keras-hub-nightly 0.15.0.dev20240911134614__py3-none-any.whl → 0.16.0.dev2024092017__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +0 -6
- keras_hub/api/__init__.py +1 -0
- keras_hub/api/models/__init__.py +22 -17
- keras_hub/{src/models/llama3/llama3_preprocessor.py → api/utils/__init__.py} +7 -8
- keras_hub/src/api_export.py +15 -9
- keras_hub/src/models/albert/albert_text_classifier.py +6 -1
- keras_hub/src/models/bert/bert_text_classifier.py +6 -1
- keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +6 -1
- keras_hub/src/models/densenet/densenet_backbone.py +1 -1
- keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +6 -1
- keras_hub/src/models/f_net/f_net_text_classifier.py +6 -1
- keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +7 -78
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +1 -1
- keras_hub/src/models/preprocessor.py +1 -5
- keras_hub/src/models/resnet/resnet_backbone.py +3 -16
- keras_hub/src/models/resnet/resnet_image_classifier.py +26 -3
- keras_hub/src/models/resnet/resnet_presets.py +12 -12
- keras_hub/src/models/retinanet/__init__.py +13 -0
- keras_hub/src/models/retinanet/anchor_generator.py +175 -0
- keras_hub/src/models/retinanet/box_matcher.py +259 -0
- keras_hub/src/models/retinanet/non_max_supression.py +578 -0
- keras_hub/src/models/roberta/roberta_text_classifier.py +6 -1
- keras_hub/src/models/task.py +6 -6
- keras_hub/src/models/text_classifier.py +12 -1
- keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +6 -1
- keras_hub/src/tests/test_case.py +21 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +1 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +1 -0
- keras_hub/src/tokenizers/word_piece_tokenizer.py +1 -0
- keras_hub/src/utils/imagenet/__init__.py +13 -0
- keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
- keras_hub/src/utils/preset_utils.py +24 -33
- keras_hub/src/utils/tensor_utils.py +14 -14
- keras_hub/src/utils/timm/convert_resnet.py +0 -1
- keras_hub/src/utils/timm/preset_loader.py +6 -7
- keras_hub/src/version_utils.py +1 -1
- keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA +202 -0
- {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/RECORD +41 -45
- {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/WHEEL +1 -1
- keras_hub/src/models/bart/bart_preprocessor.py +0 -264
- keras_hub/src/models/bloom/bloom_preprocessor.py +0 -178
- keras_hub/src/models/electra/electra_preprocessor.py +0 -155
- keras_hub/src/models/falcon/falcon_preprocessor.py +0 -180
- keras_hub/src/models/gemma/gemma_preprocessor.py +0 -184
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -138
- keras_hub/src/models/llama/llama_preprocessor.py +0 -182
- keras_hub/src/models/mistral/mistral_preprocessor.py +0 -183
- keras_hub/src/models/opt/opt_preprocessor.py +0 -181
- keras_hub/src/models/phi3/phi3_preprocessor.py +0 -183
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/METADATA +0 -33
- {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/top_level.txt +0 -0
@@ -1,14 +1,15 @@
|
|
1
|
-
keras_hub/__init__.py,sha256=
|
2
|
-
keras_hub/api/__init__.py,sha256=
|
1
|
+
keras_hub/__init__.py,sha256=La-s5SQDd0312puWDSbPJ2XYxFXtg0jsCdUa2LMY-Z8,1440
|
2
|
+
keras_hub/api/__init__.py,sha256=8EwhEBO-o-92lvGv6M5zOdkNL9Bd3xfutlfGNJ8QwBE,1109
|
3
3
|
keras_hub/api/bounding_box/__init__.py,sha256=LNSVZLB1WJ9hMg0wxt7HTfFFd9uAFviH9x9CnfJYzBA,1682
|
4
4
|
keras_hub/api/layers/__init__.py,sha256=4OlmzaQ0I8RuHp7Ot9580loeElsV4QeB2Lon8ZB_a1Q,2600
|
5
5
|
keras_hub/api/metrics/__init__.py,sha256=tgQfooPHzlq6w34RHfro6vO8IUITLTf-jU2IWEBxxUM,966
|
6
|
-
keras_hub/api/models/__init__.py,sha256=
|
6
|
+
keras_hub/api/models/__init__.py,sha256=0BRVIXtv8DrIbE5n1JeAR_gVeF1_sG_zeMI0cR0rjBI,13396
|
7
7
|
keras_hub/api/samplers/__init__.py,sha256=l56H4y3h_HlRn_PpeMyZ6vC7228EH_BVFo4Caay-zQ8,1315
|
8
8
|
keras_hub/api/tokenizers/__init__.py,sha256=nzMwKmxkMCOiYB35BIgxHNveCM9WoYRp7ChhmVK8MIM,3042
|
9
|
+
keras_hub/api/utils/__init__.py,sha256=4IXDgmXqFzqrCK2MPgkih0Ye1s-8hrlBaUk-n5Kqwl4,800
|
9
10
|
keras_hub/src/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
10
|
-
keras_hub/src/api_export.py,sha256=
|
11
|
-
keras_hub/src/version_utils.py,sha256=
|
11
|
+
keras_hub/src/api_export.py,sha256=agkICNX5rGcJy_Bj29vaNmhH3no9KqJBO-V3MaqR6HQ,2062
|
12
|
+
keras_hub/src/version_utils.py,sha256=vh5ESN52dm8BwVQf6-R6UvY3JMG3DW8LHanrErKekC8,806
|
12
13
|
keras_hub/src/bounding_box/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
13
14
|
keras_hub/src/bounding_box/converters.py,sha256=V2ti6xPpaBgeLKbTpCsHsABdYOYASerIKX9oWqeOjHo,18450
|
14
15
|
keras_hub/src/bounding_box/formats.py,sha256=5bbHO-n2ADsKIOBJDHMvIPCeNBaV1_mj-NVCgBKNiu8,4453
|
@@ -57,23 +58,22 @@ keras_hub/src/models/image_classifier.py,sha256=72qxEL01DSKE-Ugg4tpZqkLQpYf15bPf
|
|
57
58
|
keras_hub/src/models/image_classifier_preprocessor.py,sha256=Az9596ow470lqCzYF0I-GUkHbVfWx4GiynvpwGws6f0,3199
|
58
59
|
keras_hub/src/models/masked_lm.py,sha256=x8jeqgYsKsgeVPAirVRPHDdT21FAhqJ45pb8mIPc410,4161
|
59
60
|
keras_hub/src/models/masked_lm_preprocessor.py,sha256=Z6mo0szZp5Kfn6LmtY7EjZWGxLdR4c75hfw97V310Kc,6241
