keras-hub-nightly 0.15.0.dev20240911134614__py3-none-any.whl → 0.16.0.dev20240915160609__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. keras_hub/api/models/__init__.py +22 -17
  2. keras_hub/src/models/albert/albert_text_classifier.py +6 -1
  3. keras_hub/src/models/bert/bert_text_classifier.py +6 -1
  4. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +6 -1
  5. keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +6 -1
  6. keras_hub/src/models/f_net/f_net_text_classifier.py +6 -1
  7. keras_hub/src/models/gpt2/gpt2_preprocessor.py +7 -78
  8. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +1 -1
  9. keras_hub/src/models/preprocessor.py +1 -5
  10. keras_hub/src/models/resnet/resnet_backbone.py +3 -16
  11. keras_hub/src/models/resnet/resnet_image_classifier.py +17 -0
  12. keras_hub/src/models/resnet/resnet_presets.py +12 -12
  13. keras_hub/src/models/roberta/roberta_text_classifier.py +6 -1
  14. keras_hub/src/models/task.py +6 -6
  15. keras_hub/src/models/text_classifier.py +12 -1
  16. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +6 -1
  17. keras_hub/src/tests/test_case.py +13 -0
  18. keras_hub/src/utils/preset_utils.py +14 -32
  19. keras_hub/src/utils/timm/convert_resnet.py +0 -1
  20. keras_hub/src/utils/timm/preset_loader.py +6 -7
  21. keras_hub/src/version_utils.py +1 -1
  22. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/METADATA +1 -1
  23. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/RECORD +25 -36
  24. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/WHEEL +1 -1
  25. keras_hub/src/models/bart/bart_preprocessor.py +0 -264
  26. keras_hub/src/models/bloom/bloom_preprocessor.py +0 -178
  27. keras_hub/src/models/electra/electra_preprocessor.py +0 -155
  28. keras_hub/src/models/falcon/falcon_preprocessor.py +0 -180
  29. keras_hub/src/models/gemma/gemma_preprocessor.py +0 -184
  30. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -138
  31. keras_hub/src/models/llama/llama_preprocessor.py +0 -182
  32. keras_hub/src/models/llama3/llama3_preprocessor.py +0 -23
  33. keras_hub/src/models/mistral/mistral_preprocessor.py +0 -183
  34. keras_hub/src/models/opt/opt_preprocessor.py +0 -181
  35. keras_hub/src/models/phi3/phi3_preprocessor.py +0 -183
  36. {keras_hub_nightly-0.15.0.dev20240911134614.dist-info → keras_hub_nightly-0.16.0.dev20240915160609.dist-info}/top_level.txt +0 -0
@@ -18,6 +18,7 @@ import pathlib
18
18
  import re
19
19
 
20
20
  import keras
21
+ import numpy as np
21
22
  import tensorflow as tf
22
23
  from absl.testing import parameterized
23
24
  from keras import ops
@@ -493,6 +494,7 @@ class TestCase(tf.test.TestCase, parameterized.TestCase):
493
494
  run_mixed_precision_check=run_mixed_precision_check,
494
495
  run_quantization_check=run_quantization_check,
495
496
  )
497
+
496
498
  if expected_pyramid_output_keys:
497
499
  backbone = cls(**init_kwargs)
498
500
  model = keras.models.Model(
@@ -522,6 +524,12 @@ class TestCase(tf.test.TestCase, parameterized.TestCase):
522
524
  input_data = ops.transpose(input_data, axes=(2, 0, 1))
523
525
  elif len(input_data_shape) == 4:
524
526
  input_data = ops.transpose(input_data, axes=(0, 3, 1, 2))
527
+ if len(expected_output_shape) == 3:
528
+ x = expected_output_shape
529
+ expected_output_shape = (x[0], x[2], x[1])
530
+ elif len(expected_output_shape) == 4:
531
+ x = expected_output_shape
532
+ expected_output_shape = (x[0], x[3], x[1], x[2])
525
533
  if "image_shape" in init_kwargs:
526
534
  init_kwargs = init_kwargs.copy()
527
535
  init_kwargs["image_shape"] = tuple(
@@ -631,3 +639,8 @@ class TestCase(tf.test.TestCase, parameterized.TestCase):
631
639
 
632
640
  def get_test_data_dir(self):
633
641
  return str(pathlib.Path(__file__).parent / "test_data")
642
+
643
+ def load_test_image(self, size):
644
+ path = os.path.join(self.get_test_data_dir(), "test_image.png")
645
+ img = keras.utils.load_img(path, target_size=size)
646
+ return np.array(img)
@@ -668,7 +668,7 @@ class PresetLoader:
668
668
  """Load an image converter layer from the preset."""
669
669
  raise NotImplementedError
670
670
 
671
- def load_task(self, cls, load_weights, load_task_extras, **kwargs):
671
+ def load_task(self, cls, load_weights, load_task_weights, **kwargs):
672
672
  """Load a task model from the preset.
673
673
 
674
674
  By default, we create a task from a backbone and preprocessor with
@@ -684,11 +684,10 @@ class PresetLoader:
684
684
  if "preprocessor" not in kwargs and cls.preprocessor_cls:
685
685
  kwargs["preprocessor"] = self.load_preprocessor(
686
686
  cls.preprocessor_cls,
687
- load_task_extras=load_task_extras,
688
687
  )
689
688
  return cls(**kwargs)
690
689
 
691
- def load_preprocessor(self, cls, load_task_extras, **kwargs):
690
+ def load_preprocessor(self, cls, **kwargs):
692
691
  """Load a prepocessor layer from the preset.
693
692
 
694
693
  By default, we create a preprocessor from a tokenizer with default
@@ -733,33 +732,25 @@ class KerasPresetLoader(PresetLoader):
733
732
  converter_config = load_json(self.preset, IMAGE_CONVERTER_CONFIG_FILE)
734
733
  return load_serialized_object(converter_config, **kwargs)
735
734
 
736
- def load_task(self, cls, load_weights, load_task_extras, **kwargs):
735
+ def load_task(self, cls, load_weights, load_task_weights, **kwargs):
737
736
  # If there is no `task.json` or it's for the wrong class delegate to the
738
737
  # super class loader.
739
- if not load_task_extras:
740
- return super().load_task(
741
- cls, load_weights, load_task_extras, **kwargs
742
- )
743
738
  if not check_file_exists(self.preset, TASK_CONFIG_FILE):
744
- raise ValueError(
745
- "Saved preset has no `task.json`, cannot load the task config "
746
- "from a file. Call `from_preset()` with "
747
- "`load_task_extras=False` to load the task from a backbone "
748
- "with library defaults."
