job-shop-lib 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. job_shop_lib/__init__.py +20 -0
  2. job_shop_lib/base_solver.py +37 -0
  3. job_shop_lib/benchmarking/__init__.py +78 -0
  4. job_shop_lib/benchmarking/benchmark_instances.json +1 -0
  5. job_shop_lib/benchmarking/load_benchmark.py +142 -0
  6. job_shop_lib/cp_sat/__init__.py +5 -0
  7. job_shop_lib/cp_sat/ortools_solver.py +201 -0
  8. job_shop_lib/dispatching/__init__.py +49 -0
  9. job_shop_lib/dispatching/dispatcher.py +269 -0
  10. job_shop_lib/dispatching/dispatching_rule_solver.py +111 -0
  11. job_shop_lib/dispatching/dispatching_rules.py +160 -0
  12. job_shop_lib/dispatching/factories.py +206 -0
  13. job_shop_lib/dispatching/pruning_functions.py +116 -0
  14. job_shop_lib/exceptions.py +26 -0
  15. job_shop_lib/generators/__init__.py +7 -0
  16. job_shop_lib/generators/basic_generator.py +197 -0
  17. job_shop_lib/graphs/__init__.py +52 -0
  18. job_shop_lib/graphs/build_agent_task_graph.py +209 -0
  19. job_shop_lib/graphs/build_disjunctive_graph.py +78 -0
  20. job_shop_lib/graphs/constants.py +21 -0
  21. job_shop_lib/graphs/job_shop_graph.py +159 -0
  22. job_shop_lib/graphs/node.py +147 -0
  23. job_shop_lib/job_shop_instance.py +355 -0
  24. job_shop_lib/operation.py +120 -0
  25. job_shop_lib/schedule.py +180 -0
  26. job_shop_lib/scheduled_operation.py +97 -0
  27. job_shop_lib/visualization/__init__.py +25 -0
  28. job_shop_lib/visualization/agent_task_graph.py +257 -0
  29. job_shop_lib/visualization/create_gif.py +191 -0
  30. job_shop_lib/visualization/disjunctive_graph.py +206 -0
  31. job_shop_lib/visualization/gantt_chart.py +147 -0
  32. job_shop_lib-0.1.0.dist-info/LICENSE +21 -0
  33. job_shop_lib-0.1.0.dist-info/METADATA +363 -0
  34. job_shop_lib-0.1.0.dist-info/RECORD +35 -0
  35. job_shop_lib-0.1.0.dist-info/WHEEL +4 -0
@@ -0,0 +1,191 @@
1
+ """Module for creating a GIF of the schedule being built by a
2
+ dispatching rule solver."""
3
+
4
+ import os
5
+ import pathlib
6
+ import shutil
7
+ from typing import Callable
8
+
9
+ import imageio
10
+ import matplotlib.pyplot as plt
11
+ from matplotlib.figure import Figure
12
+
13
+ from job_shop_lib import JobShopInstance, Schedule, Operation
14
+ from job_shop_lib.dispatching import DispatchingRuleSolver, Dispatcher
15
+ from job_shop_lib.visualization.gantt_chart import plot_gantt_chart
16
+
17
+
18
+ # Most of the arguments are optional with default values. There is no way to
19
+ # reduce the number of arguments without losing functionality.
20
+ # pylint: disable=too-many-arguments
21
+ def create_gif(
22
+ gif_path: str,
23
+ instance: JobShopInstance,
24
+ solver: DispatchingRuleSolver,
25
+ plot_function: (
26
+ Callable[[Schedule, int, list[Operation] | None], Figure] | None
27
+ ) = None,
28
+ fps: int = 1,
29
+ remove_frames: bool = True,
30
+ frames_dir: str | None = None,
31
+ plot_current_time: bool = True,
32
+ ) -> None:
33
+ """Creates a GIF of the schedule being built by the given solver.
34
+
35
+ Args:
36
+ gif_path:
37
+ The path to save the GIF file. It should end with ".gif".