|
60
|
-
keras_hub/src/models/preprocessor.py,sha256=
|
61
|
+
keras_hub/src/models/preprocessor.py,sha256=PZruA4xHS_w0-9hWLD1iJ79aOQMP81aJPYXl5SpjXak,7174
|
61
62
|
keras_hub/src/models/seq_2_seq_lm.py,sha256=PmdgShThfg2VIYMviKsU11jD3KgBZnYZGZp9HXVO4LU,2449
|
62
63
|
keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=fQv-zg7vvIpy3ucCbIkiey8AGH7rEuhDpCilul2JjsE,10272
|
63
|
-
keras_hub/src/models/task.py,sha256=
|
64
|
-
keras_hub/src/models/text_classifier.py,sha256=
|
64
|
+
keras_hub/src/models/task.py,sha256=elkNVXUAbUskRprIBmTDiJkFheLo1mLTX9lppelHucc,14432
|
65
|
+
keras_hub/src/models/text_classifier.py,sha256=BhsLovKyIVslm4ibrzFqtxrqljyNehk1lTpQ-r3bq5k,4744
|
65
66
|
keras_hub/src/models/text_classifier_preprocessor.py,sha256=6Mkypx3UUj4gUmLlocaLZBc2Addk_pshKPWwy7wb788,5307
|
66
67
|
keras_hub/src/models/albert/__init__.py,sha256=RuIE1aGly5hA0OHBu_QA09XairoViM1kvS6K3kzVB3Q,843
|
67
68
|
keras_hub/src/models/albert/albert_backbone.py,sha256=MNurFI3ansonMPJi8gmRf0dXwMwE38C-DJzqdkuLs9o,10659
|
68
69
|
keras_hub/src/models/albert/albert_masked_lm.py,sha256=Y8N5HqQ3fUl4lUG4T_vbn_zI-Pink8oDFRKlxfGm6S8,4712
|
69
70
|
keras_hub/src/models/albert/albert_masked_lm_preprocessor.py,sha256=v85sOAogJ4u4kfN0oq8_oVFf9AoFmqY7E48Czbucb6Y,5061
|
70
71
|
keras_hub/src/models/albert/albert_presets.py,sha256=LLn1rJQXFPee2QCM6z4EnrkZBYw7qe3vmLn5XvDFfSA,2795
|
71
|
-
keras_hub/src/models/albert/albert_text_classifier.py,sha256=
|
72
|
+
keras_hub/src/models/albert/albert_text_classifier.py,sha256=xWRu-JNfMSbtRL38yBWPOz1KA-BJAvVjL4FxntRnQ7A,7231
|
72
73
|
keras_hub/src/models/albert/albert_text_classifier_preprocessor.py,sha256=gy8BlsAhYSmkfn3CItViJT7MGDk-4b9MpnlZivKqa7g,6125
|
73
74
|
keras_hub/src/models/albert/albert_tokenizer.py,sha256=_PSU17dxw79NeINVYv_CA225aSE5lIHn09wxJJt7XM0,3570
|
74
75
|
keras_hub/src/models/bart/__init__.py,sha256=QniU0N7lU_FWZxGPyHqqOAeNOoBM0BEvuQVv_s9GH0E,831
|
75
76
|
keras_hub/src/models/bart/bart_backbone.py,sha256=4hCYeOZF8kYdO9-ev8OASYSdrqDApk2XHiSl9hue_VM,10286
|
76
|
-
keras_hub/src/models/bart/bart_preprocessor.py,sha256=rQG4xplQWvT2uDQARgajxQyWFr2vF9WpCP0CGxjByxY,9264
|
77
77
|
keras_hub/src/models/bart/bart_presets.py,sha256=TvSPseluMhV233tlXiZAs_8ecOka-N4ZNSS_WPfP0vI,2736
|
78
78
|
keras_hub/src/models/bart/bart_seq_2_seq_lm.py,sha256=7Q-O23PjFz5BU5lGHUYUIRkv8kxnRGHkfV79JK-jcdg,19910
|
79
79
|
keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=sR5SjoB4e3nuYgAMtuhM8s__6Ii3lCESUOdchGLXfEY,4960
|
@@ -83,7 +83,7 @@ keras_hub/src/models/bert/bert_backbone.py,sha256=mxnxa5cVfM9fNGnhblguSYcQh62nlR
|
|
83
83
|
keras_hub/src/models/bert/bert_masked_lm.py,sha256=6-sZP4anfiVWq_EwbfMbbz1bcZF1uP7lolCz_6O6rao,4631
|
84
84
|
keras_hub/src/models/bert/bert_masked_lm_preprocessor.py,sha256=wp80B97OTQMGgonsRhtnpiFBMmCFqbzZwPna6BMWlkc,5160
|
85
85
|
keras_hub/src/models/bert/bert_presets.py,sha256=4NmCoYQuX0j-G-6rPeHTpv7uV-1kIFmTb9cdjuCxnTI,5609
|
86
|
-
keras_hub/src/models/bert/bert_text_classifier.py,sha256=
|
86
|
+
keras_hub/src/models/bert/bert_text_classifier.py,sha256=YIjJ4FTycOA6ZtJ0xwgcviz4tPa1YKc_bx5NWy29Ilc,6384
|
87
87
|
keras_hub/src/models/bert/bert_text_classifier_preprocessor.py,sha256=gVu-XE9doX7V5VYCVpWtpVv0ILWkv2umInF0wb4ehP8,5299
|
88
88
|
keras_hub/src/models/bert/bert_tokenizer.py,sha256=XP58gh3zxDQgrK5y5cVvuPwIO75U7l7Xopt5n79pUuU,3611
|
89
89
|
keras_hub/src/models/bloom/__init__.py,sha256=ck7AqlWlHHTslBEZCxa_ps-nOC-7hyEsu4uielO0SIU,837
|
@@ -92,7 +92,6 @@ keras_hub/src/models/bloom/bloom_backbone.py,sha256=i2Dc2FeYSPYVyKNc9XhfDTX6mV3P
|
|
92
92
|
keras_hub/src/models/bloom/bloom_causal_lm.py,sha256=7uxEnEZFIlmZgHg7D-EArr459kka6ljWEUotPhSyi3U,11548
|
93
93
|
keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py,sha256=WVTWRUbQXUBlfC80JucV6ifcI5t6jjN5MtVsxNEYluk,3598
|
94
94
|
keras_hub/src/models/bloom/bloom_decoder.py,sha256=hSoeVnwRQvGbpVhYmf7-k8FB3Wg4auwZWdr2ubiNtxc,7157
|
95
|
-
keras_hub/src/models/bloom/bloom_preprocessor.py,sha256=buBx8Rt6i-_pMYakoFgA4l6a2KpwPlffFN7QBFbkNgA,6377
|
96
95
|
keras_hub/src/models/bloom/bloom_presets.py,sha256=7GiGFPmcXd_UraNsWGQffpzjKDRF-7nqIoUsic78xf0,4696
|
97
96
|
keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=ZMx8mHhw0D50zmmvYdmpg-Lk2GcvHz7pPlRpPlhS_2s,3161
|
98
97
|
keras_hub/src/models/csp_darknet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
@@ -103,21 +102,21 @@ keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=_J-PpSLubay58YO51B
|
|
103
102
|
keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=urcktTsXN3kDWnppplnC8yISGx37qGW5HdwHSC7VDLE,4773
|
104
103
|
keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py,sha256=l-hcoKKQPz_VB-CJNq0oLxEd5hxLHb2DU9-TqE28Fz8,5552
|
105
104
|
keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=pDcdjJ7mIz8QdTxLxllmY7_9hsgCRdVlsYREKnHw5Ek,3300
|
106
|
-
keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=
|
105
|
+
keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=lQla4R7UH5olF8xs5By6aKwpGtpoE3IPlovjrhB-hYQ,7825
|
107
106
|
keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=z_PynLHhc2OFasaV1DMHEyyKEC4miK4KqWj1-2WAEOc,6561
|
108
107
|
keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=NLLkMvotpPZUdRELaSRuJuVmiOGxwmnjmjuswa6NJdw,5574
|
109
108
|
keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=Zt10UPxYsr_x8isO_OrXeaquWVJbcE49raM6_BkDdEs,9142
|
110
109
|
keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=MxpWy30h9JB8nlEk7V9_wETzP-tpv1Sd1Wiz_pHGpkI,13708
|
111
110
|
keras_hub/src/models/deberta_v3/relative_embedding.py,sha256=QT5MAnheJ1wSKFeN49pdnZzWkztz5K2oYYuNEtB_5xM,3472
|
112
111
|
keras_hub/src/models/densenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
113
|
-
keras_hub/src/models/densenet/densenet_backbone.py,sha256=
|
112
|
+
keras_hub/src/models/densenet/densenet_backbone.py,sha256=cMTTaI1WogaSjt8x8bpPMvApYp5NVmeHTfupUmZZ774,7661
|
114
113
|
keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=bmmkNNpxwkwfqI_ZMmoEATClmgmmkW6NO5tDK8BCt2Y,4336
|
115
114
|
keras_hub/src/models/distil_bert/__init__.py,sha256=EiJUA3y_b22rMacMbBD7jD0eBSzR-wbVtF73k2RsQow,889
|
116
115
|
keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=ZW2OgNlWXeRlfI5BrcJLYr4Oc2qNJZoDxjoL7-cGuIQ,7027
|
117
116
|
keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=1BFS1At_HYlLK21VWyhQPrPtActpmR52A8LJG2c6N8Y,4862
|
118
117
|
keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py,sha256=2vge8ivK7Fl8iFKm1Si2MMru9yKOo27J0UUsFRuAdOk,5816
|
119
118
|
keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=jrLwBwTaxofI5jTEV3UTPTeVePdzbJtVO9OclP-Mf4w,2312
|
120
|
-
keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=
|
119
|
+
keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=Q-qGmyl6i2JUFZI59KUWzlzLTIRmYtgahFHo3pUE9g4,7324
|
121
120
|
keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=sad3XpW2HfjG2iQ4JRm1tw2jp4pZCN4LYwF1mM4GUps,5480
|
122
121
|
keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=VK7kZJEbsClp20uWVb6pj-WSUU5IMdRBk0jyUIM_RIg,3698
|
123
122
|
keras_hub/src/models/efficientnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
@@ -126,7 +125,6 @@ keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=_6aNQKL2XdVNgoAdKvvTh_ND
|
|
126
125
|
keras_hub/src/models/efficientnet/mbconv.py,sha256=LNbEj7RpEZ0SqzEu-7ZpH1BKm6Ne2sXPckc5c2DMqUk,8212
|
127
126
|
keras_hub/src/models/electra/__init__.py,sha256=ixE5hAkfTFfErqbYVyIUKMT8MUz-u_175QXxEBIiGBU,849
|
128
127
|
keras_hub/src/models/electra/electra_backbone.py,sha256=nLKE67xffbyWSmHtSsR6SZQId2BJ03pjSACMx9fa6do,9590
|
129
|
-
keras_hub/src/models/electra/electra_preprocessor.py,sha256=Jcc8RO6gMoHxS8TQzypQjvW76NZuGXAIcsBG1WURblg,6151
|
130
128
|
keras_hub/src/models/electra/electra_presets.py,sha256=7UxPjVFmNM6jbzJxXlnNzYZCdrC9JIz39FWlHvG7ubM,3954
|
131
129
|
keras_hub/src/models/electra/electra_tokenizer.py,sha256=WjGhKVxtDMMcm-bMUNSvcR2z1O9nWeuMPWZQa9Dc2x0,3315
|
132
130
|
keras_hub/src/models/f_net/__init__.py,sha256=MrkNt4swYV-pWb4biE1ITcYxEwWxiKRwCukhbgNo_Lg,835
|
@@ -134,7 +132,7 @@ keras_hub/src/models/f_net/f_net_backbone.py,sha256=h1IqRGEHKKhDiFUnqhaM2Rxs2yk6
|
|
134
132
|
keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GHdUf5PNUzT-YH9ZMf5FxmGx7NExFfTISnScf74zIKk,4565
|
135
133
|
keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py,sha256=rKh-a2EB2GfUX1osmDoBy6apzUdjiCKJc8CDxKQLlfI,5667
|
136
134
|
keras_hub/src/models/f_net/f_net_presets.py,sha256=IP_ImbHzZScyMJBeWWgGDXduAbjddwdFpGGwO5JQwIE,1640
|
137
|
-
keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=
|
135
|
+
keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=p6zZehLEywEpIMqolHhZHna2V0RlSiMcSv0TCOCJVCQ,5456
|
138
136
|
keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=zERq-1mayzI6FHMlwckHlruN406jswxu0jWq1i9VnE0,5408
|
139
137
|
keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=kqjxe_G8_4mEXsICcJC2HSwvhtIfwdaq1Q8bTTqkZps,2872
|
140
138
|
keras_hub/src/models/falcon/__init__.py,sha256=Djjo5fD8XJTMQA8x5DOVbqzaHPsWos45BvxTuGuFvPE,843
|
@@ -142,7 +140,6 @@ keras_hub/src/models/falcon/falcon_attention.py,sha256=1U__Yfv0BcEm61zMsqHIGu6XZ
|
|
142
140
|
keras_hub/src/models/falcon/falcon_backbone.py,sha256=fyV1ssWMSq87_Rt13kWpwiIpRRRlGm3qTKgCYvK991Q,6012
|
143
141
|
keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=Fdh_36XpFiItwk9Gy_wxForY9LtoA8-OkosTU3VG3_E,11419
|
144
142
|
keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=rGZ9kWVbb0NnncvgRoQ2BfcBCwIDBLIewCbeq7fuXzo,3619
|
145
|
-
keras_hub/src/models/falcon/falcon_preprocessor.py,sha256=5DbKNLwks_zXXoFG46tVpKumXEpJS0JMS4M4xY5IIjQ,6613
|
146
143
|
keras_hub/src/models/falcon/falcon_presets.py,sha256=Ab6pydPHFSDK-3iuKPa8SI9Zfdf9iOcqBMhhCQlLUQo,1159
|
147
144
|
keras_hub/src/models/falcon/falcon_tokenizer.py,sha256=LHJI2hXGO9f83NVMjoM-irWa01KynCjVcmo-CPNPf8M,3141
|
148
145
|
keras_hub/src/models/falcon/falcon_transformer_decoder.py,sha256=uPtU0PC5XndPs6ak5mxAaGTmkQVlVrrEy_G4SwlkZ78,8710
|
@@ -151,8 +148,7 @@ keras_hub/src/models/gemma/gemma_attention.py,sha256=mKwcU_s0epJzRllxGVg-Bbc1CuC
|
|
151
148
|
keras_hub/src/models/gemma/gemma_backbone.py,sha256=RO9O_AhUlboUzBYxYFDFFdYBjaXaDifPB-Yz2idnYZ8,13501
|
152
149
|
keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=jOy_X0QR-olMfCPyFtmXRZSllWz3oy10JYwLzAPtXAg,17357
|