739
+ return super().load_task(
740
+ cls, load_weights, load_task_weights, **kwargs
749
741
  )
750
742
  task_config = load_json(self.preset, TASK_CONFIG_FILE)
751
743
  if not issubclass(check_config_class(task_config), cls):
752
- raise ValueError(
753
- f"Saved `task.json`does not match calling cls {cls}. Call "
754
- "`from_preset()` with `load_task_extras=False` to load the "
755
- "task from a backbone with library defaults."
744
+ return super().load_task(
745
+ cls, load_weights, load_task_weights, **kwargs
756
746
  )
757
747
  # We found a `task.json` with a complete config for our class.
758
748
  task = load_serialized_object(task_config, **kwargs)
759
749
  if task.preprocessor and task.preprocessor.tokenizer:
760
750
  task.preprocessor.tokenizer.load_preset_assets(self.preset)
761
751
  if load_weights:
762
- if check_file_exists(self.preset, TASK_WEIGHTS_FILE):
752
+ has_task_weights = check_file_exists(self.preset, TASK_WEIGHTS_FILE)
753
+ if has_task_weights and load_task_weights:
763
754
  jax_memory_cleanup(task)
764
755
  task_weights = get_file(self.preset, TASK_WEIGHTS_FILE)
765
756
  task.load_task_weights(task_weights)
@@ -769,23 +760,14 @@ class KerasPresetLoader(PresetLoader):
769
760
  task.backbone.load_weights(backbone_weights)
770
761
  return task
771
762
 
772
- def load_preprocessor(self, cls, load_task_extras, **kwargs):
773
- if not load_task_extras:
774
- return super().load_preprocessor(cls, load_task_extras, **kwargs)
763
+ def load_preprocessor(self, cls, **kwargs):
764
+ # If there is no `preprocessing.json` or it's for the wrong class,
765
+ # delegate to the super class loader.
775
766
  if not check_file_exists(self.preset, PREPROCESSOR_CONFIG_FILE):
776
- raise ValueError(
777
- "Saved preset has no `preprocessor.json`, cannot load the task "
778
- "preprocessing config from a file. Call `from_preset()` with "
779
- "`load_task_extras=False` to load the preprocessor with "
780
- "library defaults."
781
- )
767
+ return super().load_preprocessor(cls, **kwargs)
782
768
  preprocessor_json = load_json(self.preset, PREPROCESSOR_CONFIG_FILE)
783
769
  if not issubclass(check_config_class(preprocessor_json), cls):
784
- raise ValueError(
785
- f"Saved `preprocessor.json`does not match calling cls {cls}. "
786
- "Call `from_preset()` with `load_task_extras=False` to "
787
- "load the the preprocessor with library defaults."
788
- )
770
+ return super().load_preprocessor(cls, **kwargs)
789
771
  # We found a `preprocessing.json` with a complete config for our class.
790
772
  preprocessor = load_serialized_object(preprocessor_json, **kwargs)
791
773
  preprocessor.tokenizer.load_preset_assets(self.preset)
@@ -172,4 +172,3 @@ def convert_head(task, loader, timm_config):
172
172
  task.output_dense.bias,
173
173
  hf_weight_key=prefix + "bias",
174
174
  )
175
- return task
@@ -45,16 +45,15 @@ class TimmPresetLoader(PresetLoader):
45
45
  self.converter.convert_weights(backbone, loader, self.config)
46
46
  return backbone
47
47
 
48
- def load_task(self, cls, load_weights, load_task_extras, **kwargs):
49
- if not load_task_extras or not issubclass(cls, ImageClassifier):
48
+ def load_task(self, cls, load_weights, load_task_weights, **kwargs):
49
+ if not load_task_weights or not issubclass(cls, ImageClassifier):
50
50
  return super().load_task(
51
- cls, load_weights, load_task_extras, **kwargs
51
+ cls, load_weights, load_task_weights, **kwargs
52
52
  )
53
53
  # Support loading the classification head for classifier models.
54
- if "num_classes" not in kwargs:
55
- kwargs["num_classes"] = self.config["num_classes"]
56
- task = super().load_task(cls, load_weights, load_task_extras, **kwargs)
57
- if load_weights:
54
+ kwargs["num_classes"] = self.config["num_classes"]
55
+ task = super().load_task(cls, load_weights, load_task_weights, **kwargs)
56
+ if load_task_weights:
58
57
  with SafetensorLoader(self.preset, prefix="") as loader:
59
58
  self.converter.convert_head(task, loader, self.config)
60
59
  return task
@@ -15,7 +15,7 @@
15
15
  from keras_hub.src.api_export import keras_hub_export
16
16
 
17
17
  # Unique source of truth for the version number.
18
- __version__ = "0.15.0.dev20240911134614"
18
+ __version__ = "0.16.0.dev20240915160609"
19
19
 
20
20
 
21
21
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.15.0.dev20240911134614
3
+ Version: 0.16.0.dev20240915160609
4
4
  Summary: 🚧🚧🚧 Work in progress. 🚧🚧🚧 More details soon!
