job-shop-lib 1.0.0a5__py3-none-any.whl → 1.0.0b1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- job_shop_lib/__init__.py +1 -1
- job_shop_lib/_job_shop_instance.py +34 -29
- job_shop_lib/_operation.py +4 -2
- job_shop_lib/_schedule.py +11 -11
- job_shop_lib/benchmarking/_load_benchmark.py +3 -3
- job_shop_lib/constraint_programming/_ortools_solver.py +6 -6
- job_shop_lib/dispatching/_dispatcher.py +19 -19
- job_shop_lib/dispatching/_dispatcher_observer_config.py +4 -4
- job_shop_lib/dispatching/_factories.py +4 -2
- job_shop_lib/dispatching/_history_observer.py +2 -1
- job_shop_lib/dispatching/_ready_operation_filters.py +19 -18
- job_shop_lib/dispatching/_unscheduled_operations_observer.py +4 -3
- job_shop_lib/dispatching/feature_observers/_composite_feature_observer.py +7 -8
- job_shop_lib/dispatching/feature_observers/_earliest_start_time_observer.py +3 -1
- job_shop_lib/dispatching/feature_observers/_factory.py +13 -14
- job_shop_lib/dispatching/feature_observers/_feature_observer.py +9 -8
- job_shop_lib/dispatching/feature_observers/_is_completed_observer.py +2 -1
- job_shop_lib/dispatching/feature_observers/_is_ready_observer.py +4 -2
- job_shop_lib/dispatching/rules/_dispatching_rule_factory.py +4 -2
- job_shop_lib/dispatching/rules/_dispatching_rule_solver.py +23 -15
- job_shop_lib/dispatching/rules/_dispatching_rules_functions.py +9 -8
- job_shop_lib/dispatching/rules/_machine_chooser_factory.py +4 -3
- job_shop_lib/dispatching/rules/_utils.py +9 -8
- job_shop_lib/generation/__init__.py +8 -0
- job_shop_lib/generation/_general_instance_generator.py +42 -64
- job_shop_lib/generation/_instance_generator.py +11 -7
- job_shop_lib/generation/_transformations.py +5 -4
- job_shop_lib/generation/_utils.py +124 -0
- job_shop_lib/graphs/__init__.py +7 -7
- job_shop_lib/graphs/{_build_agent_task_graph.py → _build_resource_task_graphs.py} +26 -24
- job_shop_lib/graphs/_job_shop_graph.py +17 -13
- job_shop_lib/graphs/_node.py +6 -4
- job_shop_lib/graphs/graph_updaters/_residual_graph_updater.py +4 -2
- job_shop_lib/reinforcement_learning/_multi_job_shop_graph_env.py +40 -20
- job_shop_lib/reinforcement_learning/_reward_observers.py +3 -1
- job_shop_lib/reinforcement_learning/_single_job_shop_graph_env.py +89 -22
- job_shop_lib/reinforcement_learning/_types_and_constants.py +1 -1
- job_shop_lib/reinforcement_learning/_utils.py +3 -3
- job_shop_lib/visualization/__init__.py +0 -60
- job_shop_lib/visualization/gantt/__init__.py +48 -0
- job_shop_lib/visualization/{_gantt_chart_creator.py → gantt/_gantt_chart_creator.py} +12 -12
- job_shop_lib/visualization/{_gantt_chart_video_and_gif_creation.py → gantt/_gantt_chart_video_and_gif_creation.py} +22 -22
- job_shop_lib/visualization/{_plot_gantt_chart.py → gantt/_plot_gantt_chart.py} +12 -13
- job_shop_lib/visualization/graphs/__init__.py +29 -0
- job_shop_lib/visualization/{_plot_disjunctive_graph.py → graphs/_plot_disjunctive_graph.py} +18 -16
- job_shop_lib/visualization/graphs/_plot_resource_task_graph.py +389 -0
- {job_shop_lib-1.0.0a5.dist-info → job_shop_lib-1.0.0b1.dist-info}/METADATA +17 -15
- job_shop_lib-1.0.0b1.dist-info/RECORD +69 -0
- job_shop_lib/visualization/_plot_agent_task_graph.py +0 -276
- job_shop_lib-1.0.0a5.dist-info/RECORD +0 -66
- {job_shop_lib-1.0.0a5.dist-info → job_shop_lib-1.0.0b1.dist-info}/LICENSE +0 -0
- {job_shop_lib-1.0.0a5.dist-info → job_shop_lib-1.0.0b1.dist-info}/WHEEL +0 -0
@@ -1,10 +1,16 @@
|
|
1
1
|
"""Home of the `BasicGenerator` class."""