153
150
|
keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=uZdYAAMIeABh339U9qmSPVRxVXtU4Ko4nrih1nN0QX4,3498
|
154
|
-
keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=
|
155
|
-
keras_hub/src/models/gemma/gemma_preprocessor.py,sha256=RlMu4Xsd5Vn24ReokzJDNuuAx3m-AfldMclNLgZWPX0,6503
|
151
|
+
keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=OgvSypSaKXNKatmua62HITyUzl79enh4x_sUZhBRItY,8173
|
156
152
|
keras_hub/src/models/gemma/gemma_presets.py,sha256=7N5dcMjMb4gOb9ysCLdVqLFDpvV3bETiB6Hq2XrdGWA,9867
|
157
153
|
keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=JZ3XDScSsAV9y8uM-uKrO-lyu3PNyXNynrJqVJQbJo0,3208
|
158
154
|
keras_hub/src/models/gemma/rms_normalization.py,sha256=27nA9BjNVkwI-icHISK57qJl8wxRdWGM5g4K_DzjAeI,1419
|
@@ -160,7 +156,7 @@ keras_hub/src/models/gpt2/__init__.py,sha256=Oy1WReI1aRiW_EU-TMdhs5Srr-KNaYOfXAx
|
|
160
156
|
keras_hub/src/models/gpt2/gpt2_backbone.py,sha256=WK0mJ1CRGIE0jfc7A3toslt_cFcynyU2jczjUJVSazc,7548
|
161
157
|
keras_hub/src/models/gpt2/gpt2_causal_lm.py,sha256=88Dpewafe9lmLgkHNqxhk6TeLjX1uMx2Q2geU5xUPGY,17352
|
162
158
|
keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py,sha256=-TE1IBKuHwbLbD--UKUsJq18IjRJDCM8DjRShWl3KMA,3578
|
163
|
-
keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=
|
159
|
+
keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=gLIndASgIBxKRYzFjclAhMUkrSFUtZEVFsPXUXpiIyU,3766
|
164
160
|
keras_hub/src/models/gpt2/gpt2_presets.py,sha256=v5OJ5A0oUfxJamPFOkhoQvsrcqmkhOH7fFzHiQroR-w,3020
|
165
161
|
keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=Xq_Du7TiR6IntGZzsmj1rtNQq7yFa1U-E4Do95qsS68,3202
|
166
162
|
keras_hub/src/models/gpt_neo_x/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
@@ -169,7 +165,6 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=OhsAHoR7lYRlu38jB3YR
|
|
169
165
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=YO_fc5AcGYmaGC8z0Ehpws_SuUCcdtozyBlbcjVRn9s,8276
|
170
166
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=Ugl9p6q7Pts3x0tboH2ZpL79RmNPpeitSNszcs88Wmk,2543
|
171
167
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=vss1MngY_SQ2nSUjHsZkDDmpeASQOVscTb1-7jpTosM,10314
|
172
|
-
keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py,sha256=NGLHuh61iRt3uEScua06YJE7eHVirEJ1wjIQjc-bH8I,5230
|
173
168
|
keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=b6uu6xlKVBUdBwsw5t2vP5OisXk5QJd4mvjiizPAds8,2577
|
174
169
|
keras_hub/src/models/llama/__init__.py,sha256=XBMAoTkyvCPk4ia7ODOy_AdxahE-BWon7wxXGv_bF-E,837
|
175
170
|
keras_hub/src/models/llama/llama_attention.py,sha256=m8DmMnYhl9zCXJFN_UGh7MHgyy8l3_FZcecAoKSJg8o,7779
|
@@ -178,14 +173,12 @@ keras_hub/src/models/llama/llama_causal_lm.py,sha256=i7o4vNO_tnY_hHD11V6mdkRJxkK
|
|
178
173
|
keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=PHABWx2GMAwbr676JMYLkKMsV6KCA_Ry8-8wv5gUw_c,3634
|
179
174
|
keras_hub/src/models/llama/llama_decoder.py,sha256=42Pc6lpwM6ycnYR2PW6CO3C8lyn6N7vop9KcAIow1II,9208
|
180
175
|
keras_hub/src/models/llama/llama_layernorm.py,sha256=VifoRNrwWmLimQ4cWbJpVCPSegkijpxFERZcoObtV9o,1635
|
181
|
-
keras_hub/src/models/llama/llama_preprocessor.py,sha256=iOiiIqafYByXAoz70TIKX7w8qpBWAIAYj0hffHxuXIs,6741
|
182
176
|
keras_hub/src/models/llama/llama_presets.py,sha256=8ZaxSmDTRif8BMGKs8Ib3ijwspSIiV_arNzCwg5P5-U,3015
|
183
177
|
keras_hub/src/models/llama/llama_tokenizer.py,sha256=W80pMsE2cAl_DE5u2Bzig9GM0viPS4nWQaw4rfslvHY,2567
|
184
178
|
keras_hub/src/models/llama3/__init__.py,sha256=g2n4QAR2tpn5waeeFgpUV4xgW7tnwnZ1An_Mqg0D09M,843
|
185
179
|
keras_hub/src/models/llama3/llama3_backbone.py,sha256=VxX3cMpzra7m7TaG2W-gTllWE5Kvl8yOkES3GSUzXl8,3441
|
186
180
|
keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=tSJQGbKY09bJMnLfjERrc_0qHFUd9Lp8kxMGJdtkJU8,2126
|
187
181
|
keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=4VknKZdH8-_wVFj-dU6aJxkrHCPyLrICWehbFGroi3k,3650
|
188
|
-
keras_hub/src/models/llama3/llama3_preprocessor.py,sha256=Pq_FkJiynuzYtAG7JNuDD-s9_fS_8-YM2TTvCvoQRf8,1033
|
189
182
|
keras_hub/src/models/llama3/llama3_presets.py,sha256=5v1MZ77mBMxU4tHGbO03jwHxKflUpjLj0RnCU8Ksa-U,2588
|
190
183
|
keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=Q0EjX3MzxQzo94eEO1EXxfNsyhuQcvl2fX1JfZUSo0w,1375
|
191
184
|
keras_hub/src/models/mistral/__init__.py,sha256=EpGh-S5Q7iH9sGxbRi2yKM32_0eClKBt5ZL-2ME-oyo,849
|
@@ -194,7 +187,6 @@ keras_hub/src/models/mistral/mistral_backbone.py,sha256=2Sp0rtBQKrSM2RvaCVX1ulHq
|
|
194
187
|
keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=Twx-kzVz0EP2losFCuS03G5J8LBE-BOswPLZ_PZxpd4,13671
|
195
188
|
keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=Cpx2Sns2irEYp_LoTpkKecrZN3KmO8Cn9GnDLZI4AsU,3665
|
196
189
|
keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=Nlo5iYrpOSYDdPODJuXpK5Wpl3INCSuoLzt4MM4ShYc,1648
|
197
|
-
keras_hub/src/models/mistral/mistral_preprocessor.py,sha256=pmEOhs8Y_O5vr7VsR6dwY3mMZze4FtTEwZwb9QqENaQ,6776
|
198
190
|
keras_hub/src/models/mistral/mistral_presets.py,sha256=uF1Q4zllcV1upIlqmn3gxhVWzot6Olw9PSUi-qwU2cw,1914
|
199
191
|
keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=pO7mpzYgRDFpIrsmLBL3zxkadrOE0xfFj30c2nHN42c,2591
