ins-pricing 0.4.5__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (84) hide show
  1. ins_pricing/README.md +48 -22
  2. ins_pricing/__init__.py +142 -90
  3. ins_pricing/cli/BayesOpt_entry.py +52 -50
  4. ins_pricing/cli/BayesOpt_incremental.py +39 -105
  5. ins_pricing/cli/Explain_Run.py +31 -23
  6. ins_pricing/cli/Explain_entry.py +532 -579
  7. ins_pricing/cli/Pricing_Run.py +31 -23
  8. ins_pricing/cli/bayesopt_entry_runner.py +11 -9
  9. ins_pricing/cli/utils/cli_common.py +256 -256
  10. ins_pricing/cli/utils/cli_config.py +375 -375
  11. ins_pricing/cli/utils/import_resolver.py +382 -365
  12. ins_pricing/cli/utils/notebook_utils.py +340 -340
  13. ins_pricing/cli/watchdog_run.py +209 -201
  14. ins_pricing/frontend/__init__.py +10 -10
  15. ins_pricing/frontend/example_workflows.py +1 -1
  16. ins_pricing/governance/__init__.py +20 -20
  17. ins_pricing/governance/release.py +159 -159
  18. ins_pricing/modelling/__init__.py +147 -92
  19. ins_pricing/modelling/{core/bayesopt → bayesopt}/README.md +2 -2
  20. ins_pricing/modelling/{core/bayesopt → bayesopt}/__init__.py +64 -102
  21. ins_pricing/modelling/{core/bayesopt → bayesopt}/config_preprocess.py +562 -562
  22. ins_pricing/modelling/{core/bayesopt → bayesopt}/core.py +965 -964
  23. ins_pricing/modelling/{core/bayesopt → bayesopt}/model_explain_mixin.py +296 -296
  24. ins_pricing/modelling/{core/bayesopt → bayesopt}/model_plotting_mixin.py +482 -548
  25. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/__init__.py +27 -27
  26. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_trainer.py +915 -913
  27. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_gnn.py +788 -785
  28. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_resn.py +448 -446
  29. ins_pricing/modelling/bayesopt/trainers/__init__.py +19 -0
  30. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_base.py +1308 -1308
  31. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_ft.py +3 -3
  32. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_glm.py +197 -198
  33. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_gnn.py +344 -344
  34. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_resn.py +283 -283
  35. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_xgb.py +346 -347
  36. ins_pricing/modelling/bayesopt/utils/__init__.py +67 -0
  37. ins_pricing/modelling/bayesopt/utils/constants.py +21 -0
  38. ins_pricing/modelling/bayesopt/utils/io_utils.py +7 -0
  39. ins_pricing/modelling/bayesopt/utils/losses.py +27 -0
  40. ins_pricing/modelling/bayesopt/utils/metrics_and_devices.py +17 -0
  41. ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/torch_trainer_mixin.py +623 -623
  42. ins_pricing/modelling/{core/evaluation.py → evaluation.py} +113 -104
  43. ins_pricing/modelling/explain/__init__.py +55 -55
  44. ins_pricing/modelling/explain/metrics.py +27 -174
  45. ins_pricing/modelling/explain/permutation.py +237 -237
  46. ins_pricing/modelling/plotting/__init__.py +40 -36