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -3,12 +3,12 @@ keras_hub/api/__init__.py,sha256=je2H9ewlE0Dg3f0Dbjou6ah-VHrS2TsIXN1HRoWz0Z8,107
3
3
  keras_hub/api/bounding_box/__init__.py,sha256=LNSVZLB1WJ9hMg0wxt7HTfFFd9uAFviH9x9CnfJYzBA,1682
4
4
  keras_hub/api/layers/__init__.py,sha256=4OlmzaQ0I8RuHp7Ot9580loeElsV4QeB2Lon8ZB_a1Q,2600
5
5
  keras_hub/api/metrics/__init__.py,sha256=tgQfooPHzlq6w34RHfro6vO8IUITLTf-jU2IWEBxxUM,966
6
- keras_hub/api/models/__init__.py,sha256=3VHQRqlFRGr3eEuXodbRESNJdbSyVxBGZMOuK_fDJwA,13366
6
+ keras_hub/api/models/__init__.py,sha256=0BRVIXtv8DrIbE5n1JeAR_gVeF1_sG_zeMI0cR0rjBI,13396
7
7
  keras_hub/api/samplers/__init__.py,sha256=l56H4y3h_HlRn_PpeMyZ6vC7228EH_BVFo4Caay-zQ8,1315
8
8
  keras_hub/api/tokenizers/__init__.py,sha256=nzMwKmxkMCOiYB35BIgxHNveCM9WoYRp7ChhmVK8MIM,3042
9
9
  keras_hub/src/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
10
10
  keras_hub/src/api_export.py,sha256=4vXS_G7iezVVk9FsJLM97AwOiU35W_wum_-uBSvXrZk,1658
11
- keras_hub/src/version_utils.py,sha256=zOo_7jr4J1soOeUY2PNDS1fRK0lz2nrPJWTzi1h-Mlk,810
11
+ keras_hub/src/version_utils.py,sha256=n0B4C4spVrJz_BF11ar6P4yF0FtiZ1jSAiA65mkVOIo,810
12
12
  keras_hub/src/bounding_box/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
13
13
  keras_hub/src/bounding_box/converters.py,sha256=V2ti6xPpaBgeLKbTpCsHsABdYOYASerIKX9oWqeOjHo,18450
14
14
  keras_hub/src/bounding_box/formats.py,sha256=5bbHO-n2ADsKIOBJDHMvIPCeNBaV1_mj-NVCgBKNiu8,4453
@@ -57,23 +57,22 @@ keras_hub/src/models/image_classifier.py,sha256=72qxEL01DSKE-Ugg4tpZqkLQpYf15bPf
57
57
  keras_hub/src/models/image_classifier_preprocessor.py,sha256=Az9596ow470lqCzYF0I-GUkHbVfWx4GiynvpwGws6f0,3199
58
58
  keras_hub/src/models/masked_lm.py,sha256=x8jeqgYsKsgeVPAirVRPHDdT21FAhqJ45pb8mIPc410,4161
59
59
  keras_hub/src/models/masked_lm_preprocessor.py,sha256=Z6mo0szZp5Kfn6LmtY7EjZWGxLdR4c75hfw97V310Kc,6241
60
- keras_hub/src/models/preprocessor.py,sha256=0Hm-OjW9GGuQqbdp-AKGxQj5L8f6SjIG1ZzOHQAVL_o,7459
60
+ keras_hub/src/models/preprocessor.py,sha256=PZruA4xHS_w0-9hWLD1iJ79aOQMP81aJPYXl5SpjXak,7174
61
61
  keras_hub/src/models/seq_2_seq_lm.py,sha256=PmdgShThfg2VIYMviKsU11jD3KgBZnYZGZp9HXVO4LU,2449
62
62
  keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=fQv-zg7vvIpy3ucCbIkiey8AGH7rEuhDpCilul2JjsE,10272
63
- keras_hub/src/models/task.py,sha256=gmJtqFVB1kZZszdjC87RybQ8yGBrBIxpxrTGIO-3hQg,14442
64
- keras_hub/src/models/text_classifier.py,sha256=7sXAIDZnxC77saRW-4QR7CJ-0ZBQe22IRMXNdHJZkVg,4329
63
+ keras_hub/src/models/task.py,sha256=elkNVXUAbUskRprIBmTDiJkFheLo1mLTX9lppelHucc,14432
64
+ keras_hub/src/models/text_classifier.py,sha256=BhsLovKyIVslm4ibrzFqtxrqljyNehk1lTpQ-r3bq5k,4744
65
65
  keras_hub/src/models/text_classifier_preprocessor.py,sha256=6Mkypx3UUj4gUmLlocaLZBc2Addk_pshKPWwy7wb788,5307
66
66
  keras_hub/src/models/albert/__init__.py,sha256=RuIE1aGly5hA0OHBu_QA09XairoViM1kvS6K3kzVB3Q,843
67
67
  keras_hub/src/models/albert/albert_backbone.py,sha256=MNurFI3ansonMPJi8gmRf0dXwMwE38C-DJzqdkuLs9o,10659
68
68
  keras_hub/src/models/albert/albert_masked_lm.py,sha256=Y8N5HqQ3fUl4lUG4T_vbn_zI-Pink8oDFRKlxfGm6S8,4712
69
69
  keras_hub/src/models/albert/albert_masked_lm_preprocessor.py,sha256=v85sOAogJ4u4kfN0oq8_oVFf9AoFmqY7E48Czbucb6Y,5061
70
70
  keras_hub/src/models/albert/albert_presets.py,sha256=LLn1rJQXFPee2QCM6z4EnrkZBYw7qe3vmLn5XvDFfSA,2795
71
- keras_hub/src/models/albert/albert_text_classifier.py,sha256=3b75_FLtCSnKOaAhKo803T8lF2h_2AqTN-FVOT-f6sU,7163
71
+ keras_hub/src/models/albert/albert_text_classifier.py,sha256=xWRu-JNfMSbtRL38yBWPOz1KA-BJAvVjL4FxntRnQ7A,7231
72
72
  keras_hub/src/models/albert/albert_text_classifier_preprocessor.py,sha256=gy8BlsAhYSmkfn3CItViJT7MGDk-4b9MpnlZivKqa7g,6125
73
73
  keras_hub/src/models/albert/albert_tokenizer.py,sha256=_PSU17dxw79NeINVYv_CA225aSE5lIHn09wxJJt7XM0,3570
74
74
  keras_hub/src/models/bart/__init__.py,sha256=QniU0N7lU_FWZxGPyHqqOAeNOoBM0BEvuQVv_s9GH0E,831
75
75
  keras_hub/src/models/bart/bart_backbone.py,sha256=4hCYeOZF8kYdO9-ev8OASYSdrqDApk2XHiSl9hue_VM,10286
76
- keras_hub/src/models/bart/bart_preprocessor.py,sha256=rQG4xplQWvT2uDQARgajxQyWFr2vF9WpCP0CGxjByxY,9264
77
76
  keras_hub/src/models/bart/bart_presets.py,sha256=TvSPseluMhV233tlXiZAs_8ecOka-N4ZNSS_WPfP0vI,2736
78
77
  keras_hub/src/models/bart/bart_seq_2_seq_lm.py,sha256=7Q-O23PjFz5BU5lGHUYUIRkv8kxnRGHkfV79JK-jcdg,19910