|
200
192
|
keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=6CdaZt1lQ9VcLz_OoYroqiqvsZfq9H5VGaWab25aCRI,10127
|
@@ -209,7 +201,6 @@ keras_hub/src/models/opt/__init__.py,sha256=DiiylcsbseSQ8te8KWZ6BTIaKYSzXHUPGBgF
|
|
209
201
|
keras_hub/src/models/opt/opt_backbone.py,sha256=cbm9I7d3QlGD8l2W1eK8esqc5gm77tpwxg4t9nC-FtA,6460
|
210
202
|
keras_hub/src/models/opt/opt_causal_lm.py,sha256=z6M8cQV-c8q7HmikNA9RuvsMMvQYF21-ZcC0nVGfnp8,11438
|
211
203
|
keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=UzjIzQYtPfIjIyQ6PjnOHU2rstiy7J3uRuwnMnuXuRs,3687
|
212
|
-
keras_hub/src/models/opt/opt_preprocessor.py,sha256=YntudfRQvN6b-R4Ku2XSHOs2Fq0z0fynznTFj883FjM,6553
|
213
204
|
keras_hub/src/models/opt/opt_presets.py,sha256=6sLgktbfdi8aEX4ntGL1y7uBvbrLUlSFSvU0Owg4GR4,2914
|
214
205
|
keras_hub/src/models/opt/opt_tokenizer.py,sha256=TG0tlJ3jryDKXPo8AruKyP51eCdKKjJWv1QtVHfbTOc,3144
|
215
206
|
keras_hub/src/models/pali_gemma/__init__.py,sha256=OFu-CQIlUlUox6tGkKvNePwc3ZkPGcmOVsBqcP-w5Fw,873
|
@@ -219,7 +210,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=dMCo
|
|
219
210
|
keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=fXLO4uHtWYTuEPmyN9q-F0AfnA1TAcq2Yl20pFpLt1s,5761
|
220
211
|
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=Wm1A-HuOMxesAHFbEpP5ZkPbdDaVW5CTTwkyFpI-WdI,990
|
221
212
|
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=cG5cV2bkiDJlKDiHX76BpnClsY5PcmLDezDg7emeiA4,2986
|
222
|
-
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=
|
213
|
+
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=7F1TQql3DEN517iVbNL60u6fQPimrGQvWBYh16ng8JU,3000
|
223
214
|
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=JUfJuyobcEb60jp3sIxlq12gIH_qsn97h4hsecimipQ,19092
|
224
215
|
keras_hub/src/models/phi3/__init__.py,sha256=ENAOZhScWf9RbPmkiuICR5gr36ZMUn4AniLvJOrykj8,831
|
225
216
|
keras_hub/src/models/phi3/phi3_attention.py,sha256=BcYApteLjbrCzube7jHVagc0mMpDCReRyvsQhQcJzY8,9828
|
@@ -228,22 +219,25 @@ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=E-7iZfaQ75R4kAS7Gmsho2-obwQM6
|
|
228
219
|
keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=QsYrXZ2V3IlqBU-9zu0Ebf5EQZe8fnudVDp-ra0Enwg,3629
|
229
220
|
keras_hub/src/models/phi3/phi3_decoder.py,sha256=x2Bq_lhlPhImloTXDw5w1Cr73tRB8Ta9qpqS44z0EuE,10172
|
230
221
|
keras_hub/src/models/phi3/phi3_layernorm.py,sha256=r8Pqn9uHZSs3CbDbtjxED7cHtqj4a9TvQlGkzX5oxY8,1634
|
231
|
-
keras_hub/src/models/phi3/phi3_preprocessor.py,sha256=ierCpORmBCZrQknk5uQnpBCcqyFXOrt4NLH2xL0crNo,6775
|
232
222
|
keras_hub/src/models/phi3/phi3_presets.py,sha256=S7_gIqPxU5FQAEnAE_68UrfGGSLOMvoVxL8SrMig0Ao,2195
|
233
223
|
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=QVJIgpOw6iMicGrsPdW8eF84vV_stf0Tqm2qBJdsKH0,5597
|
234
224
|
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=hlA-u2sTRYARDW3ABICPeiOYW1AJwr-5kvZk3EB5z7M,2577
|
235
225
|
keras_hub/src/models/resnet/__init__.py,sha256=41gttaQ7gt_ZaqDa_GKuMPfIk5c88-GrdC1h9fBUTXc,843
|
236
|
-
keras_hub/src/models/resnet/resnet_backbone.py,sha256=
|
237
|
-
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=
|
226
|
+
keras_hub/src/models/resnet/resnet_backbone.py,sha256=n9aKIpQcJCsAZrBiiN1vxUMHeQgYudRHdu_MsdRQZqw,33260
|
227
|
+
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=I-dmx0O_ES3m3W5D4ICCux5zzDMZ2cM0vYGM9CDi5AE,5395
|
238
228
|
keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=Vrs9NBZRL5fgDXXY27GZJg5xMa5_wovi8A2z8kFl2nc,1129
|
239
229
|
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=820drIU5Kkib7gC7T418mmrhsBHSkenfEiZ6-fkChv0,961
|
240
|
-
keras_hub/src/models/resnet/resnet_presets.py,sha256=
|
230
|
+
keras_hub/src/models/resnet/resnet_presets.py,sha256=DZoufeJyrVDL4aHSztQNzZj8Cb_OGX53Fn0Ze4RuZCI,3550
|
231
|
+
keras_hub/src/models/retinanet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
232
|
+
keras_hub/src/models/retinanet/anchor_generator.py,sha256=VQwgIAWh-6s28TU8MHFdl556U6h7rfF9B9iVI_zwI7c,7027
|
233
|
+
keras_hub/src/models/retinanet/box_matcher.py,sha256=SvGn_6d5sfjq522UaHpxVCE2S5Nwml_aj5yAKApTNE4,11420
|
234
|
+
keras_hub/src/models/retinanet/non_max_supression.py,sha256=5rDXA1Lk27T1TK3cwTrRIAbh8ceZLcbL4Koei96bBVQ,21522
|
241
235
|
keras_hub/src/models/roberta/__init__.py,sha256=P-9HOooyuSriDclHrf0YvdRy95bU08VPU7P8nBsy59U,849
|
242
236
|
keras_hub/src/models/roberta/roberta_backbone.py,sha256=KR3y11RpA4dvKmQ2HaRoWNTLGnLs6Lqx-HXYejQt4G8,6926
|
243
237
|
keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=N0r6XEZAVMNgyTorFQzyT8EiEXtWO3R2PnL6s2P3YDQ,4763
|
244
238
|
keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py,sha256=hHoIHC-VRQN3hskTxlrBwDjKGeUqkm03IjV9IxTdPMQ,6437
|
245
239
|
keras_hub/src/models/roberta/roberta_presets.py,sha256=Ys5WnfBCzrRDLVLrAm412ojHY0yyj6KtSJWslN8re6g,1764
|
246
|
-
keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=
|
240
|
+
keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=A4psd1Ef0ZSPMCsBpSLe5xmZqsFSn5XZ8gr_ekL9EoU,7268
|
247
241
|
keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=xK0dGPi3nZ5mUoRtTSE8OhibQSaOvzkGELhPAJAB5sc,6579
|
248
242
|
keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=RlKxa0eo7KYgRH5HSHrflna2LkB9pS6qjm2cr4DbuBg,3299
|
249
243
|
keras_hub/src/models/stable_diffusion_v3/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
@@ -283,7 +277,7 @@ keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py,sha256=Msm1U2pJbrC3XfeC
|
|
283
277
|
keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py,sha256=37_Qn1x-_TTHGG_29VlbQcRb41pAiTK-c88jlrt098s,4965
|
284
278
|
keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py,sha256=a5uVVbROS30hqh2AYmpz0Bo8HWfuwOXSS5pPoEQzJlE,6581
|
285
279
|
keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=LsaoAJ8ddyTDCJ6JmVlVy00C4r8khZZOg3YmW3aY5YA,1762
|
286
|
-
keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=
|
280
|
+
keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=XN4o9CVeCXiEBM2L1nHBksJXYQ643P9EY20FllvqpGo,7824
|
287
281
|
keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py,sha256=DFnJMgim_NJrzppWNSSUDi3sUASiKithFXCfamtsuZo,7112
|
288
282
|
keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py,sha256=8r5ATeJenQERGhjhw_gB6tvID256VHjH5ASTHSsd8mA,7361
|
289
283
|
keras_hub/src/models/xlnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
@@ -301,25 +295,27 @@ keras_hub/src/samplers/serialization.py,sha256=Z8u-nRdv7K1RPS_0rMYJwkunoFmI2xPCj
|
|
301
295
|
keras_hub/src/samplers/top_k_sampler.py,sha256=xLexmP7FrW_W2657ObeJUgbeEox8AbB9uXIBKODVuKU,2836
|
302
296
|
keras_hub/src/samplers/top_p_sampler.py,sha256=Mx4Ytti2BsVh6uLPnBeNZ5znBjvXrnDndmbMlMAMRbk,3986
|
303
297
|
keras_hub/src/tests/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
304
|
-
keras_hub/src/tests/test_case.py,sha256=
|
298
|
+
keras_hub/src/tests/test_case.py,sha256=i8-jrXric88acmQTGIn0KCp157EsWZBCx88qHKyAjSM,25730
|
305
299
|
keras_hub/src/tokenizers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
306
|
-
keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=
|
300
|
+
keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=5VTFUGSQGd_NMwuQc9kBA5KU1rLcJpNYnRPl28NMFWo,24435
|
307
301
|
keras_hub/src/tokenizers/byte_tokenizer.py,sha256=ueijdnipIG7G4a_cals0y6t7oVm-dyEcSVY2JkX_5i4,11234
|
308
|
-
keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=
|
302
|
+
keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=nmYwaoK4yLaqp1c0JxXI4JZS3fmR4qIyuRnf2zExjmg,10148
|
309
303
|
keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=0VZ-5QdvVKFp8_tSZiM8qROYhrrfrg-GCJ1BllXSd1g,5420
|
310
304
|
keras_hub/src/tokenizers/tokenizer.py,sha256=sySYL7Nym6N-NIXk1pu9zsgbfFIOGvPvNRy-R3kXlzA,10098
|
311
305
|
keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=z720-paGm8tV-rhs0B8QHD3P2syPKVdXMyQqLdSjTwM,14118
|
312
|
-
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=
|
306
|
+
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=AWFCHCxgRJ3_iHLxi1s9gTIjTrdtqvJAxqN1ugEXLvc,20529
|
313
307
|
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=_W07w57ZHuqpAK7U8Qs4neFW4UEzhRdfyVy2oDs02d8,7136
|
314
308
|
keras_hub/src/utils/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
315
309
|
keras_hub/src/utils/keras_utils.py,sha256=r0ro8lBfqCgWT_S5dXMVuj_nQNxe_Dwsowrc1dSdHT0,2555
|
316
310
|
keras_hub/src/utils/pipeline_model.py,sha256=9GNlV8RBV18oFQUkXDCizyyBI8sYhB_7ejxI2dEPVdw,9610
|
317
|
-
keras_hub/src/utils/preset_utils.py,sha256=
|
311
|
+
keras_hub/src/utils/preset_utils.py,sha256=jMKJBYJO4AlT1DNis6kKTwDZ9P-JdfJC5PAU3e7ZFz0,29547
|
318
312
|
keras_hub/src/utils/python_utils.py,sha256=G5oCVQggmqgkgD1NXuBQEgNCFmDSevYv7bz-1cAVFAs,787
|
319
|
-
keras_hub/src/utils/tensor_utils.py,sha256=
|
313
|
+
keras_hub/src/utils/tensor_utils.py,sha256=XpWORE8iUzHXv1E1akiYDep07ndZJRKvjsKVljMvtUU,11362
|
314
|
+
keras_hub/src/utils/imagenet/__init__.py,sha256=AK2s8L-VARI5OmlT6G3vtlKIVyjwLfgVwXfxzhhSCq4,585
|
315
|
+
keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=0iHrAQbh5DCa9Dh7tJiQeJc7AGzNO7j0cFEWS2Of16w,39889
|
320
316
|
keras_hub/src/utils/timm/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
321
|
-
keras_hub/src/utils/timm/convert_resnet.py,sha256=
|
322
|
-
keras_hub/src/utils/timm/preset_loader.py,sha256=
|
317
|
+
keras_hub/src/utils/timm/convert_resnet.py,sha256=hZNj_kpwSA9Jp3NRDHtCPzHFzRKKPnidKQUAoqcdENk,6810
|
318
|
+
keras_hub/src/utils/timm/preset_loader.py,sha256=EgS5xBP3sWYiTgKmOAMmj3b3kRWcPnsWLieReLHZ178,2928
|
323
319
|
keras_hub/src/utils/transformers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
324
320
|
keras_hub/src/utils/transformers/convert_albert.py,sha256=7b9X1TLrWfHieoeX_K-EXTagkl4Rp9AfPjsPrwArBGY,8280
|
325
321
|
keras_hub/src/utils/transformers/convert_bart.py,sha256=RXmPf_XUZrUyqDaOV9T7qVNEP4rAVR44oK1aRZI0v78,14996
|
@@ -332,7 +328,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=4QStizMS6ESEPjSI-ls6j
|
|
332
328
|
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=BT5eX1QzbjCQCopbMstiejQQWQiB_N77bpD5FMUygEo,11234
|
333
329
|
keras_hub/src/utils/transformers/preset_loader.py,sha256=9x9hLhDh_6PAHG5gay5rVoEVyt-gXTQGrnprjMLKvCM,3294
|
334
330
|
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=2O8lcCf9yIFt5xiRVOtF1ZkPb5pfhOfDJotBaanD9Zo,3547
|
335
|
-
keras_hub_nightly-0.