  47. ins_pricing/modelling/plotting/compat.py +228 -0
  48. ins_pricing/modelling/plotting/curves.py +572 -572
  49. ins_pricing/modelling/plotting/diagnostics.py +163 -163
  50. ins_pricing/modelling/plotting/geo.py +362 -362
  51. ins_pricing/modelling/plotting/importance.py +121 -121
  52. ins_pricing/pricing/__init__.py +27 -27
  53. ins_pricing/production/__init__.py +35 -25
  54. ins_pricing/production/{predict.py → inference.py} +140 -57
  55. ins_pricing/production/monitoring.py +8 -21
  56. ins_pricing/reporting/__init__.py +11 -11
  57. ins_pricing/setup.py +1 -1
  58. ins_pricing/tests/production/test_inference.py +90 -0
  59. ins_pricing/utils/__init__.py +116 -83
  60. ins_pricing/utils/device.py +255 -255
  61. ins_pricing/utils/features.py +53 -0
  62. ins_pricing/utils/io.py +72 -0
  63. ins_pricing/{modelling/core/bayesopt/utils → utils}/losses.py +125 -129
  64. ins_pricing/utils/metrics.py +158 -24
  65. ins_pricing/utils/numerics.py +76 -0
  66. ins_pricing/utils/paths.py +9 -1
  67. {ins_pricing-0.4.5.dist-info → ins_pricing-0.5.0.dist-info}/METADATA +182 -182
  68. ins_pricing-0.5.0.dist-info/RECORD +131 -0
  69. ins_pricing/modelling/core/BayesOpt.py +0 -146
  70. ins_pricing/modelling/core/__init__.py +0 -1
  71. ins_pricing/modelling/core/bayesopt/trainers/__init__.py +0 -19
  72. ins_pricing/modelling/core/bayesopt/utils/__init__.py +0 -86
  73. ins_pricing/modelling/core/bayesopt/utils/constants.py +0 -183
  74. ins_pricing/modelling/core/bayesopt/utils/io_utils.py +0 -126
  75. ins_pricing/modelling/core/bayesopt/utils/metrics_and_devices.py +0 -555
  76. ins_pricing/modelling/core/bayesopt/utils.py +0 -105
  77. ins_pricing/modelling/core/bayesopt/utils_backup.py +0 -1503
  78. ins_pricing/tests/production/test_predict.py +0 -233
  79. ins_pricing-0.4.5.dist-info/RECORD +0 -130
  80. /ins_pricing/modelling/{core/bayesopt → bayesopt}/config_components.py +0 -0
  81. /ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_components.py +0 -0
  82. /ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/distributed_utils.py +0 -0
  83. {ins_pricing-0.4.5.dist-info → ins_pricing-0.5.0.dist-info}/WHEEL +0 -0
  84. {ins_pricing-0.4.5.dist-info → ins_pricing-0.5.0.dist-info}/top_level.txt +0 -0
@@ -1,362 +1,362 @@
1
- from __future__ import annotations
2
-
3
- from typing import Optional, Sequence, Tuple
4
-
5
- import numpy as np
6
- import pandas as pd
7
- import matplotlib.tri as mtri
8
-
9
- from .common import EPS, PlotStyle, finalize_figure, plt
10
-
11
- try: # optional map basemap support
12
- import contextily as cx
13
- except Exception: # pragma: no cover - optional dependency
14
- cx = None
15
-
16
-
17
- _MERCATOR_MAX_LAT = 85.05112878
18
- _MERCATOR_FACTOR = 20037508.34
19
-
20
-
21
- def _require_contextily(func_name: str) -> None:
22
- if cx is None:
23
- raise RuntimeError(
24
- f"{func_name} requires contextily. Install it via 'pip install contextily'."
