ8ddyTDCJ6JmVlVy00C4r8khZZOg3YmW3aY5YA,1762
286
- keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=XAKudzOipoXC3LwbDBfJEb1DskkpFdmyLXf5kjaBRqg,7752
280
+ keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=XN4o9CVeCXiEBM2L1nHBksJXYQ643P9EY20FllvqpGo,7824
287
281
  keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py,sha256=DFnJMgim_NJrzppWNSSUDi3sUASiKithFXCfamtsuZo,7112
288
282
  keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py,sha256=8r5ATeJenQERGhjhw_gB6tvID256VHjH5ASTHSsd8mA,7361
289
283
  keras_hub/src/models/xlnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -301,25 +295,27 @@ keras_hub/src/samplers/serialization.py,sha256=Z8u-nRdv7K1RPS_0rMYJwkunoFmI2xPCj
301
295
  keras_hub/src/samplers/top_k_sampler.py,sha256=xLexmP7FrW_W2657ObeJUgbeEox8AbB9uXIBKODVuKU,2836
302
296
  keras_hub/src/samplers/top_p_sampler.py,sha256=Mx4Ytti2BsVh6uLPnBeNZ5znBjvXrnDndmbMlMAMRbk,3986
303
297
  keras_hub/src/tests/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
304
- keras_hub/src/tests/test_case.py,sha256=9iZdtmLRyYBK11Dc07Y7KS3ny19rpjvrdWnfA2boIeQ,24888
298
+ keras_hub/src/tests/test_case.py,sha256=i8-jrXric88acmQTGIn0KCp157EsWZBCx88qHKyAjSM,25730
305
299
  keras_hub/src/tokenizers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
306
- keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=Ij1zU5QCRPcpsqcWQmZW91dn-c7ZcZF48MmhgjPBs3k,24389
300
+ keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=5VTFUGSQGd_NMwuQc9kBA5KU1rLcJpNYnRPl28NMFWo,24435
307
301
  keras_hub/src/tokenizers/byte_tokenizer.py,sha256=ueijdnipIG7G4a_cals0y6t7oVm-dyEcSVY2JkX_5i4,11234
308
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=1V4xQeYGyZSe7r8TVukKIbLG06rifiSPoQdK9GUc9ZM,10102
302
+ keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=nmYwaoK4yLaqp1c0JxXI4JZS3fmR4qIyuRnf2zExjmg,10148
309
303
  keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=0VZ-5QdvVKFp8_tSZiM8qROYhrrfrg-GCJ1BllXSd1g,5420
310
304
  keras_hub/src/tokenizers/tokenizer.py,sha256=sySYL7Nym6N-NIXk1pu9zsgbfFIOGvPvNRy-R3kXlzA,10098
311
305
  keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=z720-paGm8tV-rhs0B8QHD3P2syPKVdXMyQqLdSjTwM,14118
312
- keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=MH-okrT7Z_EqNKFAk0oz9rXgqcuLkGZGEA9KldjByXs,20483
306
+ keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=AWFCHCxgRJ3_iHLxi1s9gTIjTrdtqvJAxqN1ugEXLvc,20529
313
307
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=_W07w57ZHuqpAK7U8Qs4neFW4UEzhRdfyVy2oDs02d8,7136
314
308
  keras_hub/src/utils/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
315
309
  keras_hub/src/utils/keras_utils.py,sha256=r0ro8lBfqCgWT_S5dXMVuj_nQNxe_Dwsowrc1dSdHT0,2555
316
310
  keras_hub/src/utils/pipeline_model.py,sha256=9GNlV8RBV18oFQUkXDCizyyBI8sYhB_7ejxI2dEPVdw,9610
317
- keras_hub/src/utils/preset_utils.py,sha256=QZ6KN4wAkoWT8oyzdLXGRPJ07AdFJjPttJhSa8tiZ0k,30105
311
+ keras_hub/src/utils/preset_utils.py,sha256=jMKJBYJO4AlT1DNis6kKTwDZ9P-JdfJC5PAU3e7ZFz0,29547
318
312
  keras_hub/src/utils/python_utils.py,sha256=G5oCVQggmqgkgD1NXuBQEgNCFmDSevYv7bz-1cAVFAs,787
319
- keras_hub/src/utils/tensor_utils.py,sha256=ucUWlGjb293YpVt_k9TcyBST4-IP6JxpdgfwgenTh9I,11235
313
+ keras_hub/src/utils/tensor_utils.py,sha256=XpWORE8iUzHXv1E1akiYDep07ndZJRKvjsKVljMvtUU,11362
314