|
2
2
|
|
3
|
+
from typing import Optional, Tuple, Union
|
3
4
|
import random
|
4
5
|
|
5
|
-
from job_shop_lib import JobShopInstance
|
6
|
+
from job_shop_lib import JobShopInstance
|
6
7
|
from job_shop_lib.exceptions import ValidationError
|
7
|
-
from job_shop_lib.generation import
|
8
|
+
from job_shop_lib.generation import (
|
9
|
+
InstanceGenerator,
|
10
|
+
generate_duration_matrix,
|
11
|
+
generate_machine_matrix_with_recirculation,
|
12
|
+
generate_machine_matrix_without_recirculation,
|
13
|
+
)
|
8
14
|
|
9
15
|
|
10
16
|
class GeneralInstanceGenerator(InstanceGenerator):
|
@@ -20,6 +26,8 @@ class GeneralInstanceGenerator(InstanceGenerator):
|
|
20
26
|
multiple instances, controlled by the ``iteration_limit`` parameter. It
|
21
27
|
implements the iterator protocol, allowing it to be used in a ``for`` loop.
|
22
28
|
|
29
|
+
The number of operations per machine is equal to the number of machines
|
30
|
+
|
23
31
|
Note:
|
24
32
|
When used as an iterator, the generator will produce instances until it
|
25
33
|
reaches the specified ``iteration_limit``. If ``iteration_limit`` is
|
@@ -73,15 +81,15 @@ class GeneralInstanceGenerator(InstanceGenerator):
|
|
73
81
|
|
74
82
|
def __init__( # pylint: disable=too-many-arguments
|
75
83
|
self,
|
76
|
-
num_jobs: int
|
77
|
-
num_machines: int
|
78
|
-
duration_range:
|
84
|
+
num_jobs: Union[int, Tuple[int, int]] = (10, 20),
|
85
|
+
num_machines: Union[int, Tuple[int, int]] = (5, 10),
|
86
|
+
duration_range: Tuple[int, int] = (1, 99),
|
79
87
|
allow_less_jobs_than_machines: bool = True,
|
80
88
|
allow_recirculation: bool = False,
|
81
|
-
machines_per_operation: int
|
89
|
+
machines_per_operation: Union[int, Tuple[int, int]] = 1,
|
82
90
|
name_suffix: str = "classic_generated_instance",
|
83
|
-
seed: int
|
84
|
-
iteration_limit: int
|
91
|
+
seed: Optional[int] = None,
|
92
|
+
iteration_limit: Optional[int] = None,
|
85
93
|
):
|
86
94
|
super().__init__(
|
87
95
|
num_jobs=num_jobs,
|
@@ -96,6 +104,10 @@ class GeneralInstanceGenerator(InstanceGenerator):
|
|
96
104
|
machines_per_operation,
|
97
105
|
machines_per_operation,
|
98
106
|
)
|
107
|
+
if machines_per_operation != (1, 1):
|
108
|
+
raise NotImplementedError(
|
109
|
+
"The number of machines per operation must be 1 for now."
|
110
|
+
)
|
99
111
|
self.machines_per_operation = machines_per_operation
|
100
112
|
|
101
113
|
self.allow_less_jobs_than_machines = allow_less_jobs_than_machines
|
@@ -114,7 +126,9 @@ class GeneralInstanceGenerator(InstanceGenerator):
|
|
114
126
|
)
|
115
127
|
|
116
128
|
def generate(
|
117
|
-
self,
|
129
|
+
self,
|
130
|
+
num_jobs: Optional[int] = None,
|
131
|
+
num_machines: Optional[int] = None,
|
118
132
|
) -> JobShopInstance:
|
119
133
|
if num_jobs is None:
|
120
134
|
num_jobs = random.randint(*self.num_jobs_range)
|
@@ -128,60 +142,24 @@ class GeneralInstanceGenerator(InstanceGenerator):
|
|
128
142
|
not self.allow_less_jobs_than_machines and num_jobs < num_machines
|
129
143
|
):
|
130
144
|
raise ValidationError(
|
131
|
-
"
|
132
|
-
"when `allow_less_jobs_than_machines` attribute is False."
|
145
|
+
"There are fewer jobs than machines, which is not allowed "
|
146
|
+
" when `allow_less_jobs_than_machines` attribute is False."
