ins-pricing 0.4.5__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (84) hide show
  1. ins_pricing/README.md +48 -22
  2. ins_pricing/__init__.py +142 -90
  3. ins_pricing/cli/BayesOpt_entry.py +52 -50
  4. ins_pricing/cli/BayesOpt_incremental.py +39 -105
  5. ins_pricing/cli/Explain_Run.py +31 -23
  6. ins_pricing/cli/Explain_entry.py +532 -579
  7. ins_pricing/cli/Pricing_Run.py +31 -23
  8. ins_pricing/cli/bayesopt_entry_runner.py +11 -9
  9. ins_pricing/cli/utils/cli_common.py +256 -256
  10. ins_pricing/cli/utils/cli_config.py +375 -375
  11. ins_pricing/cli/utils/import_resolver.py +382 -365
  12. ins_pricing/cli/utils/notebook_utils.py +340 -340
  13. ins_pricing/cli/watchdog_run.py +209 -201
  14. ins_pricing/frontend/__init__.py +10 -10
  15. ins_pricing/frontend/example_workflows.py +1 -1
  16. ins_pricing/governance/__init__.py +20 -20
  17. ins_pricing/governance/release.py +159 -159
  18. ins_pricing/modelling/__init__.py +147 -92
  19. ins_pricing/modelling/{core/bayesopt → bayesopt}/README.md +2 -2
  20. ins_pricing/modelling/{core/bayesopt → bayesopt}/__init__.py +64 -102
  21. ins_pricing/modelling/{core/bayesopt → bayesopt}/config_preprocess.py +562 -562
  22. ins_pricing/modelling/{core/bayesopt → bayesopt}/core.py +965 -964
  23. ins_pricing/modelling/{core/bayesopt → bayesopt}/model_explain_mixin.py +296 -296
  24. ins_pricing/modelling/{core/bayesopt → bayesopt}/model_plotting_mixin.py +482 -548
  25. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/__init__.py +27 -27
  26. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_trainer.py +915 -913
  27. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_gnn.py +788 -785
  28. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_resn.py +448 -446
  29. ins_pricing/modelling/bayesopt/trainers/__init__.py +19 -0
  30. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_base.py +1308 -1308
  31. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_ft.py +3 -3
  32. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_glm.py +197 -198
  33. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_gnn.py +344 -344
  34. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_resn.py +283 -283
  35. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_xgb.py +346 -347
  36. ins_pricing/modelling/bayesopt/utils/__init__.py +67 -0
  37. ins_pricing/modelling/bayesopt/utils/constants.py +21 -0
  38. ins_pricing/modelling/bayesopt/utils/io_utils.py +7 -0
  39. ins_pricing/modelling/bayesopt/utils/losses.py +27 -0
  40. ins_pricing/modelling/bayesopt/utils/metrics_and_devices.py +17 -0
  41. ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/torch_trainer_mixin.py +623 -623
  42. ins_pricing/modelling/{core/evaluation.py → evaluation.py} +113 -104
  43. ins_pricing/modelling/explain/__init__.py +55 -55
  44. ins_pricing/modelling/explain/metrics.py +27 -174
  45. ins_pricing/modelling/explain/permutation.py +237 -237
  46. ins_pricing/modelling/plotting/__init__.py +40 -36
  47. ins_pricing/modelling/plotting/compat.py +228 -0
  48. ins_pricing/modelling/plotting/curves.py +572 -572
  49. ins_pricing/modelling/plotting/diagnostics.py +163 -163
  50. ins_pricing/modelling/plotting/geo.py +362 -362
  51. ins_pricing/modelling/plotting/importance.py +121 -121
  52. ins_pricing/pricing/__init__.py +27 -27
  53. ins_pricing/production/__init__.py +35 -25
  54. ins_pricing/production/{predict.py → inference.py} +140 -57
  55. ins_pricing/production/monitoring.py +8 -21
  56. ins_pricing/reporting/__init__.py +11 -11
  57. ins_pricing/setup.py +1 -1
  58. ins_pricing/tests/production/test_inference.py +90 -0
  59. ins_pricing/utils/__init__.py +116 -83
  60. ins_pricing/utils/device.py +255 -255
  61. ins_pricing/utils/features.py +53 -0
  62. ins_pricing/utils/io.py +72 -0
  63. ins_pricing/{modelling/core/bayesopt/utils → utils}/losses.py +125 -129
  64. ins_pricing/utils/metrics.py +158 -24
  65. ins_pricing/utils/numerics.py +76 -0
  66. ins_pricing/utils/paths.py +9 -1
  67. {ins_pricing-0.4.5.dist-info → ins_pricing-0.5.0.dist-info}/METADATA +182 -182
  68. ins_pricing-0.5.0.dist-info/RECORD +131 -0
  69. ins_pricing/modelling/core/BayesOpt.py +0 -146
  70. ins_pricing/modelling/core/__init__.py +0 -1
  71. ins_pricing/modelling/core/bayesopt/trainers/__init__.py +0 -19
  72. ins_pricing/modelling/core/bayesopt/utils/__init__.py +0 -86
  73. ins_pricing/modelling/core/bayesopt/utils/constants.py +0 -183
  74. ins_pricing/modelling/core/bayesopt/utils/io_utils.py +0 -126
  75. ins_pricing/modelling/core/bayesopt/utils/metrics_and_devices.py +0 -555
  76. ins_pricing/modelling/core/bayesopt/utils.py +0 -105
  77. ins_pricing/modelling/core/bayesopt/utils_backup.py +0 -1503
  78. ins_pricing/tests/production/test_predict.py +0 -233
  79. ins_pricing-0.4.5.dist-info/RECORD +0 -130
  80. /ins_pricing/modelling/{core/bayesopt → bayesopt}/config_components.py +0 -0
  81. /ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_components.py +0 -0
  82. /ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/distributed_utils.py +0 -0
  83. {ins_pricing-0.4.5.dist-info → ins_pricing-0.5.0.dist-info}/WHEEL +0 -0
  84. {ins_pricing-0.4.5.dist-info → ins_pricing-0.5.0.dist-info}/top_level.txt +0 -0
@@ -1,182 +1,182 @@
1
- Metadata-Version: 2.4
2
- Name: ins_pricing
3
- Version: 0.4.5
4
- Summary: Reusable modelling, pricing, governance, and reporting utilities.