25
- )
26
-
27
-
28
- def _lonlat_to_mercator(lon: np.ndarray, lat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
29
- lon = np.asarray(lon, dtype=float)
30
- lat = np.asarray(lat, dtype=float)
31
- lat = np.clip(lat, -_MERCATOR_MAX_LAT, _MERCATOR_MAX_LAT)
32
- x = lon * _MERCATOR_FACTOR / 180.0
33
- y = np.log(np.tan((90.0 + lat) * np.pi / 360.0)) * _MERCATOR_FACTOR / np.pi
34
- return x, y
35
-
36
-
37
- def _apply_bounds(ax: plt.Axes, x: np.ndarray, y: np.ndarray, padding: float) -> None:
38
- x_min, x_max = float(np.min(x)), float(np.max(x))
39
- y_min, y_max = float(np.min(y)), float(np.max(y))
40
- pad_x = (x_max - x_min) * padding
41
- pad_y = (y_max - y_min) * padding
42
- if pad_x == 0:
43
- pad_x = 1.0
44
- if pad_y == 0:
45
- pad_y = 1.0
46
- ax.set_xlim(x_min - pad_x, x_max + pad_x)
47
- ax.set_ylim(y_min - pad_y, y_max + pad_y)
48
-
49
-
50
- def _resolve_basemap(source):
51
- if cx is None or source is None:
52
- return source
53
- if isinstance(source, str):
54
- provider = cx.providers
55
- for part in source.split("."):
56
- if isinstance(provider, dict):
57
- provider = provider[part]
58
- else:
59
- provider = getattr(provider, part)
60
- return provider
61
- return source
62
-
63
-
64
- def _sanitize_geo(
65
- df: pd.DataFrame,
66
- x_col: str,
67
- y_col: str,
68
- value_col: str,
69
- weight_col: Optional[str] = None,
70
- ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Optional[np.ndarray]]:
71
- x = pd.to_numeric(df[x_col], errors="coerce").to_numpy(dtype=float)
72
- y = pd.to_numeric(df[y_col], errors="coerce").to_numpy(dtype=float)
73
- z = pd.to_numeric(df[value_col], errors="coerce").to_numpy(dtype=float)
74
- w = None
75
- if weight_col:
76
- w = pd.to_numeric(df[weight_col], errors="coerce").to_numpy(dtype=float)
77
-
78
- if w is None:
79
- mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(z)
80
- else:
81
- mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(z) & np.isfinite(w)
82
- w = w[mask]
83
- return x[mask], y[mask], z[mask], w
84
-
85
-
86
- def _downsample_points(
87
- x: np.ndarray,
88
- y: np.ndarray,
89
- z: np.ndarray,
90
- w: Optional[np.ndarray],
91
- max_points: Optional[int],
92
- ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Optional[np.ndarray]]:
93
- if max_points is None:
94
- return x, y, z, w
95
- max_points = int(max_points)
96
- if max_points <= 0 or len(x) <= max_points:
97
- return x, y, z, w
98
- rng = np.random.default_rng(13)
99
- idx = rng.choice(len(x), size=max_points, replace=False)
100
- if w is None:
101
- return x[idx], y[idx], z[idx], None
102
- return x[idx], y[idx], z[idx], w[idx]
103
-
104
-
105
- def plot_geo_heatmap(
106
- df: pd.DataFrame,
107
- *,
108
- x_col: str,
109
- y_col: str,
110
- value_col: str,
111
- weight_col: Optional[str] = None,
112
- bins: int | Tuple[int, int] = 50,
113
- agg: str = "mean",
114
- cmap: str = "YlOrRd",
115
- title: str = "Geo Heatmap",
116
- ax: Optional[plt.Axes] = None,
117
- show: bool = False,
118
- save_path: Optional[str] = None,
119
- style: Optional[PlotStyle] = None,
120
- ) -> plt.Figure:
121
- style = style or PlotStyle()
122
- if agg not in {"mean", "sum"}:
123
- raise ValueError("agg must be 'mean' or 'sum'.")