|
147
|
+
)
|
148
|
+
|
149
|
+
duration_matrix = generate_duration_matrix(
|
150
|
+
num_jobs, num_machines, self.duration_range
|
151
|
+
)
|
152
|
+
if self.allow_recirculation:
|
153
|
+
machine_matrix = generate_machine_matrix_with_recirculation(
|
154
|
+
num_jobs, num_machines
|
155
|
+
)
|
156
|
+
else:
|
157
|
+
machine_matrix = generate_machine_matrix_without_recirculation(
|
158
|
+
num_jobs, num_machines
|
133
159
|
)
|
134
160
|
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
operation = self.create_random_operation(available_machines)
|
141
|
-
job.append(operation)
|
142
|
-
jobs.append(job)
|
143
|
-
available_machines = list(range(num_machines))
|
144
|
-
|
145
|
-
return JobShopInstance(jobs=jobs, name=self._next_name())
|
146
|
-
|
147
|
-
def create_random_operation(
|
148
|
-
self, available_machines: list[int] | None = None
|
149
|
-
) -> Operation:
|
150
|
-
"""Creates a random operation with the given available machines.
|
151
|
-
|
152
|
-
Args:
|
153
|
-
available_machines:
|
154
|
-
A list of available machine_ids to choose from.
|
155
|
-
If ``None``, all machines are available.
|
156
|
-
"""
|
157
|
-
duration = random.randint(*self.duration_range)
|
158
|
-
|
159
|
-
if self.machines_per_operation[1] > 1:
|
160
|
-
machines = self._choose_multiple_machines()
|
161
|
-
return Operation(machines=machines, duration=duration)
|
162
|
-
|
163
|
-
machine_id = self._choose_one_machine(available_machines)
|
164
|
-
return Operation(machines=machine_id, duration=duration)
|
165
|
-
|
166
|
-
def _choose_multiple_machines(self) -> list[int]:
|
167
|
-
num_machines = random.randint(*self.machines_per_operation)
|
168
|
-
available_machines = list(range(num_machines))
|
169
|
-
machines = []
|
170
|
-
for _ in range(num_machines):
|
171
|
-
machine = random.choice(available_machines)
|
172
|
-
machines.append(machine)
|
173
|
-
available_machines.remove(machine)
|
174
|
-
return machines
|
175
|
-
|
176
|
-
def _choose_one_machine(
|
177
|
-
self, available_machines: list[int] | None = None
|
178
|
-
) -> int:
|
179
|
-
if available_machines is None:
|
180
|
-
_, max_num_machines = self.num_machines_range
|
181
|
-
available_machines = list(range(max_num_machines))
|
182
|
-
|
183
|
-
machine_id = random.choice(available_machines)
|
184
|
-
if not self.allow_recirculation:
|
185
|
-
available_machines.remove(machine_id)
|
186
|
-
|
187
|
-
return machine_id
|
161
|
+
return JobShopInstance.from_matrices(
|
162
|
+
duration_matrix.tolist(),
|
163
|
+
machine_matrix.tolist(),
|
164
|
+
name=self._next_name(),
|
165
|
+
)
|
@@ -1,7 +1,9 @@
|
|
1
|
+
"""Home of the `InstanceGenerator` class."""
|
2
|
+
|
1
3
|
import abc
|
2
4
|
|
3
5
|
import random
|
4
|
-
from typing import Iterator
|
6
|
+
from typing import Iterator, Optional, Tuple, Union
|
5
7
|
|
6
8
|
from job_shop_lib import JobShopInstance
|
7
9
|
from job_shop_lib.exceptions import UninitializedAttributeError
|
@@ -50,12 +52,12 @@ class InstanceGenerator(abc.ABC):
|
|
50
52
|
|
51
53
|
def __init__( # pylint: disable=too-many-arguments
|
52
54
|
self,
|
53
|
-
num_jobs: int
|
54
|
-
num_machines: int
|
55
|
-
duration_range:
|
55
|
+
num_jobs: Union[int, Tuple[int, int]] = (10, 20),
|
56
|
+
num_machines: Union[int, Tuple[int, int]] = (5, 10),
|
57
|
+
duration_range: Tuple[int, int] = (1, 99),
|
56
58
|
name_suffix: str = "generated_instance",
|
57
|
-
seed: int
|
58
|
-
iteration_limit: int
|
59
|
+
seed: Optional[int] = None,
|
60
|
+
iteration_limit: Optional[int] = None,
|
59
61
|
):
|
60
62
|
if isinstance(num_jobs, int):
|
61
63
|
num_jobs = (num_jobs, num_jobs)
|
@@ -75,7 +77,9 @@ class InstanceGenerator(abc.ABC):
|
|
75
77
|
|
76
78
|
@abc.abstractmethod
|
77
79
|
def generate(
|
78
|
-
self,
|
80
|
+
self,
|
81
|
+
num_jobs: Optional[int] = None,
|
82
|
+
num_machines: Optional[int] = None,
|
79
83
|
) -> JobShopInstance:
|
80
84
|
"""Generates a single job shop instance
|
81
85
|
|
@@ -3,6 +3,7 @@
|
|
3
3
|
import abc
|
4
4
|
import copy
|
5
5
|
import random
|
6
|
+
from typing import Optional
|
6
7
|
|
7
8
|
from job_shop_lib import JobShopInstance, Operation
|
8
9
|
|
@@ -38,7 +39,7 @@ class RemoveMachines(Transformation):
|
|
38
39
|
"""Removes operations associated with randomly selected machines until
|
39
40
|
there are exactly num_machines machines left."""