5
- Author: meishi125478
6
- License: Proprietary
7
- Keywords: pricing,insurance,bayesopt,ml
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: Programming Language :: Python :: 3 :: Only
10
- Classifier: Programming Language :: Python :: 3.9
11
- Classifier: License :: Other/Proprietary License
12
- Classifier: Operating System :: OS Independent
13
- Classifier: Intended Audience :: Developers
14
- Requires-Python: >=3.9
15
- Description-Content-Type: text/markdown
16
- Requires-Dist: numpy>=1.20
17
- Requires-Dist: pandas>=1.4
18
- Provides-Extra: bayesopt
19
- Requires-Dist: torch>=1.13; extra == "bayesopt"
20
- Requires-Dist: optuna>=3.0; extra == "bayesopt"
21
- Requires-Dist: xgboost>=1.6; extra == "bayesopt"
22
- Requires-Dist: scikit-learn>=1.1; extra == "bayesopt"
23
- Requires-Dist: statsmodels>=0.13; extra == "bayesopt"
24
- Requires-Dist: joblib>=1.2; extra == "bayesopt"
25
- Requires-Dist: matplotlib>=3.5; extra == "bayesopt"
26
- Provides-Extra: plotting
27
- Requires-Dist: matplotlib>=3.5; extra == "plotting"
28
- Requires-Dist: scikit-learn>=1.1; extra == "plotting"
29
- Provides-Extra: explain
30
- Requires-Dist: torch>=1.13; extra == "explain"
31
- Requires-Dist: shap>=0.41; extra == "explain"
32
- Requires-Dist: scikit-learn>=1.1; extra == "explain"
33
- Provides-Extra: geo
34
- Requires-Dist: contextily>=1.3; extra == "geo"
35
- Requires-Dist: matplotlib>=3.5; extra == "geo"
36
- Provides-Extra: gnn
37
- Requires-Dist: torch>=1.13; extra == "gnn"
38
- Requires-Dist: pynndescent>=0.5; extra == "gnn"
39
- Requires-Dist: torch-geometric>=2.3; extra == "gnn"
40
- Provides-Extra: all
41
- Requires-Dist: torch>=1.13; extra == "all"
42
- Requires-Dist: optuna>=3.0; extra == "all"
43
- Requires-Dist: xgboost>=1.6; extra == "all"
44
- Requires-Dist: scikit-learn>=1.1; extra == "all"
45
- Requires-Dist: statsmodels>=0.13; extra == "all"
46
- Requires-Dist: joblib>=1.2; extra == "all"
47
- Requires-Dist: matplotlib>=3.5; extra == "all"
48
- Requires-Dist: shap>=0.41; extra == "all"
49
- Requires-Dist: contextily>=1.3; extra == "all"
50
- Requires-Dist: pynndescent>=0.5; extra == "all"
51
- Requires-Dist: torch-geometric>=2.3; extra == "all"
52
-
53
- # Insurance-Pricing
54
-
55
- A reusable toolkit for insurance modeling, pricing, governance, and reporting.
56
-
57
- ## Overview
58
-
59
- Insurance-Pricing (ins_pricing) is an enterprise-grade Python library designed for machine learning
60
- model training, pricing calculations, and model governance workflows in the insurance industry.
61
-
62
- ### Core Modules
63
-
64
- | Module | Description |
65
- |--------|-------------|
66
- | modelling | ML model training (GLM, XGBoost, ResNet, FT-Transformer, GNN) and model interpretability |
67
- | pricing | Factor table construction, numeric binning, premium calibration, exposure calculation, PSI monitoring |
68
- | production | Model prediction, batch scoring, data drift detection, production metrics monitoring |
69
- | governance | Model registry, version management, approval workflows, audit logging |
70
- | reporting | Report generation (Markdown format), report scheduling |
71
- | utils | Data validation, performance profiling, device management, logging configuration |
72
-
73
- ### Quick Start
74
-
75
- ```python
76
- # Model training with Bayesian optimization
77
- from ins_pricing import bayesopt as ropt
78
-
79
- model = ropt.BayesOptModel(
80
- train_data, test_data,
81
- model_name='my_model',
82
- resp_nme='target',
83
- weight_nme='weight',
84
- factor_nmes=feature_list,
85
- cate_list=categorical_features,
86
- )
87
- model.bayesopt_xgb(max_evals=100) # Train XGBoost
88
- model.bayesopt_resnet(max_evals=50) # Train ResNet
89
- model.bayesopt_ft(max_evals=50) # Train FT-Transformer
90
-
91
- # Pricing: build factor table
92
- from ins_pricing.pricing import build_factor_table
93
- factors = build_factor_table(
94
- df,
95
- factor_col='age_band',
96
- loss_col='claim_amount',
97
- exposure_col='exposure',
98
- )
99
-
100
- # Production: batch scoring
101
- from ins_pricing.production import batch_score
102
- scores = batch_score(model.trainers['xgb'].predict, df)
103
-
104
- # Model governance
105
- from ins_pricing.governance import ModelRegistry
106
- registry = ModelRegistry('models.json')
107
- registry.register(model_name, version, metrics=metrics)
108
- ```
109
-
110
- ### Project Structure
111
-
112
- ```
113
- ins_pricing/
114
- cli/ # Command-line entry points
115
- modelling/
116
- core/bayesopt/ # ML model training core
117
- explain/ # Model interpretability
118
- plotting/ # Model visualization
119
- pricing/ # Insurance pricing module
120
- production/ # Production deployment module
121
- governance/ # Model governance
122
- reporting/ # Report generation
123
- utils/ # Utilities
124
- tests/ # Test suite
125
- ```
126
-
127
- ### Installation
128
-
129
- ```bash
130
- # Basic installation
131
- pip install ins_pricing
132
-
133
- # Full installation (all optional dependencies)
134
- pip install ins_pricing[all]
135
-
136
- # Install specific extras
137
- pip install ins_pricing[bayesopt] # Model training
138
- pip install ins_pricing[explain] # Model explanation
139
- pip install ins_pricing[plotting] # Visualization
140
- pip install ins_pricing[gnn] # Graph neural networks
141
- ```
142
-
143
- #### Multi-platform and GPU notes
144
-
145
- - Install the correct PyTorch build for your platform/GPU before installing extras.
146
- - Torch Geometric requires platform-specific wheels; follow the official PyG install guide.