38
+ instance:
39
+ The instance of the job shop problem to be scheduled.
40
+ solver:
41
+ The dispatching rule solver to use.
42
+ plot_function:
43
+ A function that plots a Gantt chart for a schedule. It
44
+ should take a `Schedule` object and the makespan of the schedule as
45
+ input and return a `Figure` object. If not provided, a default
46
+ function is used.
47
+ fps:
48
+ The number of frames per second in the GIF.
49
+ remove_frames:
50
+ Whether to remove the frames after creating the GIF.
51
+ frames_dir:
52
+ The directory to save the frames in. If not provided,
53
+ `gif_path.replace(".gif", "") + "_frames"` is used.
54
+ plot_current_time:
55
+ Whether to plot a vertical line at the current time.
56
+ """
57
+ if plot_function is None:
58
+ plot_function = plot_gantt_chart_wrapper()
59
+
60
+ if frames_dir is None:
61
+ # Use the name of the GIF file as the directory name
62
+ frames_dir = gif_path.replace(".gif", "") + "_frames"
63
+ path = pathlib.Path(frames_dir)
64
+ path.mkdir(exist_ok=True)
65
+ frames_dir = str(path)
66
+ create_gantt_chart_frames(
67
+ frames_dir, instance, solver, plot_function, plot_current_time
68
+ )
69
+ create_gif_from_frames(frames_dir, gif_path, fps)
70
+
71
+ if remove_frames:
72
+ shutil.rmtree(frames_dir)
73
+
74
+
75
+ def plot_gantt_chart_wrapper(
76
+ title: str | None = None,
77
+ cmap: str = "viridis",
78
+ show_available_operations: bool = False,
79
+ ) -> Callable[[Schedule, int, list[Operation] | None], Figure]:
80
+ """Returns a function that plots a Gantt chart for an unfinished schedule.
81
+
82
+ Args:
83
+ title: The title of the Gantt chart.
84
+ cmap: The name of the colormap to use.
85
+
86
+ Returns:
87
+ A function that plots a Gantt chart for a schedule. The function takes
88
+ a `Schedule` object and the makespan of the schedule as input and
89
+ returns a `Figure` object.
90
+ """
91
+
92
+ def plot_function(
93
+ schedule: Schedule,
94
+ makespan: int,
95
+ available_operations: list | None = None,
96
+ ) -> Figure:
97
+ fig, ax = plot_gantt_chart(
98
+ schedule, title=title, cmap_name=cmap, xlim=makespan
99
+ )
100
+
101
+ if not show_available_operations or available_operations is None:
102
+ return fig
103
+
104
+ operations_text = "\n".join(
105
+ str(operation) for operation in available_operations
106
+ )
107
+ text = f"Available operations:\n{operations_text}"
108
+ # Print the available operations at the bottom right corner
109
+ # of the Gantt chart
110
+ fig.text(
111
+ 1.25,
112
+ 0.05,
113
+ text,
114
+ ha="right",
115
+ va="bottom",
116
+ transform=ax.transAxes,
117
+ bbox=dict(facecolor="white", alpha=0.5, boxstyle="round,pad=0.5"),
118
+ )
119
+ return fig
120
+
121
+ return plot_function
122
+
123
+
124
+ def create_gantt_chart_frames(
125
+ frames_dir: str,
126
+ instance: JobShopInstance,
127
+ solver: DispatchingRuleSolver,
128
+ plot_function: Callable[[Schedule, int, list[Operation] | None], Figure],
129
+ plot_current_time: bool = True,
130
+ ) -> None:
131
+ """Creates frames of the Gantt chart for the schedule being built.
132
+
133
+ Args:
134
+ frames_dir:
135
+ The directory to save the frames in.
136
+ instance:
137
+ The instance of the job shop problem to be scheduled.
138
+ solver:
139
+ The dispatching rule solver to use.