|
40
41
|
|
41
|
-
def __init__(self, num_machines: int, suffix: str
|
42
|
+
def __init__(self, num_machines: int, suffix: Optional[str] = None):
|
42
43
|
if suffix is None:
|
43
44
|
suffix = f"_machines={num_machines}"
|
44
45
|
super().__init__(suffix=suffix)
|
@@ -83,7 +84,7 @@ class AddDurationNoise(Transformation):
|
|
83
84
|
min_duration: int = 1,
|
84
85
|
max_duration: int = 100,
|
85
86
|
noise_level: int = 10,
|
86
|
-
suffix: str
|
87
|
+
suffix: Optional[str] = None,
|
87
88
|
):
|
88
89
|
if suffix is None:
|
89
90
|
suffix = f"_noise={noise_level}"
|
@@ -127,8 +128,8 @@ class RemoveJobs(Transformation):
|
|
127
128
|
self,
|
128
129
|
min_jobs: int,
|
129
130
|
max_jobs: int,
|
130
|
-
target_jobs: int
|
131
|
-
suffix: str
|
131
|
+
target_jobs: Optional[int] = None,
|
132
|
+
suffix: Optional[str] = None,
|
132
133
|
):
|
133
134
|
if suffix is None:
|
134
135
|
suffix = f"_jobs={min_jobs}-{max_jobs}"
|
@@ -0,0 +1,124 @@
|
|
1
|
+
from typing import Tuple
|
2
|
+
import numpy as np
|
3
|
+
from numpy.typing import NDArray
|
4
|
+
|
5
|
+
from job_shop_lib.exceptions import ValidationError
|
6
|
+
|
7
|
+
|
8
|
+
def generate_duration_matrix(
|
9
|
+
num_jobs: int, num_machines: int, duration_range: Tuple[int, int]
|
10
|
+
) -> NDArray[np.int32]:
|
11
|
+
"""Generates a duration matrix.
|
12
|
+
|
13
|
+
Args:
|
14
|
+
num_jobs: The number of jobs.
|
15
|
+
num_machines: The number of machines.
|
16
|
+
duration_range: The range of the duration values.
|
17
|
+
|
18
|
+
Returns:
|
19
|
+
A duration matrix with shape (num_jobs, num_machines).
|
20
|
+
"""
|
21
|
+
if duration_range[0] > duration_range[1]:
|
22
|
+
raise ValidationError(
|
23
|
+
"The lower bound of the duration range must be less than or equal "
|
24
|
+
"to the upper bound."
|
25
|
+
)
|
26
|
+
if num_jobs <= 0:
|
27
|
+
raise ValidationError("The number of jobs must be greater than 0.")
|
28
|
+
if num_machines <= 0:
|
29
|
+
raise ValidationError("The number of machines must be greater than 0.")
|
30
|
+
|
31
|
+
return np.random.randint(
|
32
|
+
duration_range[0],
|
33
|
+
duration_range[1] + 1,
|
34
|
+
size=(num_jobs, num_machines),
|
35
|
+
dtype=np.int32,
|
36
|
+
)
|
37
|
+
|
38
|
+
|
39
|
+
def generate_machine_matrix_with_recirculation(
|
40
|
+
num_jobs: int, num_machines: int
|
41
|
+
) -> NDArray[np.int32]:
|
42
|
+
"""Generate a machine matrix with recirculation.
|
43
|
+
|
44
|
+
Args:
|
45
|
+
num_jobs: The number of jobs.
|
46
|
+
num_machines: The number of machines.
|
47
|
+
|
48
|
+
Returns:
|
49
|
+
A machine matrix with recirculation with shape (num_machines,
|
50
|
+
num_jobs).