147
- - Multi-GPU uses torch.distributed/DataParallel where supported; Windows disables CUDA DDP.
148
-
149
- ---
150
- ## PyPI Upload (scripts)
151
-
152
- This repo includes upload scripts for Windows and Linux/macOS.
153
-
154
- ### Windows
155
-
156
- ```cmd
157
- set TWINE_PASSWORD=your_pypi_token_here
158
- python -m build
159
- upload_to_pypi.bat
160
- ```
161
-
162
- ### Linux / macOS
163
-
164
- ```bash
165
- chmod +x upload_to_pypi.sh
166
- export TWINE_PASSWORD='your_pypi_token_here'
167
- python -m build
168
- ./upload_to_pypi.sh
169
- ```
170
-
171
- ### Makefile (if make is available)
172
-
173
- ```bash
174
- make build
175
- make upload
176
- ```
177
-
178
- ### Tips
179
-
180
- - Never commit tokens to version control.
181
- - Use environment variables or secret managers to store credentials.
182
- - Test with TestPyPI before publishing when needed.
1
+ Metadata-Version: 2.4
2
+ Name: ins_pricing
3
+ Version: 0.5.0
4
+ Summary: Reusable modelling, pricing, governance, and reporting utilities.
5
+ Author: meishi125478
6
+ License: Proprietary
7
+ Keywords: pricing,insurance,bayesopt,ml
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: Programming Language :: Python :: 3 :: Only
10
+ Classifier: Programming Language :: Python :: 3.9
11
+ Classifier: License :: Other/Proprietary License
12
+ Classifier: Operating System :: OS Independent
13
+ Classifier: Intended Audience :: Developers
14
+ Requires-Python: >=3.9
15
+ Description-Content-Type: text/markdown
16
+ Requires-Dist: numpy>=1.20
17
+ Requires-Dist: pandas>=1.4
18
+ Provides-Extra: bayesopt
19
+ Requires-Dist: torch>=1.13; extra == "bayesopt"
20
+ Requires-Dist: optuna>=3.0; extra == "bayesopt"
21
+ Requires-Dist: xgboost>=1.6; extra == "bayesopt"
22
+ Requires-Dist: scikit-learn>=1.1; extra == "bayesopt"
23
+ Requires-Dist: statsmodels>=0.13; extra == "bayesopt"
24
+ Requires-Dist: joblib>=1.2; extra == "bayesopt"
25
+ Requires-Dist: matplotlib>=3.5; extra == "bayesopt"
26
+ Provides-Extra: plotting
27
+ Requires-Dist: matplotlib>=3.5; extra == "plotting"
28
+ Requires-Dist: scikit-learn>=1.1; extra == "plotting"
29
+ Provides-Extra: explain
30
+ Requires-Dist: torch>=1.13; extra == "explain"
31
+ Requires-Dist: shap>=0.41; extra == "explain"
32
+ Requires-Dist: scikit-learn>=1.1; extra == "explain"
33
+ Provides-Extra: geo
34
+ Requires-Dist: contextily>=1.3; extra == "geo"
35
+ Requires-Dist: matplotlib>=3.5; extra == "geo"
36
+ Provides-Extra: gnn
37
+ Requires-Dist: torch>=1.13; extra == "gnn"
38
+ Requires-Dist: pynndescent>=0.5; extra == "gnn"
39
+ Requires-Dist: torch-geometric>=2.3; extra == "gnn"
40
+ Provides-Extra: all
41
+ Requires-Dist: torch>=1.13; extra == "all"
42
+ Requires-Dist: optuna>=3.0; extra == "all"
43
+ Requires-Dist: xgboost>=1.6; extra == "all"
44
+ Requires-Dist: scikit-learn>=1.1; extra == "all"
45
+ Requires-Dist: statsmodels>=0.13; extra == "all"
46
+ Requires-Dist: joblib>=1.2; extra == "all"
47
+ Requires-Dist: matplotlib>=3.5; extra == "all"
48
+ Requires-Dist: shap>=0.41; extra == "all"
49
+ Requires-Dist: contextily>=1.3; extra == "all"
50
+ Requires-Dist: pynndescent>=0.5; extra == "all"
51
+ Requires-Dist: torch-geometric>=2.3; extra == "all"
52
+
53
+ # Insurance-Pricing
54
+
55
+ A reusable toolkit for insurance modeling, pricing, governance, and reporting.
56
+
57
+ ## Overview
58
+
59
+ Insurance-Pricing (ins_pricing) is an enterprise-grade Python library designed for machine learning
60
+ model training, pricing calculations, and model governance workflows in the insurance industry.
61
+
62
+ ### Core Modules
63
+
64
+ | Module | Description |
65
+ |--------|-------------|
66
+ | modelling | ML model training (GLM, XGBoost, ResNet, FT-Transformer, GNN) and model interpretability |
67
+ | pricing | Factor table construction, numeric binning, premium calibration, exposure calculation, PSI monitoring |
68
+ | production | Model prediction, batch scoring, data drift detection, production metrics monitoring |
69
+ | governance | Model registry, version management, approval workflows, audit logging |
70
+ | reporting | Report generation (Markdown format), report scheduling |
71
+ | utils | Data validation, performance profiling, device management, logging configuration |
72
+
73
+ ### Quick Start
74
+
75
+ ```python
76
+ # Model training with Bayesian optimization
77
+ from ins_pricing import bayesopt as ropt
78
+
79
+ model = ropt.BayesOptModel(
80
+ train_data, test_data,
81
+ model_name='my_model',
82
+ resp_nme='target',
83
+ weight_nme='weight',
84
+ factor_nmes=feature_list,
85
+ cate_list=categorical_features,
86
+ )
87
+ model.bayesopt_xgb(max_evals=100) # Train XGBoost
88
+ model.bayesopt_resnet(max_evals=50) # Train ResNet
89
+ model.bayesopt_ft(max_evals=50) # Train FT-Transformer
90
+
91
+ # Pricing: build factor table
92
+ from ins_pricing.pricing import build_factor_table
93
+ factors = build_factor_table(
94
+ df,
95
+ factor_col='age_band',
96
+ loss_col='claim_amount',
97
+ exposure_col='exposure',
98
+ )
99
+
100
+ # Production: batch scoring
101
+ from ins_pricing.production import batch_score
102
+ scores = batch_score(model.trainers['xgb'].predict, df)
103
+
104
+ # Model governance
105
+ from ins_pricing.governance import ModelRegistry
106
+ registry = ModelRegistry('models.json')
107
+ registry.register(model_name, version, metrics=metrics)
108
+ ```
109
+
110
+ ### Project Structure
111
+
112
+ ```
113
+ ins_pricing/
114
+ cli/ # Command-line entry points
115
+ modelling/
116
+ core/bayesopt/ # ML model training core
117
+ explain/ # Model interpretability
118
+ plotting/ # Model visualization
119
+ pricing/ # Insurance pricing module
120
+ production/ # Production deployment module
121
+ governance/ # Model governance
122
+ reporting/ # Report generation
123
+ utils/ # Utilities
124
+ tests/ # Test suite
125
+ ```
126
+
127
+ ### Installation
128
+
129
+ ```bash
130
+ # Basic installation
131
+ pip install ins_pricing
132
+
133
+ # Full installation (all optional dependencies)
134
+ pip install ins_pricing[all]
135
+
136
+ # Install specific extras
137
+ pip install ins_pricing[bayesopt] # Model training
138
+ pip install ins_pricing[explain] # Model explanation
139
+ pip install ins_pricing[plotting] # Visualization
140
+ pip install ins_pricing[gnn] # Graph neural networks
141
+ ```
142
+
143
+ #### Multi-platform and GPU notes
144
+
145
+ - Install the correct PyTorch build for your platform/GPU before installing extras.