140
+ plot_function:
141
+ A function that plots a Gantt chart for a schedule. It
142
+ should take a `Schedule` object and the makespan of the schedule as
143
+ input and return a `Figure` object.
144
+ plot_current_time:
145
+ Whether to plot a vertical line at the current time."""
146
+ dispatcher = Dispatcher(instance, pruning_function=solver.pruning_function)
147
+ schedule = dispatcher.schedule
148
+ makespan = solver(instance).makespan()
149
+ iteration = 0
150
+
151
+ while not schedule.is_complete():
152
+ solver.step(dispatcher)
153
+ iteration += 1
154
+ fig = plot_function(
155
+ schedule,
156
+ makespan,
157
+ dispatcher.available_operations(),
158
+ )
159
+ current_time = (
160
+ None if not plot_current_time else dispatcher.current_time()
161
+ )
162
+ _save_frame(fig, frames_dir, iteration, current_time)
163
+
164
+
165
+ def _save_frame(
166
+ figure: Figure, frames_dir: str, number: int, current_time: int | None
167
+ ) -> None:
168
+ if current_time is not None:
169
+ figure.gca().axvline(current_time, color="red", linestyle="--")
170
+
171
+ figure.savefig(f"{frames_dir}/frame_{number:02d}.png", bbox_inches="tight")
172
+ plt.close(figure)
173
+
174
+
175
+ def create_gif_from_frames(frames_dir: str, gif_path: str, fps: int) -> None:
176
+ """Creates a GIF from the frames in the given directory.
177
+
178
+ Args:
179
+ frames_dir:
180
+ The directory containing the frames to be used in the GIF.
181
+ gif_path:
182
+ The path to save the GIF file. It should end with ".gif".
183
+ fps:
184
+ The number of frames per second in the GIF.
185
+ """
186
+ frames = [
187
+ os.path.join(frames_dir, frame)
188
+ for frame in sorted(os.listdir(frames_dir))
189
+ ]
190
+ images = [imageio.imread(frame) for frame in frames]
191
+ imageio.mimsave(gif_path, images, fps=fps, loop=0)
@@ -0,0 +1,206 @@
1
+ """Module for visualizing the disjunctive graph of a job shop instance."""
2
+
3
+ import functools
4
+ from typing import Optional, Callable
5
+ import warnings
6
+ import copy
7
+
8
+ import matplotlib
9
+ import matplotlib.pyplot as plt
10
+ import networkx as nx
11
+
12
+ from job_shop_lib import JobShopInstance
13
+ from job_shop_lib.graphs import (
14
+ JobShopGraph,
15
+ EdgeType,
16
+ NodeType,
17
+ Node,
18
+ build_disjunctive_graph,
19
+ )
20
+
21
+
22
+ Layout = Callable[[nx.Graph], dict[str, tuple[float, float]]]
23
+
24
+
25
+ # This function could be improved by a function extraction refactoring
26
+ # (see `plot_gantt_chart`
27
+ # function as a reference in how to do it). That would solve the
28
+ # "too many locals" warning. However, this refactoring is not a priority at
29
+ # the moment. To compensate, sections are separated by comments.
30
+ # For the "too many arguments" warning no satisfactory solution was
31
+ # found. I believe is still better than using `**kwargs` and losing the
32
+ # function signature or adding a dataclass for configuration (it would add
33
+ # unnecessary complexity).
34
+ # pylint: disable=too-many-arguments, too-many-locals
35
+ def plot_disjunctive_graph(
36
+ job_shop: JobShopGraph | JobShopInstance,
37
+ figsize: tuple[float, float] = (6, 4),
38
+ node_size: int = 1600,
39
+ title: Optional[str] = None,
40
+ layout: Optional[Layout] = None,
41
+ edge_width: int = 2,
42
+ font_size: int = 10,
43
+ arrow_size: int = 35,
44
+ alpha=0.95,
45
+ node_font_color: str = "white",
46
+ color_map: str = "Dark2_r",
47
+ draw_disjunctive_edges: bool = True,
48
+ ) -> plt.Figure:
49
+ """Returns a plot of the disjunctive graph of the instance."""