|
51
|
+
"""
|
52
|
+
if num_jobs <= 0:
|
53
|
+
raise ValidationError("The number of jobs must be greater than 0.")
|
54
|
+
if num_machines <= 0:
|
55
|
+
raise ValidationError("The number of machines must be greater than 0.")
|
56
|
+
num_machines_is_correct = False
|
57
|
+
while not num_machines_is_correct:
|
58
|
+
machine_matrix: np.ndarray = np.random.randint(
|
59
|
+
0, num_machines, size=(num_machines, num_jobs)
|
60
|
+
)
|
61
|
+
num_machines_is_correct = (
|
62
|
+
len(np.unique(machine_matrix)) == num_machines
|
63
|
+
)
|
64
|
+
|
65
|
+
return machine_matrix
|
66
|
+
|
67
|
+
|
68
|
+
def generate_machine_matrix_without_recirculation(
|
69
|
+
num_jobs: int, num_machines: int
|
70
|
+
) -> NDArray[np.int32]:
|
71
|
+
"""Generate a machine matrix without recirculation.
|
72
|
+
|
73
|
+
Args:
|
74
|
+
num_jobs: The number of jobs.
|
75
|
+
num_machines: The number of machines.
|
76
|
+
|
77
|
+
Returns:
|
78
|
+
A machine matrix without recirculation.
|
79
|
+
"""
|
80
|
+
if num_jobs <= 0:
|
81
|
+
raise ValidationError("The number of jobs must be greater than 0.")
|
82
|
+
if num_machines <= 0:
|
83
|
+
raise ValidationError("The number of machines must be greater than 0.")
|
84
|
+
# Start with an arange repeated:
|
85
|
+
# m1: [0, 1, 2]
|
86
|
+
# m2: [0, 1, 2]
|
87
|
+
# m3: [0, 1, 2]
|
88
|
+
machine_matrix = np.tile(
|
89
|
+
np.arange(num_machines).reshape(1, num_machines),
|
90
|
+
(num_jobs, 1),
|
91
|
+
)
|
92
|
+
# Shuffle the columns:
|
93
|
+
machine_matrix = np.apply_along_axis(
|
94
|
+
np.random.permutation, 1, machine_matrix
|
95
|
+
)
|
96
|
+
return machine_matrix
|
97
|
+
|
98
|
+
|
99
|
+
if __name__ == "__main__":
|
100
|
+
|
101
|
+
NUM_JOBS = 3
|
102
|
+
NUM_MACHINES = 3
|
103
|
+
DURATION_RANGE = (1, 10)
|
104
|
+
|
105
|
+
duration_matrix = generate_duration_matrix(
|
106
|
+
num_jobs=NUM_JOBS,
|
107
|
+
num_machines=NUM_MACHINES,
|
108
|
+
duration_range=DURATION_RANGE,
|
109
|
+
)
|
110
|
+
print(duration_matrix)
|
111
|
+
|
112
|
+
machine_matrix_with_recirculation = (
|
113
|
+
generate_machine_matrix_with_recirculation(
|
114
|
+
num_jobs=NUM_JOBS, num_machines=NUM_MACHINES
|
115
|
+
)
|
116
|
+
)
|
117
|
+
print(machine_matrix_with_recirculation)
|
118
|
+
|
119
|
+
machine_matrix_without_recirculation = (
|
120
|
+
generate_machine_matrix_without_recirculation(
|
121
|
+
num_jobs=NUM_JOBS, num_machines=NUM_MACHINES
|
122
|
+
)
|
123
|
+
)
|
124
|
+
print(machine_matrix_without_recirculation)
|
job_shop_lib/graphs/__init__.py
CHANGED
@@ -25,10 +25,10 @@ from job_shop_lib.graphs._build_disjunctive_graph import (
|
|
25
25
|
add_source_sink_nodes,
|
26
26
|
add_source_sink_edges,
|
27
27
|
)
|
28
|
-
from job_shop_lib.graphs.
|
29
|
-
|
30
|
-
|
31
|
-
|
28
|
+
from job_shop_lib.graphs._build_resource_task_graphs import (
|
29
|
+
build_resource_task_graph,
|
30
|
+
build_complete_resource_task_graph,
|
31
|
+
build_resource_task_graph_with_jobs,
|
32
32
|
add_same_job_operations_edges,
|
33
33
|
add_machine_nodes,
|
34
34
|
add_operation_machine_edges,
|
@@ -52,9 +52,9 @@ __all__ = [
|
|
52
52
|
"add_conjunctive_edges",
|
53
53
|
"add_source_sink_nodes",
|
54
54
|
"add_source_sink_edges",
|
55
|
-
"
|
56
|
-
"
|
57
|
-
"
|
55
|
+
"build_resource_task_graph",
|
56
|
+
"build_complete_resource_task_graph",
|
57
|
+
"build_resource_task_graph_with_jobs",
|
58
58
|
"add_same_job_operations_edges",
|
59
59
|
"add_machine_nodes",
|
60
60
|
"add_operation_machine_edges",
|
@@ -1,16 +1,13 @@
|
|
1
|
-
"""Contains helper functions to build the
|
2
|
-
|
1
|
+
"""Contains helper functions to build the resource-task graphs from a job shop
|
2
|
+
instance.
