job-shop-lib 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- job_shop_lib/__init__.py +20 -0
- job_shop_lib/base_solver.py +37 -0
- job_shop_lib/benchmarking/__init__.py +78 -0
- job_shop_lib/benchmarking/benchmark_instances.json +1 -0
- job_shop_lib/benchmarking/load_benchmark.py +142 -0
- job_shop_lib/cp_sat/__init__.py +5 -0
- job_shop_lib/cp_sat/ortools_solver.py +201 -0
- job_shop_lib/dispatching/__init__.py +49 -0
- job_shop_lib/dispatching/dispatcher.py +269 -0
- job_shop_lib/dispatching/dispatching_rule_solver.py +111 -0
- job_shop_lib/dispatching/dispatching_rules.py +160 -0
- job_shop_lib/dispatching/factories.py +206 -0
- job_shop_lib/dispatching/pruning_functions.py +116 -0
- job_shop_lib/exceptions.py +26 -0
- job_shop_lib/generators/__init__.py +7 -0
- job_shop_lib/generators/basic_generator.py +197 -0
- job_shop_lib/graphs/__init__.py +52 -0
- job_shop_lib/graphs/build_agent_task_graph.py +209 -0
- job_shop_lib/graphs/build_disjunctive_graph.py +78 -0
- job_shop_lib/graphs/constants.py +21 -0
- job_shop_lib/graphs/job_shop_graph.py +159 -0
- job_shop_lib/graphs/node.py +147 -0
- job_shop_lib/job_shop_instance.py +355 -0
- job_shop_lib/operation.py +120 -0
- job_shop_lib/schedule.py +180 -0
- job_shop_lib/scheduled_operation.py +97 -0
- job_shop_lib/visualization/__init__.py +25 -0
- job_shop_lib/visualization/agent_task_graph.py +257 -0
- job_shop_lib/visualization/create_gif.py +191 -0
- job_shop_lib/visualization/disjunctive_graph.py +206 -0
- job_shop_lib/visualization/gantt_chart.py +147 -0
- job_shop_lib-0.1.0.dist-info/LICENSE +21 -0
- job_shop_lib-0.1.0.dist-info/METADATA +363 -0
- job_shop_lib-0.1.0.dist-info/RECORD +35 -0
- job_shop_lib-0.1.0.dist-info/WHEEL +4 -0
@@ -0,0 +1,120 @@
|
|
1
|
+
"""Home of the `Operation` class."""
|
2
|
+
|
3
|
+
from __future__ import annotations
|
4
|
+
|
5
|
+
|
6
|
+
class Operation:
|
7
|
+
"""Stores machine and duration information for a job operation.
|
8
|
+
|
9
|
+
Note:
|
10
|
+
To increase performance, some solvers such as the CP-SAT solver use
|
11
|
+
only integers to represent the operation's attributes. Should a
|
12
|
+
problem involve operations with non-integer durations, it would be
|
13
|
+
necessary to multiply all durations by a sufficiently large integer so
|
14
|
+
that every duration is an integer.
|
15
|
+
|
16
|
+
Attributes:
|
17
|
+
machines: A list of machine ids that can perform the operation.
|
18
|
+
duration: The time it takes to perform the operation.
|
19
|
+
"""
|
20
|
+
|
21
|
+
__slots__ = (
|
22
|
+
"machines",
|
23
|
+
"duration",
|
24
|
+
"_job_id",
|
25
|
+
"_position_in_job",
|
26
|
+
"_operation_id",
|
27
|
+
)
|
28
|
+
|
29
|
+
def __init__(self, machines: int | list[int], duration: int):
|
30
|
+
"""Initializes the object with the given machines and duration.
|
31
|
+
|
32
|
+
Args:
|
33
|
+
machines: A list of machine ids that can perform the operation. If
|
34
|
+
only one machine can perform the operation, it can be passed as
|
35
|
+
an integer.
|
36
|
+
duration: The time it takes to perform the operation.
|
37
|
+
"""
|
38
|
+
self.machines = [machines] if isinstance(machines, int) else machines
|
39
|
+
self.duration = duration
|
40
|
+
|
41
|
+
# Defined outside the class by the JobShopInstance class:
|
42
|
+
self._job_id: int | None = None
|
43
|
+
self._position_in_job: int | None = None
|
44
|
+
self._operation_id: int | None = None
|
45
|
+
|
46
|
+
@property
|
47
|
+
def machine_id(self) -> int:
|
48
|
+
"""Returns the id of the machine associated with the operation.