146
+ - Torch Geometric requires platform-specific wheels; follow the official PyG install guide.
147
+ - Multi-GPU uses torch.distributed/DataParallel where supported; Windows disables CUDA DDP.
148
+
149
+ ---
150
+ ## PyPI Upload (scripts)
151
+
152
+ This repo includes upload scripts for Windows and Linux/macOS.
153
+
154
+ ### Windows
155
+
156
+ ```cmd
157
+ set TWINE_PASSWORD=your_pypi_token_here
158
+ python -m build
159
+ upload_to_pypi.bat
160
+ ```
161
+
162
+ ### Linux / macOS
163
+
164
+ ```bash
165
+ chmod +x upload_to_pypi.sh
166
+ export TWINE_PASSWORD='your_pypi_token_here'
167
+ python -m build
168
+ ./upload_to_pypi.sh
169
+ ```
170
+
171
+ ### Makefile (if make is available)
172
+
173
+ ```bash
174
+ make build
175
+ make upload
176
+ ```
177
+
178
+ ### Tips
179
+
180
+ - Never commit tokens to version control.
181
+ - Use environment variables or secret managers to store credentials.
182
+ - Test with TestPyPI before publishing when needed.
@@ -0,0 +1,131 @@
1
+ ins_pricing/README.md,sha256=pufz_ChEpXXfLk96prv8ciqwgyVvHE5aEZ8iAH-u6k0,3679
2
+ ins_pricing/__init__.py,sha256=pATYokjg75DXHd2zyoct62efui98SCBO2H8B06Q68r0,4317
3
+ ins_pricing/exceptions.py,sha256=5fZavPV4zNJ7wPC75L215KkHXX9pRrfDAYZOdSKJMGo,4778
4
+ ins_pricing/setup.py,sha256=feMDVmV2OzKeTV_VXlydPRlS5fqUYifXfp2E_o42O6E,1702
5
+ ins_pricing/cli/BayesOpt_entry.py,sha256=FxGzUydBHeNdcNDVxh8D2J8bTGsJBDLTnV56a4AKQa0,1746
6
+ ins_pricing/cli/BayesOpt_incremental.py,sha256=N2s7OpwLBXewRgL0wkDeFociZj5BxSHqPs3pLsc8cw8,34650
7
+ ins_pricing/cli/Explain_Run.py,sha256=AG8KS1gl_EN4BqYFDBc9GCIGXHoZFZ1-auOkZgGO_s8,968
8
+ ins_pricing/cli/Explain_entry.py,sha256=n1oI9GhKpjplWAwXGc6koUAxQHjKByf0mqWxJwP58to,22762
9
+ ins_pricing/cli/Pricing_Run.py,sha256=Wj2InvD_Vxini-RBu0k7Xkei_cnRnnPiiD65OCYwbKQ,1015
10
+ ins_pricing/cli/__init__.py,sha256=F296f1J_tBPv33lDJQ6LaN_CPwMJTMtOuTsMof0dr2o,50
11
+ ins_pricing/cli/bayesopt_entry_runner.py,sha256=Mk9SaAc7fvsK7qQjKtu16ekZt4Rv0uGJjkHOlCy06QU,55374
12
+ ins_pricing/cli/watchdog_run.py,sha256=J1lWn8fSpWIx0OOX3d01K-ALGYqItuGhTQQ4JoZx6SM,6683
13
+ ins_pricing/cli/utils/__init__.py,sha256=u3kt1B27OiuOEgw6PQN-fNs9vNiAjdPyybsRQsZkM_I,54
14
+ ins_pricing/cli/utils/cli_common.py,sha256=Tjr20GWK3XT-KidrFCHwodrRukpaInNzsMzEgM9MgYQ,8530
15
+ ins_pricing/cli/utils/cli_config.py,sha256=ZGfvLSUNJAZjW-QTLVP64Z6MvXDB3444r5Q0khdx5sk,13643
16
+ ins_pricing/cli/utils/evaluation_context.py,sha256=0zuDOcVzkWiuj4HyAT0psaAfEbSqpDXEGXSjxztHY6E,9485
17
+ ins_pricing/cli/utils/import_resolver.py,sha256=_KyQ9mNv-1juyK5rOKQXJpRDpJFZwDgKjdzRU7SJWks,13760
18
+ ins_pricing/cli/utils/notebook_utils.py,sha256=de-5QKU9mcxi1Rxcva8Z6VWBhjJZ8rOcek1KNypoOwM,12398
19
+ ins_pricing/cli/utils/run_logging.py,sha256=V3Wh2EV6c1Mo0QTvfe4hl2J4LOR6bdQsT210o__YBWk,3677
20
+ ins_pricing/frontend/README.md,sha256=MKQuVtwpvrOKBJhcz9wgVtMc-jKERYATRNDIj-hA78Y,17551
21
+ ins_pricing/frontend/__init__.py,sha256=mbvo89webbtirzVCNmp26FrtYmLFtuwxkmZ5tcdab2U,405
22
+ ins_pricing/frontend/app.py,sha256=DBrnewX5RUjuJXGEezihZJcDnp-tEeA-fCuTeqAFEqU,38484
23
+ ins_pricing/frontend/config_builder.py,sha256=GNeEe7-Xt-WLakKlbdbQOE82ogWWwEFaKQ5LxxZeLFc,12261
24
+ ins_pricing/frontend/example_config.json,sha256=aDXH9_5bVlIclwMWH5WfgK572LVuraNbj4565o3d71k,741
25
+ ins_pricing/frontend/example_workflows.py,sha256=-yyoEucItAdVMVnmt6X7oDldaAqe5bWdrstMoNpZOxo,36815
26
+ ins_pricing/frontend/ft_workflow.py,sha256=CWrviErHEjZ2NPibIbPh69AYKPVkn-mXY7uncPihn-0,11206
27
+ ins_pricing/frontend/runner.py,sha256=0OB7C04PHpU04VrzZlEE-zOWrbdk5aztRck2BXKzbTc,13471
28
+ ins_pricing/governance/README.md,sha256=XnXLS5RPzWhEiicJ3WtGmpN935jppHhPftA9Lo2DPnQ,511