|
3
3
|
|
4
|
-
The agent-task graph
|
4
|
+
The agent-task graph (renamed to resource-task graph) was introduced by
|
5
|
+
Junyoung Park et al. (2021).
|
5
6
|
In contrast to the disjunctive graph, instead of connecting operations that
|
6
7
|
share the same resources directly by disjunctive edges, operation nodes are
|
7
8
|
connected with machine ones. All machine nodes are connected between them, and
|
8
9
|
all operation nodes from the same job are connected by non-directed edges too.
|
9
10
|
|
10
|
-
We also support a generalization of this approach by the addition of job nodes
|
11
|
-
and a global node. Job nodes are connected to all operation nodes of the same
|
12
|
-
job, and the global node is connected to all machine and job nodes.
|
13
|
-
|
14
11
|
References:
|
15
12
|
- Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to
|
16
13
|
solve multi-agent scheduling problems with reinforcement learning. ArXiv,
|
@@ -23,11 +20,13 @@ from job_shop_lib import JobShopInstance
|
|
23
20
|
from job_shop_lib.graphs import JobShopGraph, NodeType, Node
|
24
21
|
|
25
22
|
|
26
|
-
def
|
27
|
-
|
23
|
+
def build_complete_resource_task_graph(
|
24
|
+
instance: JobShopInstance,
|
25
|
+
) -> JobShopGraph:
|
26
|
+
"""Builds the resource-task graph of the instance with job and global
|
27
|
+
nodes.
|
28
28
|
|
29
|
-
The complete
|
30
|
-
that includes job nodes and a global node.
|
29
|
+
The complete resource-task includes job nodes and a global node.
|
31
30
|
|
32
31
|
Job nodes are connected to all operation nodes of the same job, and the
|
33
32
|
global node is connected to all machine and job nodes.
|
@@ -38,10 +37,11 @@ def build_complete_agent_task_graph(instance: JobShopInstance) -> JobShopGraph:
|
|
38
37
|
|
39
38
|
Args:
|
40
39
|
instance:
|
41
|
-
The job shop instance in which the
|
40
|
+
The job shop instance in which the resource-task graph will be
|
41
|
+
built.
|
42
42
|
|
43
43
|
Returns:
|
44
|
-
The complete
|
44
|
+
The complete resource-task graph of the instance.
|
45
45
|
"""
|
46
46
|
graph = JobShopGraph(instance)
|
47
47
|
|
@@ -58,23 +58,23 @@ def build_complete_agent_task_graph(instance: JobShopInstance) -> JobShopGraph:
|
|
58
58
|
return graph
|
59
59
|
|
60
60
|
|
61
|
-
def
|
61
|
+
def build_resource_task_graph_with_jobs(
|
62
62
|
instance: JobShopInstance,
|
63
63
|
) -> JobShopGraph:
|
64
|
-
"""Builds the
|
64
|
+
"""Builds the resource-task graph of the instance with job nodes.
|
65
65
|
|
66
|
-
The
|
67
|
-
graph that includes job nodes.
|
66
|
+
The resource-task graph that includes job nodes.
|
68
67
|
|
69
68
|
Job nodes are connected to all operation nodes of the same job, and their
|
70
69
|
are connected between them.
|
71
70
|
|
72
71
|
Args:
|
73
72
|
instance:
|
74
|
-
The job shop instance in which the
|
73
|
+
The job shop instance in which the resource-task graph will be
|
74
|
+
built.
|
75
75
|
|
76
76
|
Returns:
|
77
|
-
The
|
77
|
+
The resource-task graph of the instance with job nodes.
|
78
78
|
"""
|
79
79
|
graph = JobShopGraph(instance)
|
80
80
|
|
@@ -89,10 +89,11 @@ def build_agent_task_graph_with_jobs(
|
|
89
89
|
return graph
|
90
90
|
|
91
91
|
|
92
|
-
def
|
93
|
-
"""Builds the
|
92
|
+
def build_resource_task_graph(instance: JobShopInstance) -> JobShopGraph:
|
93
|
+
"""Builds the resource-task graph of the instance.