|
49
|
+
|
50
|
+
Raises:
|
51
|
+
ValueError: If the operation has multiple machines in its list.
|
52
|
+
"""
|
53
|
+
if len(self.machines) > 1:
|
54
|
+
raise ValueError("Operation has multiple machines.")
|
55
|
+
return self.machines[0]
|
56
|
+
|
57
|
+
@property
|
58
|
+
def job_id(self) -> int:
|
59
|
+
"""Returns the id of the job that the operation belongs to."""
|
60
|
+
if self._job_id is None:
|
61
|
+
raise ValueError("Operation has no job_id.")
|
62
|
+
return self._job_id
|
63
|
+
|
64
|
+
@job_id.setter
|
65
|
+
def job_id(self, value: int) -> None:
|
66
|
+
self._job_id = value
|
67
|
+
|
68
|
+
@property
|
69
|
+
def position_in_job(self) -> int:
|
70
|
+
"""Returns the position (starting at zero) of the operation in the
|
71
|
+
job.
|
72
|
+
|
73
|
+
Raises:
|
74
|
+
ValueError: If the operation has no position_in_job.
|
75
|
+
"""
|
76
|
+
if self._position_in_job is None:
|
77
|
+
raise ValueError("Operation has no position_in_job.")
|
78
|
+
return self._position_in_job
|
79
|
+
|
80
|
+
@position_in_job.setter
|
81
|
+
def position_in_job(self, value: int) -> None:
|
82
|
+
self._position_in_job = value
|
83
|
+
|
84
|
+
@property
|
85
|
+
def operation_id(self) -> int:
|
86
|
+
"""Returns the id of the operation.
|
87
|
+
|
88
|
+
The operation id is unique within a job shop instance and should
|
89
|
+
be set by the JobShopInstance class.
|
90
|
+
|
91
|
+
It starts at 0 and is incremented by 1 for each operation in the
|
92
|
+
instance.
|
93
|
+
|
94
|
+
Raises:
|
95
|
+
ValueError: If the operation has no id.
|
96
|
+
"""
|
97
|
+
if self._operation_id is None:
|
98
|
+
raise ValueError("Operation has no id.")
|
99
|
+
return self._operation_id
|
100
|
+
|
101
|
+
@operation_id.setter
|
102
|
+
def operation_id(self, value: int) -> None:
|
103
|
+
self._operation_id = value
|
104
|
+
|
105
|
+
def __hash__(self) -> int:
|
106
|
+
return hash(self.operation_id)
|
107
|
+
|
108
|
+
def __eq__(self, __value: object) -> bool:
|
109
|
+
if isinstance(__value, Operation):
|
110
|
+
return self.operation_id == __value.operation_id
|
111
|
+
return False
|
112
|
+
|
113
|
+
def __repr__(self) -> str:
|
114
|
+
machines = (
|
115
|
+
self.machines[0] if len(self.machines) == 1 else self.machines
|
116
|
+
)
|
117
|
+
return (
|
118
|
+
f"O(m={machines}, d={self.duration}, "
|
119
|
+
f"j={self.job_id}, p={self.position_in_job})"
|
120
|
+
)
|
job_shop_lib/schedule.py
ADDED
@@ -0,0 +1,180 @@
|
|
1
|
+
"""Home of the `Schedule` class."""
|
2
|
+
|
3
|
+
from job_shop_lib import ScheduledOperation, JobShopInstance
|
4
|
+
|
5
|
+
|
6
|
+
class Schedule:
|
7
|
+
"""Data structure to store a schedule for a `JobShopInstance` object.
|
8
|
+
|
9
|
+
Attributes:
|
10
|
+
instance:
|
11
|
+
The `JobShopInstance` object that the schedule is for.
|
12
|
+
schedule:
|
13
|
+
A list of lists of `ScheduledOperation` objects. Each list of
|
14
|
+
`ScheduledOperation` objects represents the order of operations
|
15
|
+
on a machine.
|
16
|
+
metadata:
|
17
|
+
A dictionary with additional information about the schedule. It
|
18
|
+
can be used to store information about the algorithm that generated
|
19
|
+
the schedule, for example.