50
+
51
+ if isinstance(job_shop, JobShopInstance):
52
+ job_shop_graph = build_disjunctive_graph(job_shop)
53
+ else:
54
+ job_shop_graph = job_shop
55
+
56
+ # Set up the plot
57
+ # ----------------
58
+ plt.figure(figsize=figsize)
59
+ if title is None:
60
+ title = (
61
+ f"Disjunctive Graph Visualization: {job_shop_graph.instance.name}"
62
+ )
63
+ plt.title(title)
64
+
65
+ # Set up the layout
66
+ # -----------------
67
+ if layout is None:
68
+ try:
69
+ from networkx.drawing.nx_agraph import (
70
+ graphviz_layout,
71
+ )
72
+
73
+ layout = functools.partial(
74
+ graphviz_layout, prog="dot", args="-Grankdir=LR"
75
+ )
76
+ except ImportError:
77
+ warnings.warn(
78
+ "Could not import graphviz_layout. "
79
+ + "Using spring_layout instead."
80
+ )
81
+ layout = nx.spring_layout
82
+
83
+ temp_graph = copy.deepcopy(job_shop_graph.graph)
84
+ # Remove disjunctive edges to get a better layout
85
+ temp_graph.remove_edges_from(
86
+ [
87
+ (u, v)
88
+ for u, v, d in job_shop_graph.graph.edges(data=True)
89
+ if d["type"] == EdgeType.DISJUNCTIVE
90
+ ]
91
+ )
92
+ pos = layout(temp_graph) # type: ignore
93
+
94
+ # Draw nodes
95
+ # ----------
96
+ node_colors = [_get_node_color(node) for node in job_shop_graph.nodes]
97
+
98
+ nx.draw_networkx_nodes(
99
+ job_shop_graph.graph,
100
+ pos,
101
+ node_size=node_size,
102
+ node_color=node_colors,
103
+ alpha=alpha,
104
+ cmap=matplotlib.colormaps.get_cmap(color_map),
105
+ )
106
+
107
+ # Draw edges
108
+ # ----------
109
+ conjunctive_edges = [
110
+ (u, v)
111
+ for u, v, d in job_shop_graph.graph.edges(data=True)
112
+ if d["type"] == EdgeType.CONJUNCTIVE
113
+ ]
114
+ disjunctive_edges = [
115
+ (u, v)
116
+ for u, v, d in job_shop_graph.graph.edges(data=True)
117
+ if d["type"] == EdgeType.DISJUNCTIVE
118
+ ]
119
+
120
+ nx.draw_networkx_edges(
121
+ job_shop_graph.graph,
122
+ pos,
123
+ edgelist=conjunctive_edges,
124
+ width=edge_width,
125
+ edge_color="black",
126
+ arrowsize=arrow_size,
127
+ )
128
+
129
+ if draw_disjunctive_edges:
130
+ nx.draw_networkx_edges(
131
+ job_shop_graph.graph,
132
+ pos,
133
+ edgelist=disjunctive_edges,
134
+ width=edge_width,
135
+ edge_color="red",
136
+ arrowsize=arrow_size,
137
+ )
138
+
139
+ # Draw node labels
140
+ # ----------------
141
+ operation_nodes = job_shop_graph.nodes_by_type[NodeType.OPERATION]
142
+
143
+ labels = {}
144
+ source_node = job_shop_graph.nodes_by_type[NodeType.SOURCE][0]
145
+ labels[source_node] = "S"
146
+
147
+ sink_node = job_shop_graph.nodes_by_type[NodeType.SINK][0]
148
+ labels[sink_node] = "T"
149
+ for operation_node in operation_nodes:
150
+ labels[operation_node] = (
151
+ f"m={operation_node.operation.machine_id}\n"
152
+ f"d={operation_node.operation.duration}"
153
+ )
154
+
155
+ nx.draw_networkx_labels(
156
+ job_shop_graph.graph,
157
+ pos,
158
+ labels=labels,