79
78
  keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=sR5SjoB4e3nuYgAMtuhM8s__6Ii3lCESUOdchGLXfEY,4960
@@ -83,7 +82,7 @@ keras_hub/src/models/bert/bert_backbone.py,sha256=mxnxa5cVfM9fNGnhblguSYcQh62nlR
83
82
  keras_hub/src/models/bert/bert_masked_lm.py,sha256=6-sZP4anfiVWq_EwbfMbbz1bcZF1uP7lolCz_6O6rao,4631
84
83
  keras_hub/src/models/bert/bert_masked_lm_preprocessor.py,sha256=wp80B97OTQMGgonsRhtnpiFBMmCFqbzZwPna6BMWlkc,5160
85
84
  keras_hub/src/models/bert/bert_presets.py,sha256=4NmCoYQuX0j-G-6rPeHTpv7uV-1kIFmTb9cdjuCxnTI,5609
86
- keras_hub/src/models/bert/bert_text_classifier.py,sha256=JCu3LUVuxAK0HSXnf4LbGXFQa68V03E-VerpUbOHIQA,6318
85
+ keras_hub/src/models/bert/bert_text_classifier.py,sha256=YIjJ4FTycOA6ZtJ0xwgcviz4tPa1YKc_bx5NWy29Ilc,6384
87
86
  keras_hub/src/models/bert/bert_text_classifier_preprocessor.py,sha256=gVu-XE9doX7V5VYCVpWtpVv0ILWkv2umInF0wb4ehP8,5299
88
87
  keras_hub/src/models/bert/bert_tokenizer.py,sha256=XP58gh3zxDQgrK5y5cVvuPwIO75U7l7Xopt5n79pUuU,3611
89
88
  keras_hub/src/models/bloom/__init__.py,sha256=ck7AqlWlHHTslBEZCxa_ps-nOC-7hyEsu4uielO0SIU,837
@@ -92,7 +91,6 @@ keras_hub/src/models/bloom/bloom_backbone.py,sha256=i2Dc2FeYSPYVyKNc9XhfDTX6mV3P
92
91
  keras_hub/src/models/bloom/bloom_causal_lm.py,sha256=7uxEnEZFIlmZgHg7D-EArr459kka6ljWEUotPhSyi3U,11548
93
92
  keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py,sha256=WVTWRUbQXUBlfC80JucV6ifcI5t6jjN5MtVsxNEYluk,3598
94
93
  keras_hub/src/models/bloom/bloom_decoder.py,sha256=hSoeVnwRQvGbpVhYmf7-k8FB3Wg4auwZWdr2ubiNtxc,7157
95
- keras_hub/src/models/bloom/bloom_preprocessor.py,sha256=buBx8Rt6i-_pMYakoFgA4l6a2KpwPlffFN7QBFbkNgA,6377
96
94
  keras_hub/src/models/bloom/bloom_presets.py,sha256=7GiGFPmcXd_UraNsWGQffpzjKDRF-7nqIoUsic78xf0,4696
97
95
  keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=ZMx8mHhw0D50zmmvYdmpg-Lk2GcvHz7pPlRpPlhS_2s,3161
98
96
  keras_hub/src/models/csp_darknet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -103,7 +101,7 @@ keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=_J-PpSLubay58YO51B
103
101
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=urcktTsXN3kDWnppplnC8yISGx37qGW5HdwHSC7VDLE,4773
104
102
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py,sha256=l-hcoKKQPz_VB-CJNq0oLxEd5hxLHb2DU9-TqE28Fz8,5552
105
103
  keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=pDcdjJ7mIz8QdTxLxllmY7_9hsgCRdVlsYREKnHw5Ek,3300
106
- keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=zdeMmoHi07CJDXcne7Zzcg9D-RGKz1D9o_7w_FcUUK0,7754
104
+ keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=lQla4R7UH5olF8xs5By6aKwpGtpoE3IPlovjrhB-hYQ,7825
107
105
  keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=z_PynLHhc2OFasaV1DMHEyyKEC4miK4KqWj1-2WAEOc,6561
108
106
  keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=NLLkMvotpPZUdRELaSRuJuVmiOGxwmnjmjuswa6NJdw,5574
109
107
  keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=Zt10UPxYsr_x8isO_OrXeaquWVJbcE49raM6_BkDdEs,9142
@@ -117,7 +115,7 @@ keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=ZW2OgNlWXeRlfI5B
117
115
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=1BFS1At_HYlLK21VWyhQPrPtActpmR52A8LJG2c6N8Y,4862
118
116
  keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py,sha256=2vge8ivK7Fl8iFKm1Si2MMru9yKOo27J0UUsFRuAdOk,5816
119
117
  keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=jrLwBwTaxofI5jTEV3UTPTeVePdzbJtVO9OclP-Mf4w,2312
120
- keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=3R-n2s43x77naKh6ONosVa0wLbFVySiBKRXCbV0nSG0,7252
118
+ keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=Q-qGmyl6i2JUFZI59KUWzlzLTIRmYtgahFHo3pUE9g4,7324
121
119
  keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=sad3XpW2HfjG2iQ4JRm1tw2jp4pZCN4LYwF1mM4GUps,5480
122
120
  keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=VK7kZJEbsClp20uWVb6pj-WSUU5IMdRBk0jyUIM_RIg,3698
123
121
  keras_hub/src/models/efficientnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -126,7 +124,6 @@ keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=_6aNQKL2XdVNgoAdKvvTh_ND
126
124
  keras_hub/src/models/efficientnet/mbconv.py,sha256=LNbEj7RpEZ0SqzEu-7ZpH1BKm6Ne2sXPckc5c2DMqUk,8212
127
125
  keras_hub/src/models/electra/__init__.py,sha256=ixE5hAkfTFfErqbYVyIUKMT8MUz-u_175QXxEBIiGBU,849
128
126