29
+ ins_pricing/governance/__init__.py,sha256=kCVZ_eNJnVNCFtefJBFz78KZxaR41IU1L2JoefiojiU,625
30
+ ins_pricing/governance/approval.py,sha256=cjJQjU1ziR-d-9wVSXyMyX6S5zijJqDWERZNxjqGAUE,2879
31
+ ins_pricing/governance/audit.py,sha256=f0aw-LaOxH5NGzxwczeLrGMJcxO-JDRn99BpI55KRn4,1040
32
+ ins_pricing/governance/registry.py,sha256=2uxQL6qMGY5IYWJti9MpaV_auvL--piJaasFrX20ghk,3139
33
+ ins_pricing/governance/release.py,sha256=9s-6V41RFaJ-z0V0RFw3_xgrk77BYfun0WN_w3uspqc,4946
34
+ ins_pricing/modelling/README.md,sha256=4q3CykeFcXo5FILGD2EtoX2yYVV0EbrYW-hwgcySBN0,2157
35
+ ins_pricing/modelling/__init__.py,sha256=1Z_fDHMpuGYOGh4s662mHh4EGMQkYG5hH8Fcg5Aln3I,4366
36
+ ins_pricing/modelling/evaluation.py,sha256=tgmQ-7RHhOkzPCLHtfm4HHNLJVwxYaFExnCVjoBqoeM,4154
37
+ ins_pricing/modelling/bayesopt/README.md,sha256=4wCQBJio0BwTG6ucu35iZ8h90EI6tB-CVjtW-KLTknw,1613
38
+ ins_pricing/modelling/bayesopt/__init__.py,sha256=wkTYjfU9Oi6sNCrn4pmF1QevEc2f_EF6k_PIiCYt-aY,1555
39
+ ins_pricing/modelling/bayesopt/config_components.py,sha256=OjRyM1EuSXL9_3THD1nGLRsioJs7lO_ZKVZDkUA3LX8,12156
40
+ ins_pricing/modelling/bayesopt/config_preprocess.py,sha256=g-D_jyhccEI2m5cqnerb0wjgTa9Ap4BkUoM8799AIS0,22752
41
+ ins_pricing/modelling/bayesopt/core.py,sha256=PVoKpSAPal5NbH4gKIjJGZHDIbDe7SLXUJ6NePUNI_E,45818
42
+ ins_pricing/modelling/bayesopt/model_explain_mixin.py,sha256=8LX72wJrzkyINI0AOE5labGhsH2VT1muIRDTiHQ2JQ4,11973
43
+ ins_pricing/modelling/bayesopt/model_plotting_mixin.py,sha256=PhpuRJM1tpeWvTIEvofMzB3EeIrDNOg2tpfR7XZT0wI,19243
44
+ ins_pricing/modelling/bayesopt/models/__init__.py,sha256=gFMAdElw08bnSM2qldv3IT8O6NSlWEUevHUfFrVtYGM,875
45
+ ins_pricing/modelling/bayesopt/models/model_ft_components.py,sha256=oDhmJQ26zF0PhoDC5Z2McA-JpLbXFQjSREqy0w_hWlQ,11883
46
+ ins_pricing/modelling/bayesopt/models/model_ft_trainer.py,sha256=0nE975FlPvE4jdML2-XoEPNVZdky_1t-ZdJBJwPAagA,40860
47
+ ins_pricing/modelling/bayesopt/models/model_gnn.py,sha256=_pc84cJElL_YxY6gF_AgnQWRH9hQx7pJii6RSATXIv0,33875
48
+ ins_pricing/modelling/bayesopt/models/model_resn.py,sha256=b6zHwccYYcyQ71JxByeDvmWg3tpraBSzD9A5vbqGhtc,18183
49
+ ins_pricing/modelling/bayesopt/trainers/__init__.py,sha256=O7u5452eQV9da6jBJRhjn_KkFLe4APGTq1x018wMqdM,734
50
+ ins_pricing/modelling/bayesopt/trainers/trainer_base.py,sha256=fPtwCWL1EQE8kcqy7t2KBziTotmVWEXAqEQnd-kzppg,57129
51
+ ins_pricing/modelling/bayesopt/trainers/trainer_ft.py,sha256=LNngZ7Jyw_tLkr79l7vVBZi8KpVH9mQY1790kNORV0U,37171
52
+ ins_pricing/modelling/bayesopt/trainers/trainer_glm.py,sha256=_gmgi5pcvMV4smUHp_Aj5vJsRVU0UnKRUAHdF_hHlEk,8167
53
+ ins_pricing/modelling/bayesopt/trainers/trainer_gnn.py,sha256=O9SzmjZUwidS_DqGdtOv1YlFHrj2aK1nDglJmB9Q1ns,14691
54
+ ins_pricing/modelling/bayesopt/trainers/trainer_resn.py,sha256=UArfQGUQeFr-8UWOjLOq3BY1e-pcGWDhBwYLzTtdk78,12216
55
+ ins_pricing/modelling/bayesopt/trainers/trainer_xgb.py,sha256=NDaEW2KV23JaSCdmsfsYiNAw6f-WqETkT0m-mCpA4ao,14156
56
+ ins_pricing/modelling/bayesopt/utils/__init__.py,sha256=SnFPs_g4eut2h2RrBjOO40Vh-tBBTCWOIHPdm7vMfqk,1553
57
+ ins_pricing/modelling/bayesopt/utils/constants.py,sha256=SNC5NJ1FfRQ-iuNmM8xHlaoaFgNpy1vnS_QOqNbJYRE,485
58
+ ins_pricing/modelling/bayesopt/utils/distributed_utils.py,sha256=cu01dHyYE5EREbmtJgCHSH6z5mQIqajz8_-oWZV6zVc,5787
59
+ ins_pricing/modelling/bayesopt/utils/io_utils.py,sha256=2Bg0fz1dngmBU8G8GZp3-CGLIGyhAxeMxwzIXYRINMc,224
60
+ ins_pricing/modelling/bayesopt/utils/losses.py,sha256=m4moKKwfKFl6yDIa9SGQV1u1sgX5MpKoSDF2KI85wyc,634
61
+ ins_pricing/modelling/bayesopt/utils/metrics_and_devices.py,sha256=-TKUHBEumWC4UssZIuthr5yzRBiKFivYXvI9-rCIvxg,317
