keras-hub-nightly 0.15.0.dev20240911134614__py3-none-any.whl → 0.16.0.dev20240915160609__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. keras_hub/api/models/__init__.py +22 -17
  2. keras_hub/src/models/albert/albert_text_classifier.py +6 -1
  3. keras_hub/src/models/bert/bert_text_classifier.py +6 -1
  4. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +6 -1
  5. keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +6 -1
  6. keras_hub/src/models/f_net/f_net_text_classifier.py +6 -1
  7. keras_hub/src/models/gpt2/gpt2_preprocessor.py +7 -78
  8. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +1 -1
  9. keras_hub/src/models/preprocessor.py +1 -5
  10. keras_hub/src/models/resnet/resnet_backbone.py +3 -16
  11. keras_hub/src/models/resnet/resnet_image_classifier.py +17 -0
  12. keras_hub/src/models/resnet/resnet_presets.py +12 -12
  13. keras_hub/src/models/roberta/roberta_text_classifier.py +6 -1
  14. keras_hub/src/models/task.py +6 -6
  15. keras_hub/src/models/text_classifier.py +12 -1
  16. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +6 -1
  17. keras_hub/src/tests/test_case.py +13 -0
  18. keras_hub/src/utils/preset_utils.py +14 -32
  19. keras_hub/src/utils/timm/convert_resnet.py +0 -1
  20. keras_hub/src/utils/timm/preset_loader.py +6 -7
  21. keras_hub/src/version_utils.py +1 -1
  22. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/METADATA +1 -1
  23. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/RECORD +25 -36
  24. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/WHEEL +1 -1
  25. keras_hub/src/models/bart/bart_preprocessor.py +0 -264
  26. keras_hub/src/models/bloom/bloom_preprocessor.py +0 -178
  27. keras_hub/src/models/electra/electra_preprocessor.py +0 -155
  28. keras_hub/src/models/falcon/falcon_preprocessor.py +0 -180
  29. keras_hub/src/models/gemma/gemma_preprocessor.py +0 -184
  30. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -138
  31. keras_hub/src/models/llama/llama_preprocessor.py +0 -182
  32. keras_hub/src/models/llama3/llama3_preprocessor.py +0 -23
  33. keras_hub/src/models/mistral/mistral_preprocessor.py +0 -183
  34. keras_hub/src/models/opt/opt_preprocessor.py +0 -181
  35. keras_hub/src/models/phi3/phi3_preprocessor.py +0 -183
  36. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/top_level.txt +0 -0
@@ -1,180 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import keras
17
-
18
- from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
- from keras_hub.src.models.falcon.falcon_backbone import FalconBackbone
21
- from keras_hub.src.models.falcon.falcon_tokenizer import FalconTokenizer
22
- from keras_hub.src.models.preprocessor import Preprocessor
23
- from keras_hub.src.utils.tensor_utils import preprocessing_function
24
-
25
-
26
- @keras_hub_export("keras_hub.models.FalconPreprocessor")
27
- class FalconPreprocessor(Preprocessor):
28
- """Falcon preprocessing layer which tokenizes and packs inputs.
29
-
30
- This preprocessing layer will do 2 things:
31
-
32
- - Tokenize the inputs using the `tokenizer`.
33
- - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`, that can
34
- be passed directly to a `keras_hub.models.FalconBackbone`.
35
-
36
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
37
- string data in the `(x, y, sample_weight)` format used by
38
- `keras.Model.fit`.
39
-
40
- The call method of this layer accepts three arguments, `x`, `y`, and
41
- `sample_weight`. `x` can be a python string or tensor representing a single
42
- segment, a list of python strings representing a batch of single segments,
43
- or a list of tensors representing multiple segments to be packed together.
44
- `y` and `sample_weight` are both optional, can have any format, and will be
45
- passed through unaltered.
46
-
47
- `FalconPreprocessor` forces the input to have only one segment, as Falcon is
48
- mainly used for generation tasks. For tasks having multi-segment inputs
49
- like "glue/mnli", please use a model designed for classification purposes
50
- such as BERT or RoBERTa.
51
-
52
- Args:
53
- tokenizer: A `keras_hub.models.FalconTokenizer` instance.
54
- sequence_length: The length of the packed inputs.