+ keras_hub/src/utils/imagenet/__init__.py,sha256=AK2s8L-VARI5OmlT6G3vtlKIVyjwLfgVwXfxzhhSCq4,585
315
+ keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=0iHrAQbh5DCa9Dh7tJiQeJc7AGzNO7j0cFEWS2Of16w,39889
320
316
  keras_hub/src/utils/timm/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
321
- keras_hub/src/utils/timm/convert_resnet.py,sha256=N2fTT6CYxl6pzek_Jy2S33XQ-gD9LN1l9UzsA13tOqM,6826
322
- keras_hub/src/utils/timm/preset_loader.py,sha256=m6MosWuiMlDuUaYuREQtPlqXd69j6YszwGzowLQHRUk,2963
317
+ keras_hub/src/utils/timm/convert_resnet.py,sha256=hZNj_kpwSA9Jp3NRDHtCPzHFzRKKPnidKQUAoqcdENk,6810
318
+ keras_hub/src/utils/timm/preset_loader.py,sha256=EgS5xBP3sWYiTgKmOAMmj3b3kRWcPnsWLieReLHZ178,2928
323
319
  keras_hub/src/utils/transformers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
324
320
  keras_hub/src/utils/transformers/convert_albert.py,sha256=7b9X1TLrWfHieoeX_K-EXTagkl4Rp9AfPjsPrwArBGY,8280
325
321
  keras_hub/src/utils/transformers/convert_bart.py,sha256=RXmPf_XUZrUyqDaOV9T7qVNEP4rAVR44oK1aRZI0v78,14996
@@ -332,7 +328,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=4QStizMS6ESEPjSI-ls6j
332
328
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=BT5eX1QzbjCQCopbMstiejQQWQiB_N77bpD5FMUygEo,11234
333
329
  keras_hub/src/utils/transformers/preset_loader.py,sha256=9x9hLhDh_6PAHG5gay5rVoEVyt-gXTQGrnprjMLKvCM,3294
334
330
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=2O8lcCf9yIFt5xiRVOtF1ZkPb5pfhOfDJotBaanD9Zo,3547
335
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/METADATA,sha256=_sokc9t1Wi03lq1oYRKs8fIeYingPLmWaWi6eQydrIQ,1251
336
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
337
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
338
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/RECORD,,
331
+ keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA,sha256=PSZLjVmxpfU4G_i52vw-twg4xESYRhyqicE-Ctk5mbA,7059
332
+ keras_hub_nightly-0.16.0.dev2024092017.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
333
+ keras_hub_nightly-0.16.0.dev2024092017.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
334
+ keras_hub_nightly-0.16.0.dev2024092017.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (74.1.2)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,264 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import keras
17
-
18
- from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
- from keras_hub.src.models.bart.bart_backbone import BartBackbone
21
- from keras_hub.src.models.bart.bart_tokenizer import BartTokenizer
22
- from keras_hub.src.models.preprocessor import Preprocessor
23
- from keras_hub.src.utils.tensor_utils import preprocessing_function
24
-
25
-
26
- @keras_hub_export("keras_hub.models.BartPreprocessor")
27
- class BartPreprocessor(Preprocessor):
28
- """A BART preprocessing layer which tokenizes and packs inputs.
29
-
30
- This preprocessing layer will do three things:
31
-
32
- 1. Tokenize both encoder inputs and decoder inputs using the `tokenizer`.
33
- Both inputs can contain only one segment.
34
- 2. Add the appropriate special tokens - `"<s>"`, `"</s>"` and `"<pad>"`.
35
- 3. Construct a dictionary with keys `"encoder_token_ids"`,
36
- `"encoder_padding_mask"`, `"decoder_token_ids"`, `"decoder_padding_mask"`
37
- that can be passed directly to a BART model.