124
- x, y, z, w = _sanitize_geo(df, x_col, y_col, value_col, weight_col)
125
-
126
- if isinstance(bins, int):
127
- bins = (bins, bins)
128
-
129
- if w is None:
130
- sum_z, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=z)
131
- if agg == "sum":
132
- grid = sum_z
133
- else:
134
- count, _, _ = np.histogram2d(x, y, bins=bins)
135
- grid = sum_z / np.maximum(count, 1.0)
136
- else:
137
- sum_w, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=w)
138
- sum_zw, _, _ = np.histogram2d(x, y, bins=bins, weights=z * w)
139
- grid = sum_zw / np.maximum(sum_w, EPS)
140
-
141
- created_fig = ax is None
142
- if created_fig:
143
- fig, ax = plt.subplots(figsize=style.figsize)
144
- else:
145
- fig = ax.figure
146
-
147
- im = ax.imshow(
148
- grid.T,
149
- origin="lower",
150
- extent=[x_edges[0], x_edges[-1], y_edges[0], y_edges[-1]],
151
- aspect="auto",
152
- cmap=cmap,
153
- )
154
- cbar = fig.colorbar(im, ax=ax)
155
- cbar.set_label(value_col, fontsize=style.label_size)
156
- cbar.ax.tick_params(labelsize=style.tick_size)
157
-
158
- ax.set_xlabel(x_col, fontsize=style.label_size)
159
- ax.set_ylabel(y_col, fontsize=style.label_size)
160
- ax.set_title(title, fontsize=style.title_size)
161
- ax.tick_params(axis="both", labelsize=style.tick_size)
162
-
163
- if created_fig:
164
- finalize_figure(fig, save_path=save_path, show=show, style=style)
165
-
166
- return fig
167
-
168
-
169
- def plot_geo_contour(
170
- df: pd.DataFrame,
171
- *,
172
- x_col: str,
173
- y_col: str,
174
- value_col: str,
175
- weight_col: Optional[str] = None,
176
- max_points: Optional[int] = None,
177
- levels: int | Sequence[float] = 10,
178
- cmap: str = "viridis",
179
- title: str = "Geo Contour",
180
- ax: Optional[plt.Axes] = None,
181
- show_points: bool = False,
182
- show: bool = False,
183
- save_path: Optional[str] = None,
184
- style: Optional[PlotStyle] = None,
185
- ) -> plt.Figure:
186
- style = style or PlotStyle()
187
- x, y, z, w = _sanitize_geo(df, x_col, y_col, value_col, weight_col)
188
- x, y, z, w = _downsample_points(x, y, z, w, max_points)
189
-
190
- if w is not None:
191
- z = z * w
192
-
193
- triang = mtri.Triangulation(x, y)
194
-
195
- created_fig = ax is None
196
- if created_fig:
197
- fig, ax = plt.subplots(figsize=style.figsize)
198
- else:
199
- fig = ax.figure
200
-
201
- contour = ax.tricontourf(triang, z, levels=levels, cmap=cmap)
202
- if show_points:
203
- ax.scatter(x, y, s=6, c="k", alpha=0.2)
204
- cbar = fig.colorbar(contour, ax=ax)
205
- cbar.set_label(value_col, fontsize=style.label_size)
206
- cbar.ax.tick_params(labelsize=style.tick_size)
207
-
208
- ax.set_xlabel(x_col, fontsize=style.label_size)
209
- ax.set_ylabel(y_col, fontsize=style.label_size)
210
- ax.set_title(title, fontsize=style.title_size)
211
- ax.tick_params(axis="both", labelsize=style.tick_size)
212
-
213
- if created_fig:
214
- finalize_figure(fig, save_path=save_path, show=show, style=style)
215
-
216
- return fig
217
-
218
-
219
- def plot_geo_heatmap_on_map(
220
- df: pd.DataFrame,
221
- *,
222
- lon_col: str,
223
- lat_col: str,
224
- value_col: str,
225
- weight_col: Optional[str] = None,
226
- bins: int | Tuple[int, int] = 100,
227
- agg: str = "mean",
228
- cmap: str = "YlOrRd",
229
- alpha: float = 0.6,
230
- basemap: Optional[object] = "CartoDB.Positron",
231
- zoom: Optional[int] = None,
232
- padding: float = 0.05,
233
- title: str = "Geo Heatmap (Map)",
234
- ax: Optional[plt.Axes] = None,
235
- show_points: bool = False,
236
- show: bool = False,
237
- save_path: Optional[str] = None,
238
- style: Optional[PlotStyle] = None,
239
- ) -> plt.Figure:
240
- _require_contextily("plot_geo_heatmap_on_map")
241
- style = style or PlotStyle()
242
- if agg not in {"mean", "sum"}:
243
- raise ValueError("agg must be 'mean' or 'sum'.")