55
- add_start_token: If `True`, the preprocessor will prepend the tokenizer
56
- start token to each input sequence.
57
- add_end_token: If `True`, the preprocessor will append the tokenizer
58
- end token to each input sequence.
59
-
60
- Call arguments:
61
- x: A string, `tf.Tensor` or list of python strings.
62
- y: Any label data. Will be passed through unaltered.
63
- sample_weight: Any label weight data. Will be passed through unaltered.
64
- sequence_length: Pass to override the configured `sequence_length` of
65
- the layer.
66
-
67
- Examples:
68
-
69
- Directly calling the layer on data.
70
- ```python
71
- preprocessor = keras_hub.models.FalconPreprocessor.from_preset("falcon_rw_1b")
72
-
73
- # Tokenize and pack a single sentence.
74
- preprocessor("The quick brown fox jumped.")
75
-
76
- # Tokenize a batch of single sentences.
77
- preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
78
-
79
- # Custom vocabulary.
80
- features = ["a quick fox.", "a fox quick."]
81
- vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
82
- merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
83
- merges += ["Ġ f", "o x", "Ġf ox"]
84
- tokenizer = keras_hub.models.FalconTokenizer(
85
- vocabulary=vocab,
86
- merges=merges,
87
- )
88
- preprocessor = keras_hub.models.FalconPreprocessor(tokenizer=tokenizer)
89
- preprocessor("The quick brown fox jumped.")
90
- ```
91
-
92
- Mapping with `tf.data.Dataset`.
93
- ```python
94
- preprocessor = keras_hub.models.FalconPreprocessor.from_preset("falcon_rw_1b")
95
-
96
- text = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
97
- label = tf.constant([1, 1])
98
-
99
- # Map labeled single sentences.
100
- ds = tf.data.Dataset.from_tensor_slices((text, label))
101
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
102
-
103
- # Map unlabeled single sentences.
104
- ds = tf.data.Dataset.from_tensor_slices(text)
105
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
106
- ```
107
- """
108
-
109
- backbone_cls = FalconBackbone
110
- tokenizer_cls = FalconTokenizer
111
-
112
- def __init__(
113
- self,
114
- tokenizer,
115
- sequence_length=1024,
116
- add_start_token=True,
117
- add_end_token=True,
118
- **kwargs,
119
- ):
120
- super().__init__(**kwargs)
121
- self.tokenizer = tokenizer
122
- self.packer = None
123
- self.sequence_length = sequence_length
124
- self.add_start_token = add_start_token
125
- self.add_end_token = add_end_token
126
-
127
- def build(self, input_shape):
128
- # Defer packer creation to `build()` so that we can be sure tokenizer
129
- # assets have loaded when restoring a saved model.
130
- self.packer = StartEndPacker(
131
- start_value=self.tokenizer.start_token_id,
132
- end_value=self.tokenizer.end_token_id,
133
- pad_value=self.tokenizer.pad_token_id,
134
- sequence_length=self.sequence_length,
135
- return_padding_mask=True,
136
- )
137
- self.built = True
138
-
139
- @preprocessing_function
140
- def call(
141
- self,
142
- x,
143
- y=None,
144
- sample_weight=None,
145
- sequence_length=None,
146
- ):
147
- sequence_length = sequence_length or self.sequence_length
148
- token_ids, padding_mask = self.packer(
149
- self.tokenizer(x),
150
- sequence_length=sequence_length,
151
- add_start_value=self.add_start_token,
152
- add_end_value=self.add_end_token,
153
- )
154
- x = {
155
- "token_ids": token_ids,
156
- "padding_mask": padding_mask,
157
- }
158
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
159
-
160
- def get_config(self):
161
- config = super().get_config()
162
- config.update(
163
- {
164
- "sequence_length": self.sequence_length,
165
- "add_start_token": self.add_start_token,
166
- "add_end_token": self.add_end_token,
167
- }
168
- )
169
- return config
170
-
171
- @property
172
- def sequence_length(self):
173
- """The padded length of model input sequences."""