62
+ ins_pricing/modelling/bayesopt/utils/torch_trainer_mixin.py,sha256=zGvwsulnjX4lXGyG2XJDcxvZ5QNmJaJuGNbpM75ZoUo,26522
63
+ ins_pricing/modelling/explain/__init__.py,sha256=WU4Fy0mEvqnmpX-aalKktj1goo9tnKCht9WOrWmZAtI,1342
64
+ ins_pricing/modelling/explain/gradients.py,sha256=9TqCws_p49nFxVMcjVxe4KCZ7frezeL0uV_LCdoM5yo,11088
65
+ ins_pricing/modelling/explain/metrics.py,sha256=9Dh-RcmV1uUlo8eacswsGeNTxTBRwSnjFHncFUFZZ8g,473
66
+ ins_pricing/modelling/explain/permutation.py,sha256=-_6KRkMA1EKHXrfCVs6ohjS9pI65af5zfWKSLLYHZkc,9599
67
+ ins_pricing/modelling/explain/shap_utils.py,sha256=70zRIHPPdoECFOFQeBTRxLZF-6sjaGJBNMIRS4_kmVI,10462
68
+ ins_pricing/modelling/plotting/__init__.py,sha256=AfqRYacai9UzMPBy4xQk3PdVTbCwT31saInSOJKIbeM,1398
69
+ ins_pricing/modelling/plotting/common.py,sha256=_kFq7JMA0LnKIp4bqAFvr-24VaHjj9pegDMm1qP9_7Y,1439
70
+ ins_pricing/modelling/plotting/compat.py,sha256=rmOct4rrjIX7EFodMfWnDtd8D4qE1inNTMvE9FUWa9k,8039
71
+ ins_pricing/modelling/plotting/curves.py,sha256=AyNeESaXOIN6efd3K0vAQ7hmDU4ifJNq6lx_9e3Xi7c,19000
72
+ ins_pricing/modelling/plotting/diagnostics.py,sha256=iHvZY1zCnFRbSczVluMYYRkkQXc-mwo0Z1DXyL3XMkI,5357
73
+ ins_pricing/modelling/plotting/geo.py,sha256=jQogaHt57W1-f8vzeGUdWE1oON2k4WVZKf2qoOM2Ct8,11401
74
+ ins_pricing/modelling/plotting/importance.py,sha256=j5FkPJH9FA6mJHMUfNkqU4Yi7IcqdGdIpcG-d76ORiw,3817
75
+ ins_pricing/pricing/README.md,sha256=PEcyw5oDkqJHOqnNdzBdbbpZwG4SOlnhMwY-owwQ0GI,1064
76
+ ins_pricing/pricing/__init__.py,sha256=hPgQP4IyhLfP1hEC5XckNzYmByhYEdlqw1D83X0hC8s,1022
77
+ ins_pricing/pricing/calibration.py,sha256=cx9fbDoOnNEMGPH6Js1EDMfVwy9J7zf_90yuNwD7W6I,6196
78
+ ins_pricing/pricing/data_quality.py,sha256=8FecBE60cABsTZE7HETuoKCEOXIrirGAFgg5wQCZrmU,4043
79
+ ins_pricing/pricing/exposure.py,sha256=rw8kKZ_1QdeGTCm13ck9NXrRBPt6TunxRw2s_qkHYkg,2575
80
+ ins_pricing/pricing/factors.py,sha256=1cqDqdXRLb9-yt-x60f0lPWdgAAOvk7slnawVIKcWDo,6573
81
+ ins_pricing/pricing/monitoring.py,sha256=GnfF2g1C9KzDks9ELBykfAd0zzVBUvjuTWoffa7aGbI,613
82
+ ins_pricing/pricing/rate_table.py,sha256=llDW95i7gR6cCtGFwcGqgpgFvOOPCURaJWmuQw1oce8,2473
83
+ ins_pricing/production/__init__.py,sha256=4PkwZFR3qmTXyY7g3xELqobC1KcFcozJaJ95hPPB9to,1231
84
+ ins_pricing/production/drift.py,sha256=q_oE_h2NbVETTBkh9QUu8Y68ERuFFcrfKpOb3zBcvsA,383
85
+ ins_pricing/production/inference.py,sha256=RaTQAI92XGuvb0cU224EEfQTzGs8ODshwCSFfkAyKog,27286
86
+ ins_pricing/production/monitoring.py,sha256=0quH2bvsDIHefVxwEE4lRIHC61t51fVEo1x6bdfhQdw,4144
87
+ ins_pricing/production/preprocess.py,sha256=cl20X0rVcKNCjVJswB8SdHffMgox6Qga4Ac29L6pW5g,9404
88
+ ins_pricing/production/scoring.py,sha256=yFmMmbYb7w_RC4uZOCMnAjLMRcjXQWIuT1nsfu-bwuc,1379
89
+ ins_pricing/reporting/README.md,sha256=kTVdB6pNewwh1HlCHrI2SzWTgprtQoQprLRQ2qLdgNA,486
90
+ ins_pricing/reporting/__init__.py,sha256=9MIGXjLrmW4lRunRz3dGhdeEGBkYJbrOO07C1ZPl6Ck,295
91
+ ins_pricing/reporting/report_builder.py,sha256=53ZFqGUx2isAoigT5IDwvXkek67zN7-6IgKeGpJhO7c,2241
92
+ ins_pricing/reporting/scheduler.py,sha256=9koG_1cmWvLqrS66uzMJuAlYI2VTkynV19ssB2TtcKU,1336
93
+ ins_pricing/tests/governance/__init__.py,sha256=5Nxg4_dIxY_J58_x2QOXrrRgw6L51Md0Wnt5Up-chqg,39
94
+ ins_pricing/tests/governance/test_audit.py,sha256=ubybXSTVILPN4VxQ2fMnG6oPNv4LjJJE3EsQ53NYdLU,1702
95
+ ins_pricing/tests/governance/test_registry.py,sha256=TvkNMLHViNuopjjho6oETwZ9d6MNaNM1xbL6URPDKSk,4602
96
+ ins_pricing/tests/governance/test_release.py,sha256=Cdo6prZ0xlioAP2AYHodzgASEIa6ZCLjbXW9Me2RGKk,2347
97
+ ins_pricing/tests/modelling/conftest.py,sha256=0KUXnkTgIGEIsf0J4uzIx5Kq4JkDyFo81Mv0qvIzW9k,180
98