38
-
39
- Args:
40
- tokenizer: A `keras_hub.models.BartTokenizer` instance.
41
- encoder_sequence_length: The length of the packed encoder inputs.
42
- decoder_sequence_length: The length of the packed decoder inputs.
43
-
44
- Call arguments:
45
- x: A dictionary with `encoder_text` and `decoder_text` as its keys.
46
- Each value in the dictionary should be a tensor of single string
47
- sequences. Inputs may be batched or unbatched. Raw python inputs
48
- will be converted to tensors.
49
- y: Any label data. Will be passed through unaltered.
50
- sample_weight: Any label weight data. Will be passed through unaltered.
51
-
52
- Examples:
53
-
54
- Directly calling the layer on data.
55
- ```python
56
- preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
57
-
58
- # Preprocess unbatched inputs.
59
- inputs = {
60
- "encoder_text": "The fox was sleeping.",
61
- "decoder_text": "The fox was awake."
62
- }
63
- preprocessor(inputs)
64
-
65
- # Preprocess batched inputs.
66
- inputs = {
67
- "encoder_text": ["The fox was sleeping.", "The lion was quiet."],
68
- "decoder_text": ["The fox was awake.", "The lion was roaring."]
69
- }
70
- preprocessor(inputs)
71
-
72
- # Custom vocabulary.
73
- vocab = {
74
- "<s>": 0,
75
- "<pad>": 1,
76
- "</s>": 2,
77
- "Ġafter": 5,
78
- "noon": 6,
79
- "Ġsun": 7,
80
- }
81
- merges = ["Ġ a", "Ġ s", "Ġ n", "e r", "n o", "o n", "Ġs u", "Ġa f", "no on"]
82
- merges += ["Ġsu n", "Ġaf t", "Ġaft er"]
83
-
84
- tokenizer = keras_hub.models.BartTokenizer(
85
- vocabulary=vocab,
86
- merges=merges,
87
- )
88
- preprocessor = keras_hub.models.BartPreprocessor(
89
- tokenizer=tokenizer,
90
- encoder_sequence_length=20,
91
- decoder_sequence_length=10,
92
- )
93
- inputs = {
94
- "encoder_text": "The fox was sleeping.",
95
- "decoder_text": "The fox was awake."
96
- }
97
- preprocessor(inputs)
98
- ```
99
-
100
- Mapping with `tf.data.Dataset`.
101
- ```python
102
- preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
103
-
104
- # Map labeled single sentences.
105
- features = {
106
- "encoder_text": tf.constant(
107
- ["The fox was sleeping.", "The lion was quiet."]
108
- ),
109
- "decoder_text": tf.constant(
110
- ["The fox was awake.", "The lion was silent."]
111
- )
112
- }
113
- labels = tf.constant(["True", "False"])
114
- ds = tf.data.Dataset.from_tensor_slices((features, labels))
115
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
116
-
117
- # Map unlabeled single sentences.
118
- features = {
119
- "encoder_text": tf.constant(
120
- ["The fox was sleeping.", "The lion was quiet."]
121
- ),
122
- "decoder_text": tf.constant(
123
- ["The fox was awake.", "The lion was roaring."]
124
- )
125
- }
126
- ds = tf.data.Dataset.from_tensor_slices(features)
127
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
128
- ```
129
- """
130
-
131
- backbone_cls = BartBackbone
132
- tokenizer_cls = BartTokenizer
133
-
134
- def __init__(
135
- self,
136
- tokenizer,
137
- encoder_sequence_length=1024,
138
- decoder_sequence_length=1024,
139
- **kwargs,
140
- ):
141
- super().__init__(**kwargs)
142
- self.tokenizer = tokenizer
143
- self.encoder_packer = None
144
- self.decoder_packer = None
145
- self.encoder_sequence_length = encoder_sequence_length
146
- self.decoder_sequence_length = decoder_sequence_length
147
-
148
- def build(self, input_shape):
149
- # Defer packer creation to `build()` so that we can be sure tokenizer
150
- # assets have loaded when restoring a saved model.