174
- return self._sequence_length
175
-
176
- @sequence_length.setter
177
- def sequence_length(self, value):
178
- self._sequence_length = value
179
- if self.packer is not None:
180
- self.packer.sequence_length = value
@@ -1,184 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import keras
17
-
18
- from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
- from keras_hub.src.models.gemma.gemma_backbone import GemmaBackbone
21
- from keras_hub.src.models.gemma.gemma_tokenizer import GemmaTokenizer
22
- from keras_hub.src.models.preprocessor import Preprocessor
23
- from keras_hub.src.utils.tensor_utils import preprocessing_function
24
-
25
-
26
- @keras_hub_export("keras_hub.models.GemmaPreprocessor")
27
- class GemmaPreprocessor(Preprocessor):
28
- """Gemma preprocessing layer which tokenizes and packs inputs.
29
-
30
- This preprocessing layer will do 2 things:
31
-
32
- - Tokenize the inputs using the `tokenizer`.
33
- - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`, that can
34
- be passed directly to a `keras_hub.models.GemmaBackbone`.
35
-
36
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
37
- string data in the `(x, y, sample_weight)` format used by
38
- `keras.Model.fit`.
39
-
40
- The call method of this layer accepts three arguments, `x`, `y`, and
41
- `sample_weight`. `x` can be a python string or tensor representing a single
42
- segment, a list of python strings representing a batch of single segments,
43
- or a list of tensors representing multiple segments to be packed together.
44
- `y` and `sample_weight` are both optional, can have any format, and will be
45
- passed through unaltered.
46
-
47
- `GemmaPreprocessor` expects the input to have only one segment, as Gemma is
48
- mainly used for generation tasks. For tasks having multi-segment inputs
49
- please combine inputs into a single string input before passing to the
50
- preprocessor layer.
51
-
52
- Args:
53
- tokenizer: A `keras_hub.models.GemmaTokenizer` instance.
54
- sequence_length: The length of the packed inputs.
55
- add_start_token: If `True`, the preprocessor will prepend the tokenizer
56
- start token to each input sequence.
57
- add_end_token: If `True`, the preprocessor will append the tokenizer
58
- end token to each input sequence.
59
-
60
- Call arguments:
61
- x: A string, `tf.Tensor` or list of python strings.
62
- y: Any label data. Will be passed through unaltered.
63
- sample_weight: Any label weight data. Will be passed through unaltered.
64
- sequence_length: Pass to override the configured `sequence_length` of
65
- the layer.
66
-
67
- Examples:
68
-
69
- Directly calling the layer on data.
70
- ```python
71
- preprocessor = keras_hub.models.GemmaPreprocessor.from_preset(
72
- "gemma_2b_en"
73
- )
74
-
75
- # Tokenize and pack a single sentence.
76
- preprocessor("The quick brown fox jumped.")
77
-
78
- # Tokenize a batch of sentences.
79
- preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
80
-
81
- # Custom vocabulary.
82
- bytes_io = io.BytesIO()
83
- ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
84
- sentencepiece.SentencePieceTrainer.train(
85
- sentence_iterator=ds.as_numpy_iterator(),
86
- model_writer=bytes_io,
87
- vocab_size=8,
88
- model_type="WORD",
89
- pad_id=0,
90
- bos_id=1,
91
- eos_id=2,
92
- unk_id=3,
93
- pad_piece="<pad>",
94
- bos_piece="<bos>",
95
- eos_piece="<eos>",
96
- unk_piece="<unk>",
97
- )
98
- tokenizer = keras_hub.models.GemmaTokenizer(
99
- proto=bytes_io.getvalue(),
100
- )
101
- preprocessor = keras_hub.models.GemmaPreprocessor(tokenizer=tokenizer)
102
- preprocessor("The quick brown fox jumped.")
103
- ```
104
-
105
- Apply preprocessing to a `tf.data.Dataset`.
106
- ```python
107
- preprocessor = keras_hub.models.GemmaPreprocessor.from_preset(
108
- "gemma_2b_en"
109
- )
110
-
111
- text = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
112
- label = tf.constant([1, 1])
113
-
114
- # Map labeled single sentences.
115
- ds = tf.data.Dataset.from_tensor_slices((text, label))
116
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
117
-
118
- # Map unlabeled single sentences.