|
20
|
+
"""
|
21
|
+
|
22
|
+
__slots__ = (
|
23
|
+
"instance",
|
24
|
+
"_schedule",
|
25
|
+
"metadata",
|
26
|
+
)
|
27
|
+
|
28
|
+
def __init__(
|
29
|
+
self,
|
30
|
+
instance: JobShopInstance,
|
31
|
+
schedule: list[list[ScheduledOperation]] | None = None,
|
32
|
+
**metadata,
|
33
|
+
):
|
34
|
+
"""Initializes the object with the given instance and schedule.
|
35
|
+
|
36
|
+
Args:
|
37
|
+
instance:
|
38
|
+
The `JobShopInstance` object that the schedule is for.
|
39
|
+
schedule:
|
40
|
+
A list of lists of `ScheduledOperation` objects. Each list of
|
41
|
+
`ScheduledOperation` objects represents the order of operations
|
42
|
+
on a machine. If not provided, the schedule is initialized as
|
43
|
+
an empty schedule.
|
44
|
+
**metadata:
|
45
|
+
Additional information about the schedule.
|
46
|
+
"""
|
47
|
+
if schedule is None:
|
48
|
+
schedule = [[] for _ in range(instance.num_machines)]
|
49
|
+
|
50
|
+
Schedule.check_schedule(schedule)
|
51
|
+
|
52
|
+
self.instance = instance
|
53
|
+
self._schedule = schedule
|
54
|
+
self.metadata = metadata
|
55
|
+
|
56
|
+
def __repr__(self) -> str:
|
57
|
+
return str(self.schedule)
|
58
|
+
|
59
|
+
@property
|
60
|
+
def schedule(self) -> list[list[ScheduledOperation]]:
|
61
|
+
"""Returns the schedule attribute."""
|
62
|
+
return self._schedule
|
63
|
+
|
64
|
+
@schedule.setter
|
65
|
+
def schedule(self, new_schedule: list[list[ScheduledOperation]]):
|
66
|
+
Schedule.check_schedule(new_schedule)
|
67
|
+
self._schedule = new_schedule
|
68
|
+
|
69
|
+
@property
|
70
|
+
def num_scheduled_operations(self) -> int:
|
71
|
+
"""Returns the number of operations that have been scheduled."""
|
72
|
+
return sum(len(machine_schedule) for machine_schedule in self.schedule)
|
73
|
+
|
74
|
+
def reset(self):
|
75
|
+
"""Resets the schedule to an empty state."""
|
76
|
+
self.schedule = [[] for _ in range(self.instance.num_machines)]
|
77
|
+
|
78
|
+
def makespan(self) -> int:
|
79
|
+
"""Returns the makespan of the schedule.
|
80
|
+
|
81
|
+
The makespan is the time at which all operations are completed.
|
82
|
+
"""
|
83
|
+
max_end_time = 0
|
84
|
+
for machine_schedule in self.schedule:
|
85
|
+
if machine_schedule:
|
86
|
+
max_end_time = max(max_end_time, machine_schedule[-1].end_time)
|
87
|
+
return max_end_time
|
88
|
+
|
89
|
+
def is_complete(self) -> bool:
|
90
|
+
"""Returns True if all operations have been scheduled."""
|
91
|
+
return self.num_scheduled_operations == self.instance.num_operations
|
92
|
+
|
93
|
+
def add(self, scheduled_operation: ScheduledOperation):
|
94
|
+
"""Adds a new `ScheduledOperation` to the schedule.
|
95
|
+
|
96
|
+
Args:
|
97
|
+
scheduled_operation:
|
98
|
+
The `ScheduledOperation` to add to the schedule.
|
99
|
+
|
100
|
+
Raises:
|
101
|
+
ValueError: If the start time of the new operation is before the
|
102
|
+
end time of the last operation on the same machine. In favor of
|
103
|
+
performance, this method does not checks precedence
|
104
|
+
constraints.