+ ins_pricing/tests/modelling/test_cross_val_generic.py,sha256=iLZOFmdyrycB15lFWoQphkFlEjzZTozQXTLVOHLw2Qg,1721
99
+ ins_pricing/tests/modelling/test_distributed_utils.py,sha256=9cStpDw7jPdQwmm0Po-G2tB04uzSR1CoOUZMLuB61yI,466
100
+ ins_pricing/tests/modelling/test_explain.py,sha256=NZqKYuL-eSf9eC5ttjcMirfOc48ORMXZQm5PjmYk4jY,1445
101
+ ins_pricing/tests/modelling/test_geo_tokens_split.py,sha256=Ti57IynKB0aWOosr0g2RcZlDZyZC012XZ-hm6tWXBJg,1554
102
+ ins_pricing/tests/modelling/test_graph_cache.py,sha256=QEI5cLLtQ9_zwRR50KqUf8qxo9Jcp1WLxIGs4dSoMNk,821
103
+ ins_pricing/tests/modelling/test_plotting.py,sha256=4gJax72l40fQrjyJQLOgUmaT6xn6zXpujEaFNeHVwGw,1911
104
+ ins_pricing/tests/modelling/test_plotting_library.py,sha256=SB5RjKTaPydK848V0xpqEaJtEWhRv6ZfnHmnnzjaPh4,4079
105
+ ins_pricing/tests/modelling/test_preprocessor.py,sha256=FqbKltV803Pd-ZY1xBc4XF1T-INDuUliaVcMIDPmBxI,1438
106
+ ins_pricing/tests/pricing/__init__.py,sha256=SVfgUYBlCmc4wjYLMRX5xPFgQZxTS3aHBOA_Cx1aJg4,36
107
+ ins_pricing/tests/pricing/test_calibration.py,sha256=hLZuSWOH4t9WKcQ-2srvYp4P5ldr1Yh1dhl7s61vMp8,2420
108
+ ins_pricing/tests/pricing/test_exposure.py,sha256=CrpSncVce-PGt2XzjOX6qV0SA22vKPUv1u8RlKQjt_g,2054
109
+ ins_pricing/tests/pricing/test_factors.py,sha256=NTE7lz1RWChhoRt2K5003DoNRqG_Gu4X1Aauy2NexOg,5093
110
+ ins_pricing/tests/pricing/test_rate_table.py,sha256=ICHfAQsC9TaxXbQVKM5AvBaJXRTVY723Vaz1XOWNMW8,1250
111
+ ins_pricing/tests/production/__init__.py,sha256=WFWlvBVdjg-E-nKaiJ8VTKNELYufJusufpij1p1xwso,39
112
+ ins_pricing/tests/production/test_inference.py,sha256=l1wxpuukgdr4DLO_pSwyqxByIoVHQHmPR6LYIMQmeE0,2417
113
+ ins_pricing/tests/production/test_monitoring.py,sha256=jettbaVLH4a3efLWeiQ6FFukGEw7mmz6_AeYhYX0caQ,11409
114
+ ins_pricing/tests/production/test_preprocess.py,sha256=tsHYANwJjNlaSo8O4qiwqBvMOMtwmtZymRFm6UrODrE,11084
115
+ ins_pricing/tests/production/test_scoring.py,sha256=fKz2tJomodrRt333apCrjtyJCwg9RHRbWm0lvcU6xm0,9848
116
+ ins_pricing/utils/__init__.py,sha256=-TTuQohYWxqkrAUdRkPh5VFkGqQVQRUxv-Av4MBOvkc,3619
117
+ ins_pricing/utils/device.py,sha256=hPwaI1J4qMqADrENiPQBwx2SHq4tDQKm4eRLEb0qxSI,7804
118
+ ins_pricing/utils/features.py,sha256=_uPkX6wpzdC3XTeAYSI1qLYDVTN1Lcfh4OJ8OtBw5-8,1704
119
+ ins_pricing/utils/io.py,sha256=uu7PqXVbcvfSnN3ry6PsCKCaYy6kxL3GLXuJRciVDWA,2678
120
+ ins_pricing/utils/logging.py,sha256=_AKB4ErmvygwGLtu7Ai7ESemj6Hh8FTgh4cs8j_gVW4,2258
121
+ ins_pricing/utils/losses.py,sha256=u7JFgjnu9kuGD4tB8Lgvfihit5lOL0mbExN2h_JV5mg,4008
122
+ ins_pricing/utils/metrics.py,sha256=hh4PeDBYh3cXiOuTq6e6B084Lz1WbrzDvdJ85JRkx6A,13675
123
+ ins_pricing/utils/numerics.py,sha256=gLz3MVaTzz3xyH_qKaONRslBzUdJ7RCY7JoRGWbwa-U,2207
124
+ ins_pricing/utils/paths.py,sha256=ds_nt2JmP4Gq8nERJUdUFjh3rxGL2duOXNMifgutI6g,9153
125
+ ins_pricing/utils/profiling.py,sha256=kmbykHLcYywlZxAf_aVU8HXID3zOvUcBoO5Q58AijhA,11132
126
+ ins_pricing/utils/torch_compat.py,sha256=UrRsqx2qboDG8WE0OmxNOi08ojwE-dCxTQh0N2s3Rgw,2441
127
+ ins_pricing/utils/validation.py,sha256=4Tw9VUJPk0N-WO3YUqZP-xXRl1Xpubkm0vi3WzzZrv4,13348
128
+ ins_pricing-0.5.0.dist-info/METADATA,sha256=TP4HMzFA-XMgMx7mpEo_QkGJ5vBfGdsLu_Qoy-FoJ1s,6073
129
+ ins_pricing-0.5.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
130
+ ins_pricing-0.5.0.dist-info/top_level.txt,sha256=haZuNQpHKNBEPZx3NjLnHp8pV3I_J9QG8-HyJn00FA0,12
131
+ ins_pricing-0.5.0.dist-info/RECORD,,
@@ -1,146 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import torch
4
-
5
- try:
6
- from .bayesopt.config_preprocess import (
7
- BayesOptConfig,
8
- DatasetPreprocessor,
9
- OutputManager,
10
- VersionManager,
11
- )
12
- from .bayesopt.core import BayesOptModel