  keras_hub/src/models/electra/electra_backbone.py,sha256=nLKE67xffbyWSmHtSsR6SZQId2BJ03pjSACMx9fa6do,9590
129
- keras_hub/src/models/electra/electra_preprocessor.py,sha256=Jcc8RO6gMoHxS8TQzypQjvW76NZuGXAIcsBG1WURblg,6151
130
127
  keras_hub/src/models/electra/electra_presets.py,sha256=7UxPjVFmNM6jbzJxXlnNzYZCdrC9JIz39FWlHvG7ubM,3954
131
128
  keras_hub/src/models/electra/electra_tokenizer.py,sha256=WjGhKVxtDMMcm-bMUNSvcR2z1O9nWeuMPWZQa9Dc2x0,3315
132
129
  keras_hub/src/models/f_net/__init__.py,sha256=MrkNt4swYV-pWb4biE1ITcYxEwWxiKRwCukhbgNo_Lg,835
@@ -134,7 +131,7 @@ keras_hub/src/models/f_net/f_net_backbone.py,sha256=h1IqRGEHKKhDiFUnqhaM2Rxs2yk6
134
131
  keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GHdUf5PNUzT-YH9ZMf5FxmGx7NExFfTISnScf74zIKk,4565
135
132
  keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py,sha256=rKh-a2EB2GfUX1osmDoBy6apzUdjiCKJc8CDxKQLlfI,5667
136
133
  keras_hub/src/models/f_net/f_net_presets.py,sha256=IP_ImbHzZScyMJBeWWgGDXduAbjddwdFpGGwO5JQwIE,1640
137
- keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=IwgxMpYGNHS6KNZ-d-2ecxjbX4zSMyDD4qWSUdXYhl0,5390
134
+ keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=p6zZehLEywEpIMqolHhZHna2V0RlSiMcSv0TCOCJVCQ,5456
138
135
  keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=zERq-1mayzI6FHMlwckHlruN406jswxu0jWq1i9VnE0,5408
139
136
  keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=kqjxe_G8_4mEXsICcJC2HSwvhtIfwdaq1Q8bTTqkZps,2872
140
137
  keras_hub/src/models/falcon/__init__.py,sha256=Djjo5fD8XJTMQA8x5DOVbqzaHPsWos45BvxTuGuFvPE,843
@@ -142,7 +139,6 @@ keras_hub/src/models/falcon/falcon_attention.py,sha256=1U__Yfv0BcEm61zMsqHIGu6XZ
142
139
  keras_hub/src/models/falcon/falcon_backbone.py,sha256=fyV1ssWMSq87_Rt13kWpwiIpRRRlGm3qTKgCYvK991Q,6012
143
140
  keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=Fdh_36XpFiItwk9Gy_wxForY9LtoA8-OkosTU3VG3_E,11419
144
141
  keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=rGZ9kWVbb0NnncvgRoQ2BfcBCwIDBLIewCbeq7fuXzo,3619
145
- keras_hub/src/models/falcon/falcon_preprocessor.py,sha256=5DbKNLwks_zXXoFG46tVpKumXEpJS0JMS4M4xY5IIjQ,6613
146
142
  keras_hub/src/models/falcon/falcon_presets.py,sha256=Ab6pydPHFSDK-3iuKPa8SI9Zfdf9iOcqBMhhCQlLUQo,1159
147
143
  keras_hub/src/models/falcon/falcon_tokenizer.py,sha256=LHJI2hXGO9f83NVMjoM-irWa01KynCjVcmo-CPNPf8M,3141
148
144
  keras_hub/src/models/falcon/falcon_transformer_decoder.py,sha256=uPtU0PC5XndPs6ak5mxAaGTmkQVlVrrEy_G4SwlkZ78,8710
@@ -152,7 +148,6 @@ keras_hub/src/models/gemma/gemma_backbone.py,sha256=RO9O_AhUlboUzBYxYFDFFdYBjaXa
152
148
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=jOy_X0QR-olMfCPyFtmXRZSllWz3oy10JYwLzAPtXAg,17357
153
149
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=uZdYAAMIeABh339U9qmSPVRxVXtU4Ko4nrih1nN0QX4,3498
154
150
  keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=GcMv7Xibgxliu2sGJWaZ_PXRJRuvexxE-NSQq4nbYmk,8172
155
- keras_hub/src/models/gemma/gemma_preprocessor.py,sha256=RlMu4Xsd5Vn24ReokzJDNuuAx3m-AfldMclNLgZWPX0,6503
156
151
  keras_hub/src/models/gemma/gemma_presets.py,sha256=7N5dcMjMb4gOb9ysCLdVqLFDpvV3bETiB6Hq2XrdGWA,9867
157
152
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=JZ3XDScSsAV9y8uM-uKrO-lyu3PNyXNynrJqVJQbJo0,3208
158
153
  keras_hub/src/models/gemma/rms_normalization.py,sha256=27nA9BjNVkwI-icHISK57qJl8wxRdWGM5g4K_DzjAeI,1419
@@ -160,7 +155,7 @@ keras_hub/src/models/gpt2/__init__.py,sha256=Oy1WReI1aRiW_EU-TMdhs5Srr-KNaYOfXAx
160
155
  keras_hub/src/models/gpt2/gpt2_backbone.py,sha256=WK0mJ1CRGIE0jfc7A3toslt_cFcynyU2jczjUJVSazc,7548
161
156
  keras_hub/src/models/gpt2/gpt2_causal_lm.py,sha256=88Dpewafe9lmLgkHNqxhk6TeLjX1uMx2Q2geU5xUPGY,17352
162
157
  keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py,sha256=-TE1IBKuHwbLbD--UKUsJq18IjRJDCM8DjRShWl3KMA,3578
163
- keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=rRgK8C0RNhbExRqpREVRluV1jxTK6tNsrGeZoA-BYqs,6575
158
+ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=gLIndASgIBxKRYzFjclAhMUkrSFUtZEVFsPXUXpiIyU,3766
164
159
  keras_hub/src/models/gpt2/gpt2_presets.py,sha256=v5OJ5A0oUfxJamPFOkhoQvsrcqmkhOH7fFzHiQroR-w,3020
165
160
  keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=Xq_Du7TiR6IntGZzsmj1rtNQq7yFa1U-E4Do95qsS68,3202
166
161
  keras_hub/src/models/gpt_neo_x/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -169,7 +164,6 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=OhsAHoR7lYRlu38jB3YR