119
- ds = tf.data.Dataset.from_tensor_slices(text)
120
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
121
- ```
122
- """
123
-
124
- backbone_cls = GemmaBackbone
125
- tokenizer_cls = GemmaTokenizer
126
-
127
- def __init__(
128
- self,
129
- tokenizer,
130
- sequence_length=1024,
131
- add_start_token=True,
132
- add_end_token=True,
133
- **kwargs,
134
- ):
135
- super().__init__(**kwargs)
136
-
137
- self.tokenizer = tokenizer
138
- self.sequence_length = sequence_length
139
- self.add_start_token = add_start_token
140
- self.add_end_token = add_end_token
141
-
142
- def build(self, input_shape):
143
- # Defer packer creation to `build()` so that we can be sure tokenizer
144
- # assets have loaded when restoring a saved model.
145
- self.packer = StartEndPacker(
146
- start_value=self.tokenizer.start_token_id,
147
- end_value=self.tokenizer.end_token_id,
148
- pad_value=self.tokenizer.pad_token_id,
149
- sequence_length=self.sequence_length,
150
- return_padding_mask=True,
151
- )
152
- self.built = True
153
-
154
- @preprocessing_function
155
- def call(
156
- self,
157
- x,
158
- y=None,
159
- sample_weight=None,
160
- sequence_length=None,
161
- ):
162
- sequence_length = sequence_length or self.sequence_length
163
- token_ids, padding_mask = self.packer(
164
- self.tokenizer(x),
165
- sequence_length=sequence_length,
166
- add_start_value=self.add_start_token,
167
- add_end_value=self.add_end_token,
168
- )
169
- x = {
170
- "token_ids": token_ids,
171
- "padding_mask": padding_mask,
172
- }
173
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
174
-
175
- def get_config(self):
176
- config = super().get_config()
177
- config.update(
178
- {
179
- "sequence_length": self.sequence_length,
180
- "add_start_token": self.add_start_token,
181
- "add_end_token": self.add_end_token,
182
- }
183
- )
184
- return config
@@ -1,138 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import keras
16
-
17
- from keras_hub.src.api_export import keras_hub_export
18
- from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
19
- from keras_hub.src.models.gpt_neo_x.gpt_neo_x_backbone import GPTNeoXBackbone
20
- from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import GPTNeoXTokenizer
21
- from keras_hub.src.models.preprocessor import Preprocessor
22
- from keras_hub.src.utils.tensor_utils import preprocessing_function
23
-
24
-
25
- @keras_hub_export("keras_hub.models.GPTNeoXPreprocessor")
26
- class GPTNeoXPreprocessor(Preprocessor):
27
- """GPTNeoX preprocessing layer which tokenizes and packs inputs.
28
-
29
- This preprocessing layer will do 2 things:
30
-
31
- - Tokenize the inputs using the `tokenizer`.
32
- - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`, that can
33
- be passed directly to a `keras_hub.models.GPTNeoXBackbone`.
34
-
35
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
36
- string data in the `(x, y, sample_weight)` format used by
37
- `keras.Model.fit`.
38
-
39
- The call method of this layer accepts three arguments, `x`, `y`, and
40
- `sample_weight`. `x` can be a python string or tensor representing a single
41
- segment, a list of python strings representing a batch of single segments,
42
- or a list of tensors representing multiple segments to be packed together.
43
- `y` and `sample_weight` are both optional, can have any format, and will be
44
- passed through unaltered.
45
-
46
- `GPTNeoXPreprocessor` forces the input to have only one segment, as GPTNeoX is
47
- mainly used for generation tasks. For tasks having multi-segment inputs
48
- like "glue/mnli", please use a model designed for classification purposes
49
- such as BERT or RoBERTa.
50
-
51
- Args:
52
- tokenizer: A `keras_hub.models.GPTNeoXTokenizer` instance.
53
- sequence_length: The length of the packed inputs.
54
- add_start_token: If `True`, the preprocessor will prepend the tokenizer
55
- start token to each input sequence.
56
- add_end_token: If `True`, the preprocessor will append the tokenizer
57
- end token to each input sequence.
58
-
59
- Call arguments:
60
- x: A string, `tf.Tensor` or list of python strings.
61
- y: Any label data. Will be passed through unaltered.
62
- sample_weight: Any label weight data. Will be passed through unaltered.