159
+ font_color=node_font_color,
160
+ font_size=font_size,
161
+ font_family="sans-serif",
162
+ )
163
+
164
+ # Final touches
165
+ # -------------
166
+ plt.axis("off")
167
+ plt.tight_layout()
168
+ # Create a legend to indicate the meaning of the edge colors
169
+ conjunctive_patch = matplotlib.patches.Patch(
170
+ color="black", label="conjunctive edges"
171
+ )
172
+ disjunctive_patch = matplotlib.patches.Patch(
173
+ color="red", label="disjunctive edges"
174
+ )
175
+
176
+ # Add to the legend the meaning of m and d
177
+ text = "m = machine_id\nd = duration"
178
+ extra = matplotlib.patches.Rectangle(
179
+ (0, 0),
180
+ 1,
181
+ 1,
182
+ fc="w",
183
+ fill=False,
184
+ edgecolor="none",
185
+ linewidth=0,
186
+ label=text,
187
+ )
188
+ plt.legend(
189
+ handles=[conjunctive_patch, disjunctive_patch, extra],
190
+ loc="upper left",
191
+ bbox_to_anchor=(1.05, 1),
192
+ borderaxespad=0.0,
193
+ )
194
+ return plt.gcf()
195
+
196
+
197
+ def _get_node_color(node: Node) -> int:
198
+ """Returns the color of the node."""
199
+ if node.node_type == NodeType.SOURCE:
200
+ return -1
201
+ if node.node_type == NodeType.SINK:
202
+ return -1
203
+ if node.node_type == NodeType.OPERATION:
204
+ return node.operation.machine_id
205
+
206
+ raise ValueError("Invalid node type.")
@@ -0,0 +1,147 @@
1
+ """Module for plotting static Gantt charts for job shop schedules."""
2
+
3
+ from typing import Optional
4
+
5
+ from matplotlib.figure import Figure
6
+ import matplotlib.pyplot as plt
7
+ from matplotlib.colors import Normalize
8
+ from matplotlib.patches import Patch
9
+
10
+ from job_shop_lib import Schedule, ScheduledOperation
11
+
12
+
13
+ _BASE_Y_POSITION = 1
14
+ _Y_POSITION_INCREMENT = 10
15
+
16
+
17
+ def plot_gantt_chart(
18
+ schedule: Schedule,
19
+ title: str | None = None,
20
+ cmap_name: str = "viridis",
21
+ xlim: int | None = None,
22
+ number_of_x_ticks: int = 15,
23
+ ) -> tuple[Figure, plt.Axes]:
24
+ """Plots a Gantt chart for the schedule.
25
+
26
+ Args:
27
+ schedule:
28
+ The schedule to plot.
29
+ title:
30
+ The title of the plot. If not provided, the title:
31
+ `f"Gantt Chart for {schedule.instance.name} instance"`
32
+ is used.
33
+ cmap_name:
34
+ The name of the colormap to use. Default is "viridis".
35
+ xlim:
36
+ The maximum value for the x-axis. If not provided, the makespan of
37
+ the schedule is used.
38
+ number_of_x_ticks:
39
+ The number of ticks to use in the x-axis.
40
+ """
41
+ fig, ax = _initialize_plot(schedule, title)
42
+ legend_handles = _plot_machine_schedules(schedule, ax, cmap_name)
43
+ _configure_legend(ax, legend_handles)
44
+ _configure_axes(schedule, ax, xlim, number_of_x_ticks)
45
+ return fig, ax
46
+
47
+
48
+ def _initialize_plot(
49
+ schedule: Schedule, title: str | None
50
+ ) -> tuple[Figure, plt.Axes]:
51
+ """Initializes the plot."""