|
105
|
+
"""
|
106
|
+
self._check_start_time_of_new_operation(scheduled_operation)
|
107
|
+
self.schedule[scheduled_operation.machine_id].append(
|
108
|
+
scheduled_operation
|
109
|
+
)
|
110
|
+
|
111
|
+
def _check_start_time_of_new_operation(
|
112
|
+
self,
|
113
|
+
new_operation: ScheduledOperation,
|
114
|
+
):
|
115
|
+
is_first_operation = not self.schedule[new_operation.machine_id]
|
116
|
+
if is_first_operation:
|
117
|
+
return
|
118
|
+
|
119
|
+
last_operation = self.schedule[new_operation.machine_id][-1]
|
120
|
+
self._check_start_time(new_operation, last_operation)
|
121
|
+
|
122
|
+
@staticmethod
|
123
|
+
def _check_start_time(
|
124
|
+
scheduled_operation: ScheduledOperation,
|
125
|
+
previous_operation: ScheduledOperation,
|
126
|
+
):
|
127
|
+
"""Raises a ValueError if the start time of the new operation is before
|
128
|
+
the end time of the last operation on the same machine."""
|
129
|
+
|
130
|
+
if previous_operation.end_time <= scheduled_operation.start_time:
|
131
|
+
return
|
132
|
+
|
133
|
+
raise ValueError(
|
134
|
+
"Operation cannot be scheduled before the last operation on "
|
135
|
+
"the same machine: end time of last operation "
|
136
|
+
f"({previous_operation.end_time}) > start time of new operation "
|
137
|
+
f"({scheduled_operation.start_time})."
|
138
|
+
)
|
139
|
+
|
140
|
+
@staticmethod
|
141
|
+
def check_schedule(schedule: list[list[ScheduledOperation]]):
|
142
|
+
"""Checks if a schedule is valid and raises a ValueError if it is not.
|
143
|
+
|
144
|
+
A schedule is considered invalid if:
|
145
|
+
- A `ScheduledOperation` has a machine id that does not match the
|
146
|
+
machine id of the machine schedule (the list of
|
147
|
+
`ScheduledOperation` objects) that it belongs to.
|
148
|
+
- The start time of a `ScheduledOperation` is before the end time
|
149
|
+
of the last operation on the same machine.
|
150
|
+
|
151
|
+
Args:
|
152
|
+
schedule:
|
153
|
+
The schedule (a list of lists of `ScheduledOperation` objects)
|
154
|
+
to check.
|
155
|
+
|
156
|
+
Raises:
|
157
|
+
ValueError: If the schedule is invalid.
|
158
|
+
"""
|
159
|
+
for machine_id, scheduled_operations in enumerate(schedule):
|
160
|
+
for i, scheduled_operation in enumerate(scheduled_operations):
|
161
|
+
if scheduled_operation.machine_id != machine_id:
|
162
|
+
raise ValueError(
|
163
|
+
"The machine id of the scheduled operation "
|
164
|
+
f"({ScheduledOperation.machine_id}) does not match "
|
165
|
+
f"the machine id of the machine schedule ({machine_id}"
|
166
|
+
f"). Index of the operation: [{machine_id}][{i}]."
|
167
|
+
)
|
168
|
+
|
169
|
+
if i == 0:
|
170
|
+
continue
|
171
|
+
|
172
|
+
Schedule._check_start_time(
|
173
|
+
scheduled_operation, scheduled_operations[i - 1]
|
174
|
+
)
|
175
|
+
|
176
|
+
def __eq__(self, value: object) -> bool:
|
177
|
+
if not isinstance(value, Schedule):
|
178
|
+
return False
|
179
|
+
|
180
|
+
return self.schedule == value.schedule
|
@@ -0,0 +1,97 @@
|
|
1
|
+
"""Home of the `ScheduledOperation` class."""
|
2
|
+
|
3
|
+
from job_shop_lib import Operation
|
4
|
+
|
5
|
+
|
6
|
+
class ScheduledOperation:
|
7
|
+
"""Data structure to store a scheduled operation.
|
8
|
+
|
9
|
+
Attributes:
|
10
|
+
operation:
|
11
|
+
The `Operation` object that is scheduled.
|
12
|
+
start_time:
|
13
|
+
The time at which the operation is scheduled to start.
|
14
|
+
machine_id:
|
15
|
+
The id of the machine on which the operation is scheduled.
|
16
|
+
"""
|
17
|
+
|
18
|
+
__slots__ = ("operation", "start_time", "_machine_id")
|
19
|
+
|
20
|
+
def __init__(self, operation: Operation, start_time: int, machine_id: int):
|
21
|
+
"""Initializes the object with the given operation, start time, and
|
22
|
+
machine id.