169
164
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=YO_fc5AcGYmaGC8z0Ehpws_SuUCcdtozyBlbcjVRn9s,8276
170
165
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=Ugl9p6q7Pts3x0tboH2ZpL79RmNPpeitSNszcs88Wmk,2543
171
166
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=vss1MngY_SQ2nSUjHsZkDDmpeASQOVscTb1-7jpTosM,10314
172
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py,sha256=NGLHuh61iRt3uEScua06YJE7eHVirEJ1wjIQjc-bH8I,5230
173
167
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=b6uu6xlKVBUdBwsw5t2vP5OisXk5QJd4mvjiizPAds8,2577
174
168
  keras_hub/src/models/llama/__init__.py,sha256=XBMAoTkyvCPk4ia7ODOy_AdxahE-BWon7wxXGv_bF-E,837
175
169
  keras_hub/src/models/llama/llama_attention.py,sha256=m8DmMnYhl9zCXJFN_UGh7MHgyy8l3_FZcecAoKSJg8o,7779
@@ -178,14 +172,12 @@ keras_hub/src/models/llama/llama_causal_lm.py,sha256=i7o4vNO_tnY_hHD11V6mdkRJxkK
178
172
  keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=PHABWx2GMAwbr676JMYLkKMsV6KCA_Ry8-8wv5gUw_c,3634
179
173
  keras_hub/src/models/llama/llama_decoder.py,sha256=42Pc6lpwM6ycnYR2PW6CO3C8lyn6N7vop9KcAIow1II,9208
180
174
  keras_hub/src/models/llama/llama_layernorm.py,sha256=VifoRNrwWmLimQ4cWbJpVCPSegkijpxFERZcoObtV9o,1635
181
- keras_hub/src/models/llama/llama_preprocessor.py,sha256=iOiiIqafYByXAoz70TIKX7w8qpBWAIAYj0hffHxuXIs,6741
182
175
  keras_hub/src/models/llama/llama_presets.py,sha256=8ZaxSmDTRif8BMGKs8Ib3ijwspSIiV_arNzCwg5P5-U,3015
183
176
  keras_hub/src/models/llama/llama_tokenizer.py,sha256=W80pMsE2cAl_DE5u2Bzig9GM0viPS4nWQaw4rfslvHY,2567
184
177
  keras_hub/src/models/llama3/__init__.py,sha256=g2n4QAR2tpn5waeeFgpUV4xgW7tnwnZ1An_Mqg0D09M,843
185
178
  keras_hub/src/models/llama3/llama3_backbone.py,sha256=VxX3cMpzra7m7TaG2W-gTllWE5Kvl8yOkES3GSUzXl8,3441
186
179
  keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=tSJQGbKY09bJMnLfjERrc_0qHFUd9Lp8kxMGJdtkJU8,2126
187
180
  keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=4VknKZdH8-_wVFj-dU6aJxkrHCPyLrICWehbFGroi3k,3650
188
- keras_hub/src/models/llama3/llama3_preprocessor.py,sha256=Pq_FkJiynuzYtAG7JNuDD-s9_fS_8-YM2TTvCvoQRf8,1033
189
181
  keras_hub/src/models/llama3/llama3_presets.py,sha256=5v1MZ77mBMxU4tHGbO03jwHxKflUpjLj0RnCU8Ksa-U,2588
190
182
  keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=Q0EjX3MzxQzo94eEO1EXxfNsyhuQcvl2fX1JfZUSo0w,1375
191
183
  keras_hub/src/models/mistral/__init__.py,sha256=EpGh-S5Q7iH9sGxbRi2yKM32_0eClKBt5ZL-2ME-oyo,849
@@ -194,7 +186,6 @@ keras_hub/src/models/mistral/mistral_backbone.py,sha256=2Sp0rtBQKrSM2RvaCVX1ulHq
194
186
  keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=Twx-kzVz0EP2losFCuS03G5J8LBE-BOswPLZ_PZxpd4,13671
195
187
  keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=Cpx2Sns2irEYp_LoTpkKecrZN3KmO8Cn9GnDLZI4AsU,3665
196
188
  keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=Nlo5iYrpOSYDdPODJuXpK5Wpl3INCSuoLzt4MM4ShYc,1648
197
- keras_hub/src/models/mistral/mistral_preprocessor.py,sha256=pmEOhs8Y_O5vr7VsR6dwY3mMZze4FtTEwZwb9QqENaQ,6776
198
189
  keras_hub/src/models/mistral/mistral_presets.py,sha256=uF1Q4zllcV1upIlqmn3gxhVWzot6Olw9PSUi-qwU2cw,1914
199
190
  keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=pO7mpzYgRDFpIrsmLBL3zxkadrOE0xfFj30c2nHN42c,2591
200
191
  keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=6CdaZt1lQ9VcLz_OoYroqiqvsZfq9H5VGaWab25aCRI,10127
@@ -209,7 +200,6 @@ keras_hub/src/models/opt/__init__.py,sha256=DiiylcsbseSQ8te8KWZ6BTIaKYSzXHUPGBgF
209
200
  keras_hub/src/models/opt/opt_backbone.py,sha256=cbm9I7d3QlGD8l2W1eK8esqc5gm77tpwxg4t9nC-FtA,6460
210
201
  keras_hub/src/models/opt/opt_causal_lm.py,sha256=z6M8cQV-c8q7HmikNA9RuvsMMvQYF21-ZcC0nVGfnp8,11438
211
202
  keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=UzjIzQYtPfIjIyQ6PjnOHU2rstiy7J3uRuwnMnuXuRs,3687
212
- keras_hub/src/models/opt/opt_preprocessor.py,sha256=YntudfRQvN6b-R4Ku2XSHOs2Fq0z0fynznTFj883FjM,6553
213
203
  keras_hub/src/models/opt/opt_presets.py,sha256=6sLgktbfdi8aEX4ntGL1y7uBvbrLUlSFSvU0Owg4GR4,2914
214
204
  keras_hub/src/models/opt/opt_tokenizer.py,sha256=TG0tlJ3jryDKXPo8AruKyP51eCdKKjJWv1QtVHfbTOc,3144
215
205
  keras_hub/src/models/pali_gemma/__init__.py,sha256=OFu-CQIlUlUox6tGkKvNePwc3ZkPGcmOVsBqcP-w5Fw,873
@@ -219,7 +209,7 @@ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=dMCo
219
209
  keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=fXLO4uHtWYTuEPmyN9q-F0AfnA1TAcq2Yl20pFpLt1s,5761
220
210
  keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=Wm1A-HuOMxesAHFbEpP5ZkPbdDaVW5CTTwkyFpI-WdI,990
221
211
  keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=cG5cV2bkiDJlKDiHX76BpnClsY5PcmLDezDg7emeiA4,2986
222
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=PHccqU1vc9S4jtplslt2KlZe2vzcNmcWUIcPurcsEns,3003
212
+ keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=7F1TQql3DEN517iVbNL60u6fQPimrGQvWBYh16ng8JU,3000
223
213
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=JUfJuyobcEb60jp3sIxlq12gIH_qsn97h4hsecimipQ,19092
224
214
  keras_hub/src/models/phi3/__init__.py,sha256=ENAOZhScWf9RbPmkiuICR5gr36ZMUn4AniLvJOrykj8,831
225
215
  keras_hub/src/models/phi3/phi3_attention.py,sha256=BcYApteLjbrCzube7jHVagc0mMpDCReRyvsQhQcJzY8,9828
@@ -228,22 +218,21 @@ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=E-7iZfaQ75R4kAS7Gmsho2-obwQM6
228
218
  keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=QsYrXZ2V3IlqBU-9zu0Ebf5EQZe8fnudVDp-ra0Enwg,3629
229
219
  keras_hub/src/models/phi3/phi3_decoder.py,sha256=x2Bq_lhlPhImloTXDw5w1Cr73tRB8Ta9qpqS44z0EuE,10172
230
220
  keras_hub/src/models/phi3/phi3_layernorm.py,sha256=r8Pqn9uHZSs3CbDbtjxED7cHtqj4a9TvQlGkzX5oxY8,1634
231
- keras_hub/src/models/phi3/phi3_preprocessor.py,sha256=ierCpORmBCZrQknk5uQnpBCcqyFXOrt4NLH2xL0crNo,6775
232
221
  keras_hub/src/models/phi3/phi3_presets.py,sha256=S7_gIqPxU5FQAEnAE_68UrfGGSLOMvoVxL8SrMig0Ao,2195
233
222
  keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=QVJIgpOw6iMicGrsPdW8eF84vV_stf0Tqm2qBJdsKH0,5597
234
223
  keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=hlA-u2sTRYARDW3ABICPeiOYW1AJwr-5kvZk3EB5z7M,2577
235
224
  keras_hub/src/models/resnet/__init__.py,sha256=41gttaQ7gt_ZaqDa_GKuMPfIk5c88-GrdC1h9fBUTXc,843
236
- keras_hub/src/models/resnet/resnet_backbone.py,sha256=vBQ4H9i3WfWxdfHyZg4ES3t36gf0iIUrSXyp73ZrI18,33709
237
- keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=3F7XGc3C_FOtW7zC0Au5LvPgKzJ2RDs-XzzXQottvyU,4659
225
+ keras_hub/src/models/resnet/resnet_backbone.py,sha256=n9aKIpQcJCsAZrBiiN1vxUMHeQgYudRHdu_MsdRQZqw,33260
226
+ keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=KZ2Na7dU8vvxsMDOHolhjF9kdxs7ptRKNg1FqNVDU2U,5323
238
227
  keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=Vrs9NBZRL5fgDXXY27GZJg5xMa5_wovi8A2z8kFl2nc,1129
239
228
  keras_hub/src/models/resnet/resnet_image_converter.py,sha256=820drIU5Kkib7gC7T418mmrhsBHSkenfEiZ6-fkChv0,961
240
- keras_hub/src/models/resnet/resnet_presets.py,sha256=Tcl_hzHMeYnvEGLbZMaAJ-td0QfZRJ9TtRf7lUqMJiQ,3442
229
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=DZoufeJyrVDL4aHSztQNzZj8Cb_OGX53Fn0Ze4RuZCI,3550
241
230
  keras_hub/src/models/roberta/__init__.py,sha256=P-9HOooyuSriDclHrf0YvdRy95bU08VPU7P8nBsy59U,849
242
231
  keras_hub/src/models/roberta/roberta_backbone.py,sha256=KR3y11RpA4dvKmQ2HaRoWNTLGnLs6Lqx-HXYejQt4G8,6926
243
232
  keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=N0r6XEZAVMNgyTorFQzyT8EiEXtWO3R2PnL6s2P3YDQ,4763
244
233
  keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py,sha256=hHoIHC-VRQN3hskTxlrBwDjKGeUqkm03IjV9IxTdPMQ,6437
245
234
  keras_hub/src/models/roberta/roberta_presets.py,sha256=Ys5WnfBCzrRDLVLrAm412ojHY0yyj6KtSJWslN8re6g,1764
246
- keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=qTxGYSpjmYdHr4CuLf7DlUl1_eM6E61rJqflt-J4kvo,7199
235
+ keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=A4psd1Ef0ZSPMCsBpSLe5xmZqsFSn5XZ8gr_ekL9EoU,7268
247
236
  keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=xK0dGPi3nZ5mUoRtTSE8OhibQSaOvzkGELhPAJAB5sc,6579
248
237
  keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=RlKxa0eo7KYgRH5HSHrflna2LkB9pS6qjm2cr4DbuBg,3299
249
238
  keras_hub/src/models/stable_diffusion_v3/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -283,7 +272,7 @@ keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py,sha256=Msm1U2pJbrC3XfeC
283
272
  keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py,sha256=37_Qn1x-_TTHGG_29VlbQcRb41pAiTK-c88jlrt098s,4965
284
273
  keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py,sha256=a5uVVbROS30hqh2AYmpz0Bo8HWfuwOXSS5pPoEQzJlE,6581
285
274
  keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=LsaoAJ8ddyTDCJ6JmVlVy00C4r8khZZOg3YmW3aY5YA,1762
286
- keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=XAKudzOipoXC3LwbDBfJEb1DskkpFdmyLXf5kjaBRqg,7752
275
+ keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=XN4o9CVeCXiEBM2L1nHBksJXYQ643P9EY20FllvqpGo,7824
287
276
  keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py,sha256=DFnJMgim_NJrzppWNSSUDi3sUASiKithFXCfamtsuZo,7112
288
277
  keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py,sha256=8r5ATeJenQERGhjhw_gB6tvID256VHjH5ASTHSsd8mA,7361
289
278
  keras_hub/src/models/xlnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
@@ -301,7 +290,7 @@ keras_hub/src/samplers/serialization.py,sha256=Z8u-nRdv7K1RPS_0rMYJwkunoFmI2xPCj
301
290
  keras_hub/src/samplers/top_k_sampler.py,sha256=xLexmP7FrW_W2657ObeJUgbeEox8AbB9uXIBKODVuKU,2836
302
291
  keras_hub/src/samplers/top_p_sampler.py,sha256=Mx4Ytti2BsVh6uLPnBeNZ5znBjvXrnDndmbMlMAMRbk,3986
303
292
  keras_hub/src/tests/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
304
- keras_hub/src/tests/test_case.py,sha256=9iZdtmLRyYBK11Dc07Y7KS3ny19rpjvrdWnfA2boIeQ,24888
293
+ keras_hub/src/tests/test_case.py,sha256=wBGxvEjCoZbFIIJSPEqyuNsnFEdyt-jbC1qBG2VT8wo,25412
305
294
  keras_hub/src/tokenizers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
306
295
  keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=Ij1zU5QCRPcpsqcWQmZW91dn-c7ZcZF48MmhgjPBs3k,24389
307
296
  keras_hub/src/tokenizers/byte_tokenizer.py,sha256=ueijdnipIG7G4a_cals0y6t7oVm-dyEcSVY2JkX_5i4,11234
@@ -314,12 +303,12 @@ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=_W07w57ZHuqpAK7U
314
303
  keras_hub/src/utils/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
315
304
  keras_hub/src/utils/keras_utils.py,sha256=r0ro8lBfqCgWT_S5dXMVuj_nQNxe_Dwsowrc1dSdHT0,2555
316
305
  keras_hub/src/utils/pipeline_model.py,sha256=9GNlV8RBV18oFQUkXDCizyyBI8sYhB_7ejxI2dEPVdw,9610
317
- keras_hub/src/utils/preset_utils.py,sha256=QZ6KN4wAkoWT8oyzdLXGRPJ07AdFJjPttJhSa8tiZ0k,30105
306
+ keras_hub/src/utils/preset_utils.py,sha256=rR0MCpMUyoiurLgWS4Kb08gFq00o9DlN5g3TqXTNHyM,29167
318
307
  keras_hub/src/utils/python_utils.py,sha256=G5oCVQggmqgkgD1NXuBQEgNCFmDSevYv7bz-1cAVFAs,787
319
308
  keras_hub/src/utils/tensor_utils.py,sha256=ucUWlGjb293YpVt_k9TcyBST4-IP6JxpdgfwgenTh9I,11235
320
309
  keras_hub/src/utils/timm/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
321
- keras_hub/src/utils/timm/convert_resnet.py,sha256=N2fTT6CYxl6pzek_Jy2S33XQ-gD9LN1l9UzsA13tOqM,6826
322
- keras_hub/src/utils/timm/preset_loader.py,sha256=m6MosWuiMlDuUaYuREQtPlqXd69j6YszwGzowLQHRUk,2963
310
+ keras_hub/src/utils/timm/convert_resnet.py,sha256=hZNj_kpwSA9Jp3NRDHtCPzHFzRKKPnidKQUAoqcdENk,6810
311
+ keras_hub/src/utils/timm/preset_loader.py,sha256=EgS5xBP3sWYiTgKmOAMmj3b3kRWcPnsWLieReLHZ178,2928
323
312
  keras_hub/src/utils/transformers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
324
313
  keras_hub/src/utils/transformers/convert_albert.py,sha256=7b9X1TLrWfHieoeX_K-EXTagkl4Rp9AfPjsPrwArBGY,8280
325
314
  keras_hub/src/utils/transformers/convert_bart.py,sha256=RXmPf_XUZrUyqDaOV9T7qVNEP4rAVR44oK1aRZI0v78,14996
@@ -332,7 +321,7 @@ keras_hub/src/utils/transformers/convert_mistral.py,sha256=4QStizMS6ESEPjSI-ls6j
332
321
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=BT5eX1QzbjCQCopbMstiejQQWQiB_N77bpD5FMUygEo,11234
333
322
  keras_hub/src/utils/transformers/preset_loader.py,sha256=9x9hLhDh_6PAHG5gay5rVoEVyt-gXTQGrnprjMLKvCM,3294
334
323
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=2O8lcCf9yIFt5xiRVOtF1ZkPb5pfhOfDJotBaanD9Zo,3547
335
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/METADATA,sha256=_sokc9t1Wi03lq1oYRKs8fIeYingPLmWaWi6eQydrIQ,1251
336
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
337
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
338
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/RECORD,,
324
+ keras_hub_nightly-0.16.0.dev20240915160609.dist-info/METADATA,sha256=88G8f1BGkGqtfPHs5_01Qs1svrqnOnDen0oeSHSJTxM,1251
325
+ keras_hub_nightly-0.16.0.dev20240915160609.dist-info/WHEEL,sha256=5Mi1sN9lKoFv_gxcPtisEVrJZihrm_beibeg5R6xb4I,91
326
+ keras_hub_nightly-0.16.0.dev20240915160609.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
327
+ keras_hub_nightly-0.16.0.dev20240915160609.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (74.1.2)
2
+ Generator: setuptools (75.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5