52
+ fig, ax = plt.subplots()
53
+ ax.set_xlabel("Time units")
54
+ ax.set_ylabel("Machines")
55
+ ax.grid(True, which="both", axis="x", linestyle="--", linewidth=0.5)
56
+ ax.yaxis.grid(False)
57
+ if title is None:
58
+ title = f"Gantt Chart for {schedule.instance.name} instance"
59
+ plt.title(title)
60
+ return fig, ax
61
+
62
+
63
+ def _plot_machine_schedules(
64
+ schedule: Schedule, ax: plt.Axes, cmap_name: str
65
+ ) -> dict[int, Patch]:
66
+ """Plots the schedules for each machine."""
67
+ max_job_id = schedule.instance.num_jobs - 1
68
+ cmap = plt.cm.get_cmap(cmap_name, max_job_id + 1)
69
+ norm = Normalize(vmin=0, vmax=max_job_id)
70
+ legend_handles = {}
71
+
72
+ for machine_index, machine_schedule in enumerate(schedule.schedule):
73
+ y_position_for_machines = (
74
+ _BASE_Y_POSITION + _Y_POSITION_INCREMENT * machine_index
75
+ )
76
+
77
+ for scheduled_op in machine_schedule:
78
+ color = cmap(norm(scheduled_op.job_id))
79
+ _plot_scheduled_operation(
80
+ ax, scheduled_op, y_position_for_machines, color
81
+ )
82
+ if scheduled_op.job_id not in legend_handles:
83
+ legend_handles[scheduled_op.job_id] = Patch(
84
+ facecolor=color, label=f"Job {scheduled_op.job_id}"
85
+ )
86
+
87
+ return legend_handles
88
+
89
+
90
+ def _plot_scheduled_operation(
91
+ ax: plt.Axes,
92
+ scheduled_op: ScheduledOperation,
93
+ y_position_for_machines: int,
94
+ color,
95
+ ):
96
+ """Plots a single scheduled operation."""
97
+ start_time, end_time = scheduled_op.start_time, scheduled_op.end_time
98
+ duration = end_time - start_time
99
+ ax.broken_barh(
100
+ [(start_time, duration)],
101
+ (y_position_for_machines, 9),
102
+ facecolors=color,
103
+ )
104
+
105
+
106
+ def _configure_legend(ax: plt.Axes, legend_handles: dict[int, Patch]):
107
+ """Configures the legend for the plot."""
108
+ sorted_legend_handles = [
109
+ legend_handles[job_id] for job_id in sorted(legend_handles)
110
+ ]
111
+ ax.legend(
112
+ handles=sorted_legend_handles,
113
+ loc="upper left",
114
+ bbox_to_anchor=(1.01, 1),
115
+ )
116
+
117
+
118
+ def _configure_axes(
119
+ schedule: Schedule,
120
+ ax: plt.Axes,
121
+ xlim: Optional[int],
122
+ number_of_x_ticks: int,
123
+ ):
124
+ """Sets the limits and labels for the axes."""
125
+ num_machines = len(schedule.schedule)
126
+ ax.set_ylim(0, _BASE_Y_POSITION + _Y_POSITION_INCREMENT * num_machines)
127
+ ax.set_yticks(
128
+ [
129
+ _BASE_Y_POSITION
130
+ + _Y_POSITION_INCREMENT // 2
131
+ + _Y_POSITION_INCREMENT * i
132
+ for i in range(num_machines)
133
+ ]
134
+ )
135
+ ax.set_yticklabels([str(i) for i in range(num_machines)])
136
+ makespan = schedule.makespan()
137
+ xlim = xlim if xlim is not None else makespan
138
+ ax.set_xlim(0, xlim)
139
+
140
+ tick_interval = max(1, xlim // number_of_x_ticks)
141
+ xticks = list(range(0, xlim + 1, tick_interval))
142
+
143
+ if xticks[-1] != xlim:
144
+ xticks.pop()
145
+ xticks.append(xlim)
146
+
147
+ ax.set_xticks(xticks)
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Pablo Ariño
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.