|
23
|
+
|
24
|
+
Args:
|
25
|
+
operation:
|
26
|
+
The `Operation` object that is scheduled.
|
27
|
+
start_time:
|
28
|
+
The time at which the operation is scheduled to start.
|
29
|
+
machine_id:
|
30
|
+
The id of the machine on which the operation is scheduled.
|
31
|
+
|
32
|
+
Raises:
|
33
|
+
ValueError:
|
34
|
+
If the machine_id is not valid for the operation.
|
35
|
+
"""
|
36
|
+
self.operation = operation
|
37
|
+
self.start_time = start_time
|
38
|
+
self._machine_id = machine_id
|
39
|
+
self.machine_id = machine_id # Validate machine_id
|
40
|
+
|
41
|
+
@property
|
42
|
+
def machine_id(self) -> int:
|
43
|
+
"""Returns the id of the machine on which the operation has been
|
44
|
+
scheduled."""
|
45
|
+
return self._machine_id
|
46
|
+
|
47
|
+
@machine_id.setter
|
48
|
+
def machine_id(self, value: int):
|
49
|
+
if value not in self.operation.machines:
|
50
|
+
raise ValueError(
|
51
|
+
f"Operation cannot be scheduled on machine {value}. "
|
52
|
+
f"Valid machines are {self.operation.machines}."
|
53
|
+
)
|
54
|
+
self._machine_id = value
|
55
|
+
|
56
|
+
@property
|
57
|
+
def job_id(self) -> int:
|
58
|
+
"""Returns the id of the job that the operation belongs to.
|
59
|
+
|
60
|
+
Raises:
|
61
|
+
ValueError: If the operation has no job_id.
|
62
|
+
"""
|
63
|
+
|
64
|
+
if self.operation.job_id is None:
|
65
|
+
raise ValueError("Operation has no job_id.")
|
66
|
+
return self.operation.job_id
|
67
|
+
|
68
|
+
@property
|
69
|
+
def position(self) -> int:
|
70
|
+
"""Returns the position (starting at zero) of the operation in the job.
|
71
|
+
|
72
|
+
Raises:
|
73
|
+
ValueError: If the operation has no position_in_job.
|
74
|
+
"""
|
75
|
+
if self.operation.position_in_job is None:
|
76
|
+
raise ValueError("Operation has no position.")
|
77
|
+
return self.operation.position_in_job
|
78
|
+
|
79
|
+
@property
|
80
|
+
def end_time(self) -> int:
|
81
|
+
"""Returns the time at which the operation is scheduled to end."""
|
82
|
+
return self.start_time + self.operation.duration
|
83
|
+
|
84
|
+
def __repr__(self) -> str:
|
85
|
+
return (
|
86
|
+
f"S-Op(operation={self.operation}, "
|
87
|
+
f"start_time={self.start_time}, machine_id={self.machine_id})"
|
88
|
+
)
|
89
|
+
|
90
|
+
def __eq__(self, value: object) -> bool:
|
91
|
+
if not isinstance(value, ScheduledOperation):
|
92
|
+
return False
|
93
|
+
return (
|
94
|
+
self.operation is value.operation
|
95
|
+
and self.start_time == value.start_time
|
96
|
+
and self.machine_id == value.machine_id
|
97
|
+
)
|
@@ -0,0 +1,25 @@
|
|
1
|
+
"""Package for visualization."""
|
2
|
+
|
3
|
+
from job_shop_lib.visualization.gantt_chart import plot_gantt_chart
|
4
|
+
from job_shop_lib.visualization.create_gif import (
|
5
|
+
create_gif,
|
6
|
+
create_gantt_chart_frames,
|
7
|
+
plot_gantt_chart_wrapper,
|
8
|
+
create_gif_from_frames,
|
9
|
+
)
|
10
|
+
from job_shop_lib.visualization.disjunctive_graph import plot_disjunctive_graph
|
11
|
+
from job_shop_lib.visualization.agent_task_graph import (
|
12
|
+
plot_agent_task_graph,
|
13
|
+
three_columns_layout,
|
14
|
+
)
|
15
|
+
|
16
|
+
__all__ = [
|
17
|
+
"plot_gantt_chart",
|
18
|
+
"create_gif",
|
19
|
+
"create_gantt_chart_frames",
|
20
|
+
"plot_gantt_chart_wrapper",
|
21
|
+
"create_gif_from_frames",
|
22
|
+
"plot_disjunctive_graph",
|
23
|
+
"plot_agent_task_graph",
|
24
|
+
"three_columns_layout",
|
25
|
+
]
|
@@ -0,0 +1,257 @@
|
|
1
|
+
"""Contains functions to plot the agent-task graph of a job shop instance.