244
- lon, lat, z, w = _sanitize_geo(df, lon_col, lat_col, value_col, weight_col)
245
- x, y = _lonlat_to_mercator(lon, lat)
246
-
247
- if isinstance(bins, int):
248
- bins = (bins, bins)
249
-
250
- if w is None:
251
- sum_z, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=z)
252
- if agg == "sum":
253
- grid = sum_z
254
- else:
255
- count, _, _ = np.histogram2d(x, y, bins=bins)
256
- grid = sum_z / np.maximum(count, 1.0)
257
- else:
258
- sum_w, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=w)
259
- sum_zw, _, _ = np.histogram2d(x, y, bins=bins, weights=z * w)
260
- grid = sum_zw / np.maximum(sum_w, EPS)
261
-
262
- created_fig = ax is None
263
- if created_fig:
264
- fig, ax = plt.subplots(figsize=style.figsize)
265
- else:
266
- fig = ax.figure
267
-
268
- _apply_bounds(ax, x, y, padding)
269
- ax.set_aspect("equal", adjustable="box")
270
-
271
- source = _resolve_basemap(basemap)
272
- if source is not None:
273
- if zoom is None:
274
- cx.add_basemap(ax, source=source, crs="EPSG:3857")
275
- else:
276
- cx.add_basemap(ax, source=source, crs="EPSG:3857", zoom=zoom)
277
-
278
- im = ax.imshow(
279
- grid.T,
280
- origin="lower",
281
- extent=[x_edges[0], x_edges[-1], y_edges[0], y_edges[-1]],
282
- aspect="auto",
283
- cmap=cmap,
284
- alpha=alpha,
285
- )
286
- if show_points:
287
- ax.scatter(x, y, s=6, c="k", alpha=0.25)
288
-
289
- cbar = fig.colorbar(im, ax=ax)
290
- cbar.set_label(value_col, fontsize=style.label_size)
291
- cbar.ax.tick_params(labelsize=style.tick_size)
292
-
293
- ax.set_title(title, fontsize=style.title_size)
294
- ax.tick_params(axis="both", labelsize=style.tick_size)
295
-
296
- if created_fig:
297
- finalize_figure(fig, save_path=save_path, show=show, style=style)
298
-
299
- return fig
300
-
301
-
302
- def plot_geo_contour_on_map(
303
- df: pd.DataFrame,
304
- *,
305
- lon_col: str,
306
- lat_col: str,
307
- value_col: str,
308
- weight_col: Optional[str] = None,
309
- max_points: Optional[int] = None,
310
- levels: int | Sequence[float] = 10,
311
- cmap: str = "viridis",
312
- alpha: float = 0.6,
313
- basemap: Optional[object] = "CartoDB.Positron",
314
- zoom: Optional[int] = None,
315
- padding: float = 0.05,
316
- title: str = "Geo Contour (Map)",
317
- ax: Optional[plt.Axes] = None,
318
- show_points: bool = False,
319
- show: bool = False,
320
- save_path: Optional[str] = None,
321
- style: Optional[PlotStyle] = None,
322
- ) -> plt.Figure:
323
- _require_contextily("plot_geo_contour_on_map")
324
- style = style or PlotStyle()
325
- lon, lat, z, w = _sanitize_geo(df, lon_col, lat_col, value_col, weight_col)
326
- lon, lat, z, w = _downsample_points(lon, lat, z, w, max_points)
327
- x, y = _lonlat_to_mercator(lon, lat)
328
- if w is not None:
329
- z = z * w
330
-
331
- created_fig = ax is None
332
- if created_fig:
333
- fig, ax = plt.subplots(figsize=style.figsize)
334
- else:
335
- fig = ax.figure
336
-
337
- _apply_bounds(ax, x, y, padding)
338
- ax.set_aspect("equal", adjustable="box")
339
-
340
- source = _resolve_basemap(basemap)
341
- if source is not None:
342
- if zoom is None:
343
- cx.add_basemap(ax, source=source, crs="EPSG:3857")
344
- else:
345
- cx.add_basemap(ax, source=source, crs="EPSG:3857", zoom=zoom)
346
-
347
- triang = mtri.Triangulation(x, y)
348