|
94
94
|
|
95
|
-
The
|
95
|
+
The JSSP resource-task graph representation was introduced by Junyoung
|
96
|
+
Park et al. (2021) (named agent-task graph in the original paper).
|
96
97
|
|
97
98
|
In contrast to the disjunctive graph, instead of connecting operations
|
98
99
|
that share the same resources directly by disjunctive edges, operation
|
@@ -103,10 +104,11 @@ def build_agent_task_graph(instance: JobShopInstance) -> JobShopGraph:
|
|
103
104
|
|
104
105
|
Args:
|
105
106
|
instance:
|
106
|
-
The job shop instance in which the
|
107
|
+
The job shop instance in which the resource-task graph will be
|
108
|
+
built.
|
107
109
|
|
108
110
|
Returns:
|
109
|
-
The
|
111
|
+
The resource-task graph of the instance.
|
110
112
|
"""
|
111
113
|
graph = JobShopGraph(instance)
|
112
114
|
|
@@ -1,5 +1,6 @@
|
|
1
1
|
"""Home of the `JobShopGraph` class."""
|
2
2
|
|
3
|
+
from typing import List, Union, Dict
|
3
4
|
import collections
|
4
5
|
import networkx as nx
|
5
6
|
|
@@ -62,23 +63,23 @@ class JobShopGraph:
|
|
62
63
|
self.graph = nx.DiGraph()
|
63
64
|
self.instance = instance
|
64
65
|
|
65
|
-
self._nodes:
|
66
|
-
self._nodes_by_type:
|
66
|
+
self._nodes: List[Node] = []
|
67
|
+
self._nodes_by_type: Dict[NodeType, List[Node]] = (
|
67
68
|
collections.defaultdict(list)
|
68
69
|
)
|
69
|
-
self._nodes_by_machine:
|
70
|
+
self._nodes_by_machine: List[List[Node]] = [
|
70
71
|
[] for _ in range(instance.num_machines)
|
71
72
|
]
|
72
|
-
self._nodes_by_job:
|
73
|
+
self._nodes_by_job: List[List[Node]] = [
|
73
74
|
[] for _ in range(instance.num_jobs)
|
74
75
|
]
|
75
76
|
self._next_node_id = 0
|
76
|
-
self.removed_nodes:
|
77
|
+
self.removed_nodes: List[bool] = []
|
77
78
|
if add_operation_nodes:
|
78
79
|
self.add_operation_nodes()
|
79
80
|
|
80
81
|
@property
|
81
|
-
def nodes(self) ->
|
82
|
+
def nodes(self) -> List[Node]:
|
82
83
|
"""List of all nodes added to the graph.
|
83
84
|
|
84
85
|
It may contain nodes that have been removed from the graph.
|
@@ -86,7 +87,7 @@ class JobShopGraph:
|
|
86
87
|
return self._nodes
|
87
88
|
|
88
89
|
@property
|
89
|
-
def nodes_by_type(self) ->
|
90
|
+
def nodes_by_type(self) -> Dict[NodeType, List[Node]]:
|
90
91
|
"""Dictionary mapping node types to lists of nodes.
|
91
92
|
|
92
93
|
It may contain nodes that have been removed from the graph.
|
@@ -94,7 +95,7 @@ class JobShopGraph:
|
|
94
95
|
return self._nodes_by_type
|
95
96
|
|
96
97
|
@property
|
97
|
-
def nodes_by_machine(self) ->
|
98
|
+
def nodes_by_machine(self) -> List[List[Node]]:
|
98
99
|
"""List of lists mapping machine ids to operation nodes.
|
99
100
|
|
100
101
|
It may contain nodes that have been removed from the graph.
|
@@ -102,7 +103,7 @@ class JobShopGraph:
|
|
102
103
|
return self._nodes_by_machine
|
103
104
|
|
104
105
|
@property
|
105
|
-
def nodes_by_job(self) ->
|
106
|
+
def nodes_by_job(self) -> List[List[Node]]:
|
106
107
|
"""List of lists mapping job ids to operation nodes.
|
107
108
|
|
108
109
|
It may contain nodes that have been removed from the graph.
|
@@ -163,7 +164,10 @@ class JobShopGraph:
|
|
163
164
|
self._nodes_by_machine[machine_id].append(node_for_adding)
|
164
165
|
|
165
166
|
def add_edge(
|
166
|
-
self,
|
167
|
+
self,
|
168
|
+
u_of_edge: Union[Node, int],
|
169
|
+
v_of_edge: Union[Node, int],
|
170
|
+
**attr,
|
167
171
|
) -> None:
|
168
172
|
"""Adds an edge to the graph.