|
2
|
+
|
3
|
+
The agent-task graph was introduced by Junyoung Park et al. (2021).
|
4
|
+
In contrast to the disjunctive graph, instead of connecting operations that
|
5
|
+
share the same resources directly by disjunctive edges, operation nodes are
|
6
|
+
connected with machine ones. All machine nodes are connected between them, and
|
7
|
+
all operation nodes from the same job are connected by non-directed edges too.
|
8
|
+
|
9
|
+
See: job_shop_lib.graphs.build_agent_task_graph module for more information.
|
10
|
+
"""
|
11
|
+
|
12
|
+
from typing import Optional
|
13
|
+
|
14
|
+
import matplotlib.pyplot as plt
|
15
|
+
import networkx as nx
|
16
|
+
|
17
|
+
from job_shop_lib.graphs import NodeType, JobShopGraph, Node
|
18
|
+
|
19
|
+
|
20
|
+
def plot_agent_task_graph(
|
21
|
+
job_shop_graph: JobShopGraph,
|
22
|
+
title: Optional[str] = None,
|
23
|
+
figsize: tuple[int, int] = (10, 10),
|
24
|
+
layout: Optional[dict[Node, tuple[float, float]]] = None,
|
25
|
+
color_map_name: str = "tab10",
|
26
|
+
node_size: int = 1000,
|
27
|
+
alpha: float = 0.95,
|
28
|
+
add_legend: bool = False,
|
29
|
+
) -> plt.Figure:
|
30
|
+
"""Returns a plot of the agent-task graph of the instance.
|
31
|
+
|
32
|
+
Machine and job nodes are represented by squares, and the operation nodes
|
33
|
+
are represented by circles.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
job_shop_graph:
|
37
|
+
The job shop graph instance. It should be already initialized with
|
38
|
+
the instance with a valid agent-task graph representation.
|
39
|
+
|
40
|
+
Returns:
|
41
|
+
The figure of the plot. This figure can be used to save the plot to a
|
42
|
+
file or to show it in a Jupyter notebook.
|
43
|
+
"""
|
44
|
+
if title is None:
|
45
|
+
title = (
|
46
|
+
f"Agent-Task Graph Visualization: {job_shop_graph.instance.name}"
|
47
|
+
)
|
48
|
+
# Create a new figure and axis
|
49
|
+
fig, ax = plt.subplots(figsize=figsize)
|
50
|
+
fig.suptitle(title)
|
51
|
+
|
52
|
+
# Create the networkx graph
|
53
|
+
graph = job_shop_graph.graph
|
54
|
+
|
55
|
+
# Create the layout if it was not provided
|
56
|
+
if layout is None:
|
57
|
+
layout = three_columns_layout(job_shop_graph)
|
58
|
+
|
59
|
+
# Define colors and shapes
|
60
|
+
color_map = plt.get_cmap(color_map_name)
|
61
|
+
machine_colors = {
|
62
|
+
machine.machine_id: color_map(i)
|
63
|
+
for i, machine in enumerate(
|
64
|
+
job_shop_graph.nodes_by_type[NodeType.MACHINE]
|
65
|
+
)
|
66
|
+
}
|
67
|
+
node_colors = [
|
68
|
+
_get_node_color(node, machine_colors) for node in job_shop_graph.nodes
|
69
|
+
]
|
70
|
+
node_shapes = {"machine": "s", "job": "d", "operation": "o", "global": "o"}
|
71
|
+
|
72
|
+
# Draw nodes with different shapes based on their type
|
73
|
+
for node_type, shape in node_shapes.items():
|
74
|
+
current_nodes = [
|
75
|
+
node.node_id
|
76
|
+
for node in job_shop_graph.nodes
|
77
|
+
if node.node_type.name.lower() == node_type
|
78
|
+
]
|
79
|
+
nx.draw_networkx_nodes(
|
80
|
+
graph,