13
- from .bayesopt.models import (
14
- FeatureTokenizer,
15
- FTTransformerCore,
16
- FTTransformerSklearn,
17
- GraphNeuralNetSklearn,
18
- MaskedTabularDataset,
19
- ResBlock,
20
- ResNetSequential,
21
- ResNetSklearn,
22
- ScaledTransformerEncoderLayer,
23
- SimpleGraphLayer,
24
- SimpleGNN,
25
- TabularDataset,
26
- )
27
- from .bayesopt.trainers import (
28
- FTTrainer,
29
- GLMTrainer,
30
- GNNTrainer,
31
- ResNetTrainer,
32
- TrainerBase,
33
- XGBTrainer,
34
- _xgb_cuda_available,
35
- )
36
- from .bayesopt.utils import (
37
- EPS,
38
- DistributedUtils,
39
- IOUtils,
40
- PlotUtils,
41
- TorchTrainerMixin,
42
- TrainingUtils,
43
- compute_batch_size,
44
- csv_to_dict,
45
- ensure_parent_dir,
46
- free_cuda,
47
- infer_factor_and_cate_list,
48
- plot_dlift_list,
49
- plot_lift_list,
50
- set_global_seed,
51
- split_data,
52
- tweedie_loss,
53
- )
54
- except ImportError: # pragma: no cover
55
- from bayesopt.config_preprocess import (
56
- BayesOptConfig,
57
- DatasetPreprocessor,
58
- OutputManager,
59
- VersionManager,
60
- )
61
- from bayesopt.core import BayesOptModel
62
- from bayesopt.models import (
63
- FeatureTokenizer,
64
- FTTransformerCore,
65
- FTTransformerSklearn,
66
- GraphNeuralNetSklearn,
67
- MaskedTabularDataset,
68
- ResBlock,
69
- ResNetSequential,
70
- ResNetSklearn,
71
- ScaledTransformerEncoderLayer,
72
- SimpleGraphLayer,
73
- SimpleGNN,
74
- TabularDataset,
75
- )
76
- from bayesopt.trainers import (
77
- FTTrainer,
78
- GLMTrainer,
79
- GNNTrainer,
80
- ResNetTrainer,
81
- TrainerBase,
82
- XGBTrainer,
83
- _xgb_cuda_available,
84
- )
85
- from bayesopt.utils import (
86
- EPS,
87
- DistributedUtils,
88
- IOUtils,
89
- PlotUtils,
90
- TorchTrainerMixin,
91
- TrainingUtils,
92
- compute_batch_size,
93
- csv_to_dict,
94
- ensure_parent_dir,
95
- free_cuda,
96
- infer_factor_and_cate_list,
97
- plot_dlift_list,
98
- plot_lift_list,
99
- set_global_seed,
100
- split_data,
101
- tweedie_loss,
102
- )
103
-
104
- __all__ = [
105
- "BayesOptConfig",
106
- "DatasetPreprocessor",
107
- "OutputManager",
108
- "VersionManager",
109
- "BayesOptModel",
110
- "FeatureTokenizer",
111
- "FTTransformerCore",
112
- "FTTransformerSklearn",
113
- "GraphNeuralNetSklearn",
114
- "MaskedTabularDataset",
115
- "ResBlock",
116
- "ResNetSequential",
117
- "ResNetSklearn",
118
- "ScaledTransformerEncoderLayer",
119
- "SimpleGraphLayer",
120
- "SimpleGNN",
121
- "TabularDataset",
122
- "FTTrainer",
123
- "GLMTrainer",
124
- "GNNTrainer",
125
- "ResNetTrainer",
126
- "TrainerBase",
127
- "XGBTrainer",
128
- "_xgb_cuda_available",
129
- "EPS",
130
- "DistributedUtils",
131
- "IOUtils",
132
- "PlotUtils",
133
- "TorchTrainerMixin",
134
- "TrainingUtils",
135
- "compute_batch_size",
136
- "csv_to_dict",
137
- "ensure_parent_dir",
138
- "free_cuda",
139
- "infer_factor_and_cate_list",
140
- "plot_dlift_list",
141
- "plot_lift_list",
142
- "set_global_seed",
143
- "split_data",
144
- "tweedie_loss",
145
- "torch",
146
- ]
@@ -1 +0,0 @@
1
- """Core modelling modules (bayesopt + evaluation)."""
@@ -1,19 +0,0 @@
1
- """Trainer implementations split by model type."""
2
- from __future__ import annotations
3
-
4
- from .trainer_base import TrainerBase
5
- from .trainer_ft import FTTrainer
6
- from .trainer_glm import GLMTrainer
7
- from .trainer_gnn import GNNTrainer
8
- from .trainer_resn import ResNetTrainer
9
- from .trainer_xgb import XGBTrainer, _xgb_cuda_available
10
-
11
- __all__ = [
12
- "TrainerBase",
13
- "FTTrainer",
14
- "GLMTrainer",
15
- "GNNTrainer",
16
- "ResNetTrainer",
17
- "XGBTrainer",
18
- "_xgb_cuda_available",
19
- ]