|
336
|
-
keras_hub_nightly-0.
|
337
|
-
keras_hub_nightly-0.
|
338
|
-
keras_hub_nightly-0.
|
331
|
+
keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA,sha256=PSZLjVmxpfU4G_i52vw-twg4xESYRhyqicE-Ctk5mbA,7059
|
332
|
+
keras_hub_nightly-0.16.0.dev2024092017.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
333
|
+
keras_hub_nightly-0.16.0.dev2024092017.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
334
|
+
keras_hub_nightly-0.16.0.dev2024092017.dist-info/RECORD,,
|
@@ -1,264 +0,0 @@
|
|
1
|
-
# Copyright 2024 The KerasHub Authors
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
|
16
|
-
import keras
|
17
|
-
|
18
|
-
from keras_hub.src.api_export import keras_hub_export
|
19
|
-
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
20
|
-
from keras_hub.src.models.bart.bart_backbone import BartBackbone
|
21
|
-
from keras_hub.src.models.bart.bart_tokenizer import BartTokenizer
|
22
|
-
from keras_hub.src.models.preprocessor import Preprocessor
|
23
|
-
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
24
|
-
|
25
|
-
|
26
|
-
@keras_hub_export("keras_hub.models.BartPreprocessor")
|
27
|
-
class BartPreprocessor(Preprocessor):
|
28
|
-
"""A BART preprocessing layer which tokenizes and packs inputs.
|
29
|
-
|
30
|
-
This preprocessing layer will do three things:
|
31
|
-
|
32
|
-
1. Tokenize both encoder inputs and decoder inputs using the `tokenizer`.
|
33
|
-
Both inputs can contain only one segment.
|
34
|
-
2. Add the appropriate special tokens - `"<s>"`, `"</s>"` and `"<pad>"`.
|
35
|
-
3. Construct a dictionary with keys `"encoder_token_ids"`,
|
36
|
-
`"encoder_padding_mask"`, `"decoder_token_ids"`, `"decoder_padding_mask"`
|
37
|
-
that can be passed directly to a BART model.
|
38
|
-
|
39
|
-
Args:
|
40
|
-
tokenizer: A `keras_hub.models.BartTokenizer` instance.
|
41
|
-
encoder_sequence_length: The length of the packed encoder inputs.
|
42
|
-
decoder_sequence_length: The length of the packed decoder inputs.
|
43
|
-
|
44
|
-
Call arguments:
|
45
|
-
x: A dictionary with `encoder_text` and `decoder_text` as its keys.
|
46
|
-
Each value in the dictionary should be a tensor of single string
|
47
|
-
sequences. Inputs may be batched or unbatched. Raw python inputs
|
48
|
-
will be converted to tensors.
|
49
|
-
y: Any label data. Will be passed through unaltered.
|
50
|
-
sample_weight: Any label weight data. Will be passed through unaltered.
|
51
|
-
|
52
|
-
Examples:
|
53
|
-
|
54
|
-
Directly calling the layer on data.
|
55
|
-
```python
|
56
|
-
preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
|
57
|
-
|
58
|
-
# Preprocess unbatched inputs.
|
59
|
-
inputs = {
|
60
|
-
"encoder_text": "The fox was sleeping.",
|
61
|
-
"decoder_text": "The fox was awake."
|
62
|
-
}
|
63
|
-
preprocessor(inputs)
|
64
|
-
|
65
|
-
# Preprocess batched inputs.
|
66
|
-
inputs = {
|
67
|
-
"encoder_text": ["The fox was sleeping.", "The lion was quiet."],
|
68
|
-
"decoder_text": ["The fox was awake.", "The lion was roaring."]
|
69
|
-
}
|
70
|
-
preprocessor(inputs)
|
71
|
-
|
72
|
-
# Custom vocabulary.
|
73
|
-
vocab = {
|
74
|
-
"<s>": 0,
|
75
|
-
"<pad>": 1,
|
76
|
-
"</s>": 2,
|
77
|
-
"Ġafter": 5,
|
78
|
-
"noon": 6,
|
79
|
-
"Ġsun": 7,
|
80
|
-
}
|
81
|
-
merges = ["Ġ a", "Ġ s", "Ġ n", "e r", "n o", "o n", "Ġs u", "Ġa f", "no on"]
|
82
|
-
merges += ["Ġsu n", "Ġaf t", "Ġaft er"]
|
83
|
-
|
84
|
-
tokenizer = keras_hub.models.BartTokenizer(
|
85
|
-
vocabulary=vocab,
|
86
|
-
merges=merges,
|
87
|
-
)
|
88
|
-
preprocessor = keras_hub.models.BartPreprocessor(
|
89
|
-
tokenizer=tokenizer,
|
90
|
-
encoder_sequence_length=20,
|
91
|
-
decoder_sequence_length=10,
|
92
|
-
)
|
93
|
-
inputs = {
|
94
|
-
"encoder_text": "The fox was sleeping.",
|
95
|
-
"decoder_text": "The fox was awake."
|
96
|
-
}
|
97
|
-
preprocessor(inputs)
|
98
|
-
```
|
99
|
-
|
100
|
-
Mapping with `tf.data.Dataset`.
|
101
|
-
```python
|
102
|
-
preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
|
103
|
-
|
104
|
-
# Map labeled single sentences.
|
105
|
-
features = {
|
106
|
-
"encoder_text": tf.constant(
|
107
|
-
["The fox was sleeping.", "The lion was quiet."]
|
108
|
-
),
|
109
|
-
"decoder_text": tf.constant(
|
110
|
-
["The fox was awake.", "The lion was silent."]
|
111
|
-
)
|
112
|
-
}
|
113
|
-
labels = tf.constant(["True", "False"])
|
114
|
-
ds = tf.data.Dataset.from_tensor_slices((features, labels))
|
115
|
-
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
116
|
-
|
117
|
-
# Map unlabeled single sentences.
|
118
|
-
features = {
|
119
|
-
"encoder_text": tf.constant(
|
120
|
-
["The fox was sleeping.", "The lion was quiet."]