|
81
|
+
layout,
|
82
|
+
nodelist=current_nodes,
|
83
|
+
node_color=[node_colors[i] for i in current_nodes],
|
84
|
+
node_shape=shape,
|
85
|
+
ax=ax,
|
86
|
+
node_size=node_size,
|
87
|
+
alpha=alpha,
|
88
|
+
)
|
89
|
+
|
90
|
+
# Draw edges
|
91
|
+
nx.draw_networkx_edges(graph, layout, ax=ax)
|
92
|
+
|
93
|
+
node_labels = {
|
94
|
+
node.node_id: _get_node_label(node) for node in job_shop_graph.nodes
|
95
|
+
}
|
96
|
+
nx.draw_networkx_labels(graph, layout, node_labels, ax=ax)
|
97
|
+
|
98
|
+
ax.set_axis_off()
|
99
|
+
|
100
|
+
plt.tight_layout()
|
101
|
+
|
102
|
+
# Add to the legend the meaning of m and d
|
103
|
+
if add_legend:
|
104
|
+
plt.figtext(0, 0.95, "d = duration", wrap=True, fontsize=12)
|
105
|
+
return fig
|
106
|
+
|
107
|
+
|
108
|
+
def _get_node_color(
|
109
|
+
node: Node, machine_colors: dict[int, tuple[float, float, float, float]]
|
110
|
+
) -> tuple[float, float, float, float] | str:
|
111
|
+
if node.node_type == NodeType.OPERATION:
|
112
|
+
return machine_colors[node.operation.machine_id]
|
113
|
+
if node.node_type == NodeType.MACHINE:
|
114
|
+
return machine_colors[node.machine_id]
|
115
|
+
|
116
|
+
return "lightblue"
|
117
|
+
|
118
|
+
|
119
|
+
def _get_node_label(node: Node) -> str:
|
120
|
+
if node.node_type == NodeType.OPERATION:
|
121
|
+
return f"d={node.operation.duration}"
|
122
|
+
if node.node_type == NodeType.MACHINE:
|
123
|
+
return f"M{node.machine_id}"
|
124
|
+
if node.node_type == NodeType.JOB:
|
125
|
+
return f"J{node.job_id}"
|
126
|
+
if node.node_type == NodeType.GLOBAL:
|
127
|
+
return "G"
|
128
|
+
|
129
|
+
raise ValueError(f"Invalid node type: {node.node_type}")
|
130
|
+
|
131
|
+
|
132
|
+
def three_columns_layout(
|
133
|
+
job_shop_graph: JobShopGraph,
|
134
|
+
*,
|
135
|
+
leftmost_position: float = 0.1,
|
136
|
+
rightmost_position: float = 0.9,
|
137
|
+
topmost_position: float = 1.0,
|
138
|
+
bottommost_position: float = 0.0,
|
139
|
+
) -> dict[Node, tuple[float, float]]:
|
140
|
+
"""Returns the layout of the agent-task graph.
|
141
|
+
|
142
|
+
The layout is organized in a grid manner. For example, for a JobShopGraph
|
143
|
+
representing a job shop instance with 2 machines and 3 jobs, the layout
|
144
|
+
would be:
|
145
|
+
|
146
|
+
0: - O_11 -
|
147
|
+
1: - O_12 J1
|
148
|
+
2: - O_13 -
|
149
|
+
3: M1 O_21 -
|
150
|
+
4: - O_22 J2
|
151
|
+
5: - O_23 -
|
152
|
+
6: M2 O_31 -
|
153
|
+
7: - O_32 J3
|
154
|
+
8: - O_33 -
|
155
|
+
9: - - -
|
156
|
+
10: - G -
|
157
|
+
Where M1 and M2 are the machine nodes, J1, J2, and J3 are the job
|
158
|
+
nodes, O_ij are the operation nodes, and G is the global node.
|
159
|
+
|
160
|
+
Args:
|
161
|
+
job_shop_graph:
|
162
|
+
The job shop graph instance. It should be already initialized with
|
163
|
+
the instance with a valid agent-task graph representation.
|
164
|
+
leftmost_position:
|
165
|
+
The center position of the leftmost column of the layout. It should
|
166
|
+
be a float between 0 and 1. The default is 0.1.