151
-
152
- # TODO: Use `MultiSegmentPacker` instead of `StartEndPacker` once we
153
- # want to move to multi-segment packing and have improved
154
- # `MultiSegmentPacker`'s performance.
155
- self.encoder_packer = StartEndPacker(
156
- start_value=self.tokenizer.start_token_id,
157
- end_value=self.tokenizer.end_token_id,
158
- pad_value=self.tokenizer.pad_token_id,
159
- sequence_length=self.encoder_sequence_length,
160
- return_padding_mask=True,
161
- )
162
-
163
- # The decoder is packed a bit differently; the format is as follows:
164
- # `[end_token_id, start_token_id, tokens..., end_token_id, padding...]`.
165
- self.decoder_packer = StartEndPacker(
166
- start_value=[
167
- self.tokenizer.end_token_id,
168
- self.tokenizer.start_token_id,
169
- ],
170
- end_value=self.tokenizer.end_token_id,
171
- pad_value=self.tokenizer.pad_token_id,
172
- sequence_length=self.decoder_sequence_length,
173
- return_padding_mask=True,
174
- )
175
- self.built = True
176
-
177
- @preprocessing_function
178
- def call(
179
- self,
180
- x,
181
- y=None,
182
- sample_weight=None,
183
- *,
184
- encoder_sequence_length=None,
185
- decoder_sequence_length=None,
186
- # `sequence_length` is an alias for `decoder_sequence_length`
187
- sequence_length=None,
188
- ):
189
- if not (
190
- isinstance(x, dict)
191
- and all(k in x for k in ("encoder_text", "decoder_text"))
192
- ):
193
- raise ValueError(
194
- '`x` must be a dictionary, containing the keys `"encoder_text"`'
195
- f' and `"decoder_text"`. Received x={x}.'
196
- )
197
-
198
- if encoder_sequence_length is None:
199
- encoder_sequence_length = self.encoder_sequence_length
200
- decoder_sequence_length = decoder_sequence_length or sequence_length
201
- if decoder_sequence_length is None:
202
- decoder_sequence_length = self.decoder_sequence_length
203
-
204
- encoder_inputs = self.tokenizer(x["encoder_text"])
205
- encoder_token_ids, encoder_padding_mask = self.encoder_packer(
206
- encoder_inputs,
207
- sequence_length=encoder_sequence_length,
208
- )
209
-
210
- decoder_inputs = self.tokenizer(x["decoder_text"])
211
- decoder_token_ids, decoder_padding_mask = self.decoder_packer(
212
- decoder_inputs,
213
- sequence_length=decoder_sequence_length,
214
- )
215
-
216
- x = {
217
- "encoder_token_ids": encoder_token_ids,
218
- "encoder_padding_mask": encoder_padding_mask,
219
- "decoder_token_ids": decoder_token_ids,
220
- "decoder_padding_mask": decoder_padding_mask,
221
- }
222
-
223
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
224
-
225
- def get_config(self):
226
- config = super().get_config()
227
- config.update(
228
- {
229
- "encoder_sequence_length": self.encoder_sequence_length,
230
- "decoder_sequence_length": self.decoder_sequence_length,
231
- }
232
- )
233
- return config
234
-
235
- @property
236
- def encoder_sequence_length(self):
237
- """The padded length of encoder input sequences."""
238
- return self._encoder_sequence_length
239
-
240
- @encoder_sequence_length.setter
241
- def encoder_sequence_length(self, value):
242
- self._encoder_sequence_length = value
243
- if self.encoder_packer is not None:
244
- self.encoder_packer.sequence_length = value
245
-
246
- @property
247
- def decoder_sequence_length(self):
248
- """The padded length of decoder input sequences."""
249
- return self._decoder_sequence_length
250
-
251
- @decoder_sequence_length.setter
252
- def decoder_sequence_length(self, value):
253
- self._decoder_sequence_length = value
254
- if self.decoder_packer is not None:
255
- self.decoder_packer.sequence_length = value
256
-
257
- @property
258
- def sequence_length(self):
259
- """Alias for `decoder_sequence_length`."""
260
- return self.decoder_sequence_length
261
-
262
- @sequence_length.setter
263
- def sequence_length(self, value):
264
- self.decoder_sequence_length = value