63
- sequence_length: Pass to override the configured `sequence_length` of
64
- the layer.
65
- """
66
-
67
- backbone_cls = GPTNeoXBackbone
68
- tokenizer_cls = GPTNeoXTokenizer
69
-
70
- def __init__(
71
- self,
72
- tokenizer,
73
- sequence_length=1024,
74
- add_start_token=True,
75
- add_end_token=True,
76
- **kwargs,
77
- ):
78
- super().__init__(**kwargs)
79
- self.tokenizer = tokenizer
80
- self.packer = None
81
- self.sequence_length = sequence_length
82
- self.add_start_token = add_start_token
83
- self.add_end_token = add_end_token
84
-
85
- def build(self, input_shape):
86
- # Defer packer creation to `build()` so that we can be sure tokenizer
87
- # assets have loaded when restoring a saved model.
88
- self.packer = StartEndPacker(
89
- start_value=self.tokenizer.start_token_id,
90
- end_value=self.tokenizer.end_token_id,
91
- pad_value=self.tokenizer.pad_token_id,
92
- sequence_length=self.sequence_length,
93
- return_padding_mask=True,
94
- )
95
- self.built = True
96
-
97
- @preprocessing_function
98
- def call(
99
- self,
100
- x,
101
- y=None,
102
- sample_weight=None,
103
- sequence_length=None,
104
- ):
105
- sequence_length = sequence_length or self.sequence_length
106
- token_ids, padding_mask = self.packer(
107
- self.tokenizer(x),
108
- sequence_length=sequence_length,
109
- add_start_value=self.add_start_token,
110
- add_end_value=self.add_end_token,
111
- )
112
- x = {
113
- "token_ids": token_ids,
114
- "padding_mask": padding_mask,
115
- }
116
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
117
-
118
- def get_config(self):
119
- config = super().get_config()
120
- config.update(
121
- {
122
- "sequence_length": self.sequence_length,
123
- "add_start_token": self.add_start_token,
124
- "add_end_token": self.add_end_token,
125
- }
126
- )
127
- return config
128
-
129
- @property
130
- def sequence_length(self):
131
- """The padded length of model input sequences."""
132
- return self._sequence_length
133
-
134
- @sequence_length.setter
135
- def sequence_length(self, value):
136
- self._sequence_length = value
137
- if self.packer is not None:
138
- self.packer.sequence_length = value
@@ -1,182 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import keras
15
-
16
- from keras_hub.src.api_export import keras_hub_export
17
- from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
18
- from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
19
- from keras_hub.src.models.llama.llama_tokenizer import LlamaTokenizer
20
- from keras_hub.src.models.preprocessor import Preprocessor
21
- from keras_hub.src.utils.tensor_utils import preprocessing_function
22
-
23
-
24
- @keras_hub_export("keras_hub.models.LlamaPreprocessor")
25
- class LlamaPreprocessor(Preprocessor):
26
- """A Llama preprocessing layer which tokenizes and packs inputs.
27
-
28
- This preprocessing layer will do three things:
29
-
30
- 1. Tokenize any number of input segments using the `tokenizer`.
31
- 2. Pack the inputs together using a `keras_hub.layers.StartEndPacker`.
32
- with the appropriate tokens.
33
- 3. Construct a dictionary with keys `"token_ids"`, and `"padding_mask"`
34
- that can be passed directly to `keras_hub.models.LlamaBackbone`.
35
-
36
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
37
- string data in the `(x, y, sample_weight)` format used by
38
- `keras.Model.fit`.
39
-
40
- Args:
41
- tokenizer: A `keras_hub.models.LlamaTokenizer` instance.
42
- sequence_length: The length of the packed inputs.
43
- add_start_token: If `True`, the preprocessor will prepend the tokenizer
44
- start token to each input sequence. Default is `True`.
45
- add_end_token: If `True`, the preprocessor will append the tokenizer
46
- end token to each input sequence. Default is `False`.
47
-
48
- Call arguments:
49
- x: A tensor of single string sequences, or a tuple of multiple
50
- tensor sequences to be packed together. Inputs may be batched or
51
- unbatched. For single sequences, raw python inputs will be converted
52
- to tensors. For multiple sequences, pass tensors directly.