|
169
173
|
|
@@ -177,7 +181,7 @@ class JobShopGraph:
|
|
177
181
|
**attr: Additional attributes to be added to the edge.
|
178
182
|
|
179
183
|
Raises:
|
180
|
-
|
184
|
+
ValidationError: If `u_of_edge` or `v_of_edge` are not in the
|
181
185
|
graph.
|
182
186
|
"""
|
183
187
|
if isinstance(u_of_edge, Node):
|
@@ -206,7 +210,7 @@ class JobShopGraph:
|
|
206
210
|
|
207
211
|
self.graph.remove_nodes_from(isolated_nodes)
|
208
212
|
|
209
|
-
def is_removed(self, node: int
|
213
|
+
def is_removed(self, node: Union[int, Node]) -> bool:
|
210
214
|
"""Returns whether the node is removed from the graph.
|
211
215
|
|
212
216
|
Args:
|
@@ -218,7 +222,7 @@ class JobShopGraph:
|
|
218
222
|
node = node.node_id
|
219
223
|
return self.removed_nodes[node]
|
220
224
|
|
221
|
-
def non_removed_nodes(self) ->
|
225
|
+
def non_removed_nodes(self) -> List[Node]:
|
222
226
|
"""Returns the nodes that are not removed from the graph."""
|
223
227
|
return [node for node in self._nodes if not self.is_removed(node)]
|
224
228
|
|
job_shop_lib/graphs/_node.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1
1
|
"""Home of the `Node` class."""
|
2
2
|
|
3
|
+
from typing import Optional
|
4
|
+
|
3
5
|
from job_shop_lib import Operation
|
4
6
|
from job_shop_lib.exceptions import (
|
5
7
|
UninitializedAttributeError,
|
@@ -80,9 +82,9 @@ class Node:
|
|
80
82
|
def __init__(
|
81
83
|
self,
|
82
84
|
node_type: NodeType,
|
83
|
-
operation: Operation
|
84
|
-
machine_id: int
|
85
|
-
job_id: int
|
85
|
+
operation: Optional[Operation] = None,
|
86
|
+
machine_id: Optional[int] = None,
|
87
|
+
job_id: Optional[int] = None,
|
86
88
|
):
|
87
89
|
if node_type == NodeType.OPERATION and operation is None:
|
88
90
|
raise ValidationError("Operation node must have an operation.")
|
@@ -94,7 +96,7 @@ class Node:
|
|
94
96
|
raise ValidationError("Job node must have a job_id.")
|
95
97
|
|
96
98
|
self.node_type: NodeType = node_type
|
97
|
-
self._node_id: int
|
99
|
+
self._node_id: Optional[int] = None
|
98
100
|
|
99
101
|
self._operation = operation
|
100
102
|
self._machine_id = machine_id
|
@@ -1,5 +1,7 @@
|
|
1
1
|
"""Home of the `ResidualGraphUpdater` class."""
|
2
2
|
|
3
|
+
from typing import Optional, List
|
4
|
+
|
3
5
|
from job_shop_lib import ScheduledOperation
|
4
6
|
from job_shop_lib.exceptions import UninitializedAttributeError
|
5
7
|
from job_shop_lib.graphs import NodeType, JobShopGraph
|
@@ -54,7 +56,7 @@ class ResidualGraphUpdater(GraphUpdater):
|
|
54
56
|
remove_completed_machine_nodes: bool = True,
|
55
57
|
remove_completed_job_nodes: bool = True,
|
56
58
|
):
|
57
|
-
self._is_completed_observer:
|
59
|
+
self._is_completed_observer: Optional[IsCompletedObserver] = None
|
58
60
|
self.remove_completed_job_nodes = remove_completed_job_nodes
|
59
61
|
self.remove_completed_machine_nodes = remove_completed_machine_nodes
|
60
62
|
self._initialize_is_completed_observer_attribute(dispatcher)
|
@@ -80,7 +82,7 @@ class ResidualGraphUpdater(GraphUpdater):
|
|
80
82
|
return False
|
81
83
|
return True
|
82
84
|
|
83
|
-
feature_types:
|
85
|
+
feature_types: List[FeatureType] = []
|
84
86
|
if self.remove_completed_machine_nodes:
|
85
87
|
feature_types.append(FeatureType.MACHINES)
|
86
88
|
if self.remove_completed_job_nodes:
|