|
121
|
-
),
|
122
|
-
"decoder_text": tf.constant(
|
123
|
-
["The fox was awake.", "The lion was roaring."]
|
124
|
-
)
|
125
|
-
}
|
126
|
-
ds = tf.data.Dataset.from_tensor_slices(features)
|
127
|
-
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
128
|
-
```
|
129
|
-
"""
|
130
|
-
|
131
|
-
backbone_cls = BartBackbone
|
132
|
-
tokenizer_cls = BartTokenizer
|
133
|
-
|
134
|
-
def __init__(
|
135
|
-
self,
|
136
|
-
tokenizer,
|
137
|
-
encoder_sequence_length=1024,
|
138
|
-
decoder_sequence_length=1024,
|
139
|
-
**kwargs,
|
140
|
-
):
|
141
|
-
super().__init__(**kwargs)
|
142
|
-
self.tokenizer = tokenizer
|
143
|
-
self.encoder_packer = None
|
144
|
-
self.decoder_packer = None
|
145
|
-
self.encoder_sequence_length = encoder_sequence_length
|
146
|
-
self.decoder_sequence_length = decoder_sequence_length
|
147
|
-
|
148
|
-
def build(self, input_shape):
|
149
|
-
# Defer packer creation to `build()` so that we can be sure tokenizer
|
150
|
-
# assets have loaded when restoring a saved model.
|
151
|
-
|
152
|
-
# TODO: Use `MultiSegmentPacker` instead of `StartEndPacker` once we
|
153
|
-
# want to move to multi-segment packing and have improved
|
154
|
-
# `MultiSegmentPacker`'s performance.
|
155
|
-
self.encoder_packer = StartEndPacker(
|
156
|
-
start_value=self.tokenizer.start_token_id,
|
157
|
-
end_value=self.tokenizer.end_token_id,
|
158
|
-
pad_value=self.tokenizer.pad_token_id,
|
159
|
-
sequence_length=self.encoder_sequence_length,
|
160
|
-
return_padding_mask=True,
|
161
|
-
)
|
162
|
-
|
163
|
-
# The decoder is packed a bit differently; the format is as follows:
|
164
|
-
# `[end_token_id, start_token_id, tokens..., end_token_id, padding...]`.
|
165
|
-
self.decoder_packer = StartEndPacker(
|
166
|
-
start_value=[
|
167
|
-
self.tokenizer.end_token_id,
|
168
|
-
self.tokenizer.start_token_id,
|
169
|
-
],
|
170
|
-
end_value=self.tokenizer.end_token_id,
|
171
|
-
pad_value=self.tokenizer.pad_token_id,
|
172
|
-
sequence_length=self.decoder_sequence_length,
|
173
|
-
return_padding_mask=True,
|
174
|
-
)
|
175
|
-
self.built = True
|
176
|
-
|
177
|
-
@preprocessing_function
|
178
|
-
def call(
|
179
|
-
self,
|
180
|
-
x,
|
181
|
-
y=None,
|
182
|
-
sample_weight=None,
|
183
|
-
*,
|
184
|
-
encoder_sequence_length=None,
|
185
|
-
decoder_sequence_length=None,
|
186
|
-
# `sequence_length` is an alias for `decoder_sequence_length`
|
187
|
-
sequence_length=None,
|
188
|
-
):
|
189
|
-
if not (
|
190
|
-
isinstance(x, dict)
|
191
|
-
and all(k in x for k in ("encoder_text", "decoder_text"))
|
192
|
-
):
|
193
|
-
raise ValueError(
|
194
|
-
'`x` must be a dictionary, containing the keys `"encoder_text"`'
|
195
|
-
f' and `"decoder_text"`. Received x={x}.'
|
196
|
-
)
|
197
|
-
|
198
|
-
if encoder_sequence_length is None:
|
199
|
-
encoder_sequence_length = self.encoder_sequence_length
|
200
|
-
decoder_sequence_length = decoder_sequence_length or sequence_length
|
201
|
-
if decoder_sequence_length is None:
|
202
|
-
decoder_sequence_length = self.decoder_sequence_length
|
203
|
-
|
204
|
-
encoder_inputs = self.tokenizer(x["encoder_text"])
|
205
|
-
encoder_token_ids, encoder_padding_mask = self.encoder_packer(
|
206
|
-
encoder_inputs,
|
207
|
-
sequence_length=encoder_sequence_length,
|
208
|
-
)
|
209
|
-
|
210
|
-
decoder_inputs = self.tokenizer(x["decoder_text"])
|
211
|
-
decoder_token_ids, decoder_padding_mask = self.decoder_packer(
|
212
|
-
decoder_inputs,
|
213
|
-
sequence_length=decoder_sequence_length,
|
214
|
-
)
|
215
|
-
|
216
|
-
x = {
|
217
|
-
"encoder_token_ids": encoder_token_ids,
|
218
|
-
"encoder_padding_mask": encoder_padding_mask,
|
219
|
-
"decoder_token_ids": decoder_token_ids,
|
220
|
-
"decoder_padding_mask": decoder_padding_mask,
|
221
|
-
}
|
222
|
-
|
223
|
-
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
224
|
-
|
225
|
-
def get_config(self):
|
226
|
-
config = super().get_config()
|
227
|
-
config.update(
|
228
|
-
{
|
229
|
-
"encoder_sequence_length": self.encoder_sequence_length,
|
230
|
-
"decoder_sequence_length": self.decoder_sequence_length,
|
231
|
-
}
|
232
|
-
)
|
233
|
-
return config
|
234
|
-
|
235
|
-
@property
|
236
|
-
def encoder_sequence_length(self):
|
237
|
-
"""The padded length of encoder input sequences."""
|
238
|
-
return self._encoder_sequence_length
|
239
|
-
|
240
|
-
@encoder_sequence_length.setter
|
241
|
-
def encoder_sequence_length(self, value):
|
242
|
-
self._encoder_sequence_length = value
|
243
|
-
if self.encoder_packer is not None:
|
244
|
-
self.encoder_packer.sequence_length = value
|
245
|
-
|
246
|
-
@property
|
247
|
-
def decoder_sequence_length(self):
|
248
|
-
"""The padded length of decoder input sequences."""
|
249
|
-
return self._decoder_sequence_length
|
250
|
-
|
251
|
-
@decoder_sequence_length.setter
|
252
|
-
def decoder_sequence_length(self, value):
|
253
|
-
self._decoder_sequence_length = value
|
254
|
-
if self.decoder_packer is not None:
|
255
|
-
self.decoder_packer.sequence_length = value
|
256
|
-
|
257
|
-
@property
|
258
|
-
def sequence_length(self):
|
259
|
-
"""Alias for `decoder_sequence_length`."""
|
260
|
-
return self.decoder_sequence_length
|
261
|
-
|
262
|
-
@sequence_length.setter
|
263
|
-
def sequence_length(self, value):
|
264
|
-
self.decoder_sequence_length = value
|