53
- y: Any label data. Will be passed through unaltered.
54
- sample_weight: Any label weight data. Will be passed through unaltered.
55
- sequence_length: Pass to override the configured `sequence_length` of
56
- the layer.
57
-
58
- Examples:
59
-
60
- Directly calling the from_preset().
61
- ```python
62
- preprocessor = keras_hub.models.LlamaPreprocessor.from_preset(
63
- "llama_base_en"
64
- )
65
-
66
- # Tokenize and pack a single sentence.
67
- preprocessor("The quick brown fox jumped.")
68
-
69
- # Tokenize and a batch of single sentences.
70
- preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
71
-
72
- # Preprocess a batch of sentence pairs.
73
- # When handling multiple sequences, always convert to tensors first!
74
- first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
75
- second = tf.constant(["The fox tripped.", "Oh look, a whale."])
76
- preprocessor((first, second))
77
- ```
78
-
79
- Mapping with `tf.data.Dataset`.
80
- ```python
81
- preprocessor = keras_hub.models.LlamaPreprocessor.from_preset(
82
- "llama_base_en"
83
- )
84
- first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
85
- second = tf.constant(["The fox tripped.", "Oh look, a whale."])
86
- label = tf.constant([1, 1])
87
-
88
- # Map labeled single sentences.
89
- ds = tf.data.Dataset.from_tensor_slices((first, label))
90
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
91
-
92
- # Map unlabeled single sentences.
93
- ds = tf.data.Dataset.from_tensor_slices(first)
94
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
95
-
96
- # Map labeled sentence pairs.
97
- ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
98
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
99
-
100
- # Map unlabeled sentence pairs.
101
- ds = tf.data.Dataset.from_tensor_slices((first, second))
102
-
103
- # Watch out for tf.data's default unpacking of tuples here!
104
- # Best to invoke the `preprocessor` directly in this case.
105
- ds = ds.map(
106
- lambda first, second: preprocessor(x=(first, second)),
107
- num_parallel_calls=tf.data.AUTOTUNE,
108
- )
109
- ```
110
- """
111
-
112
- backbone_cls = LlamaBackbone
113
- tokenizer_cls = LlamaTokenizer
114
-
115
- def __init__(
116
- self,
117
- tokenizer,
118
- sequence_length=1024,
119
- add_start_token=True,
120
- add_end_token=False,
121
- **kwargs,
122
- ):
123
- super().__init__(**kwargs)
124
- self.tokenizer = tokenizer
125
- self.packer = None
126
- self.add_start_token = add_start_token
127
- self.add_end_token = add_end_token
128
- self.sequence_length = sequence_length
129
-
130
- def build(self, input_shape):
131
- # Defer packer creation to `build()` so that we can be sure tokenizer
132
- # assets have loaded when restoring a saved model.
133
- self.packer = StartEndPacker(
134
- start_value=self.tokenizer.start_token_id,
135
- end_value=self.tokenizer.end_token_id,
136
- sequence_length=self.sequence_length,
137
- return_padding_mask=True,
138
- )
139
- self.built = True
140
-
141
- def get_config(self):
142
- config = super().get_config()
143
- config.update(
144
- {
145
- "sequence_length": self.sequence_length,
146
- "add_start_token": self.add_start_token,
147
- "add_end_token": self.add_end_token,
148
- }
149
- )
150
- return config
151
-
152
- @preprocessing_function
153
- def call(
154
- self,
155
- x,
156
- y=None,
157
- sample_weight=None,
158
- sequence_length=None,
159
- ):
160
- sequence_length = sequence_length or self.sequence_length
161
- token_ids, padding_mask = self.packer(
162
- self.tokenizer(x),
163
- sequence_length=sequence_length,
164
- add_start_value=self.add_start_token,
165
- add_end_value=self.add_end_token,
166
- )
167
- x = {
168
- "token_ids": token_ids,
169
- "padding_mask": padding_mask,
170
- }
171
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
172
-
173
- @property
174
- def sequence_length(self):
175
- """The padded length of model input sequences."""
176
- return self._sequence_length
177
-
178
- @sequence_length.setter
179
- def sequence_length(self, value):
180
- self._sequence_length = value
181
- if self.packer is not None:
182
- self.packer.sequence_length = value