|
167
|
+
rightmost_position:
|
168
|
+
The center position of the rightmost column of the layout. It
|
169
|
+
should be a float between 0 and 1. The default is 0.9.
|
170
|
+
topmost_position:
|
171
|
+
The center position of the topmost node of the layout. It should be
|
172
|
+
a float between 0 and 1. The default is 0.9.
|
173
|
+
bottommost_position:
|
174
|
+
The center position of the bottommost node of the layout. It should
|
175
|
+
be a float between 0 and 1. The default is 0.1.
|
176
|
+
|
177
|
+
Returns:
|
178
|
+
A dictionary with the position of each node in the graph. The keys are
|
179
|
+
the node ids, and the values are tuples with the x and y coordinates.
|
180
|
+
"""
|
181
|
+
|
182
|
+
x_positions = _get_x_positions(leftmost_position, rightmost_position)
|
183
|
+
|
184
|
+
operation_nodes = job_shop_graph.nodes_by_type[NodeType.OPERATION]
|
185
|
+
machine_nodes = job_shop_graph.nodes_by_type[NodeType.MACHINE]
|
186
|
+
job_nodes = job_shop_graph.nodes_by_type[NodeType.JOB]
|
187
|
+
global_nodes = job_shop_graph.nodes_by_type[NodeType.GLOBAL]
|
188
|
+
|
189
|
+
total_positions = len(operation_nodes) + len(global_nodes) * 2
|
190
|
+
y_spacing = (topmost_position - bottommost_position) / total_positions
|
191
|
+
|
192
|
+
layout: dict[Node, tuple[float, float]] = {}
|
193
|
+
|
194
|
+
machines_spacing_multiplier = len(operation_nodes) // len(machine_nodes)
|
195
|
+
layout.update(
|
196
|
+
_assign_positions_from_top(
|
197
|
+
machine_nodes,
|
198
|
+
x_positions["machine"],
|
199
|
+
topmost_position,
|
200
|
+
y_spacing * machines_spacing_multiplier,
|
201
|
+
)
|
202
|
+
)
|
203
|
+
layout.update(
|
204
|
+
(
|
205
|
+
_assign_positions_from_top(
|
206
|
+
operation_nodes,
|
207
|
+
x_positions["operation"],
|
208
|
+
topmost_position,
|
209
|
+
y_spacing,
|
210
|
+
)
|
211
|
+
)
|
212
|
+
)
|
213
|
+
|
214
|
+
if global_nodes:
|
215
|
+
layout[global_nodes[0]] = (
|
216
|
+
x_positions["operation"],
|
217
|
+
bottommost_position,
|
218
|
+
)
|
219
|
+
|
220
|
+
if job_nodes:
|
221
|
+
job_multiplier = len(operation_nodes) // len(job_nodes)
|
222
|
+
layout.update(
|
223
|
+
_assign_positions_from_top(
|
224
|
+
job_nodes,
|
225
|
+
x_positions["job"],
|
226
|
+
topmost_position,
|
227
|
+
y_spacing * job_multiplier,
|
228
|
+
)
|
229
|
+
)
|
230
|
+
return layout
|
231
|
+
|
232
|
+
|
233
|
+
def _get_x_positions(
|
234
|
+
leftmost_position: float, rightmost_position: float
|
235
|
+
) -> dict[str, float]:
|
236
|
+
center_position = (
|
237
|
+
leftmost_position + (rightmost_position - leftmost_position) / 2
|
238
|
+
)
|
239
|
+
return {
|
240
|
+
"machine": leftmost_position,
|
241
|
+
"operation": center_position,
|
242
|
+
"job": rightmost_position,
|
243
|
+
}
|
244
|
+
|
245
|
+
|
246
|
+
def _assign_positions_from_top(
|
247
|
+
nodes: list[Node],
|
248
|
+
x: float,
|
249
|
+
top: float,
|
250
|
+
y_spacing: float,
|
251
|
+
) -> dict[Node, tuple[float, float]]:
|
252
|
+
layout: dict[Node, tuple[float, float]] = {}
|
253
|
+
for i, node in enumerate(nodes):
|
254
|
+
y = top - (i + 1) * y_spacing
|
255
|
+
layout[node] = (x, y)
|
256
|
+
|
257
|
+
return layout
|