- contour = ax.tricontourf(triang, z, levels=levels, cmap=cmap, alpha=alpha)
349
- if show_points:
350
- ax.scatter(x, y, s=6, c="k", alpha=0.25)
351
-
352
- cbar = fig.colorbar(contour, ax=ax)
353
- cbar.set_label(value_col, fontsize=style.label_size)
354
- cbar.ax.tick_params(labelsize=style.tick_size)
355
-
356
- ax.set_title(title, fontsize=style.title_size)
357
- ax.tick_params(axis="both", labelsize=style.tick_size)
358
-
359
- if created_fig:
360
- finalize_figure(fig, save_path=save_path, show=show, style=style)
361
-
362
- return fig
1
+ from __future__ import annotations
2
+
3
+ from typing import Optional, Sequence, Tuple
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ import matplotlib.tri as mtri
8
+
9
+ from ins_pricing.modelling.plotting.common import EPS, PlotStyle, finalize_figure, plt
10
+
11
+ try: # optional map basemap support
12
+ import contextily as cx
13
+ except Exception: # pragma: no cover - optional dependency
14
+ cx = None
15
+
16
+
17
+ _MERCATOR_MAX_LAT = 85.05112878
18
+ _MERCATOR_FACTOR = 20037508.34
19
+
20
+
21
+ def _require_contextily(func_name: str) -> None:
22
+ if cx is None:
23
+ raise RuntimeError(
24
+ f"{func_name} requires contextily. Install it via 'pip install contextily'."
25
+ )
26
+
27
+
28
+ def _lonlat_to_mercator(lon: np.ndarray, lat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
29
+ lon = np.asarray(lon, dtype=float)
30
+ lat = np.asarray(lat, dtype=float)
31
+ lat = np.clip(lat, -_MERCATOR_MAX_LAT, _MERCATOR_MAX_LAT)
32
+ x = lon * _MERCATOR_FACTOR / 180.0
33
+ y = np.log(np.tan((90.0 + lat) * np.pi / 360.0)) * _MERCATOR_FACTOR / np.pi
34
+ return x, y
35
+
36
+
37
+ def _apply_bounds(ax: plt.Axes, x: np.ndarray, y: np.ndarray, padding: float) -> None:
38
+ x_min, x_max = float(np.min(x)), float(np.max(x))
39
+ y_min, y_max = float(np.min(y)), float(np.max(y))
40
+ pad_x = (x_max - x_min) * padding
41
+ pad_y = (y_max - y_min) * padding
42
+ if pad_x == 0:
43
+ pad_x = 1.0
44
+ if pad_y == 0:
45
+ pad_y = 1.0
46
+ ax.set_xlim(x_min - pad_x, x_max + pad_x)
47
+ ax.set_ylim(y_min - pad_y, y_max + pad_y)
48
+
49
+
50
+ def _resolve_basemap(source):
51
+ if cx is None or source is None:
52
+ return source
53
+ if isinstance(source, str):
54
+ provider = cx.providers
55
+ for part in source.split("."):
56
+ if isinstance(provider, dict):
57
+ provider = provider[part]
58
+ else:
59
+ provider = getattr(provider, part)
60
+ return provider
61
+ return source
62
+
63
+
64
+ def _sanitize_geo(
65
+ df: pd.DataFrame,
66
+ x_col: str,
67
+ y_col: str,
68
+ value_col: str,
69
+ weight_col: Optional[str] = None,
70
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Optional[np.ndarray]]:
71
+ x = pd.to_numeric(df[x_col], errors="coerce").to_numpy(dtype=float)
72
+ y = pd.to_numeric(df[y_col], errors="coerce").to_numpy(dtype=float)
73
+ z = pd.to_numeric(df[value_col], errors="coerce").to_numpy(dtype=float)
74
+ w = None
75
+ if weight_col:
76
+ w = pd.to_numeric(df[weight_col], errors="coerce").to_numpy(dtype=float)
77
+
78
+ if w is None:
79
+ mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(z)
80
+ else:
81
+ mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(z) & np.isfinite(w)
82
+ w = w[mask]
83
+ return x[mask], y[mask], z[mask], w
84
+
85
+
86
+ def _downsample_points(
87
+ x: np.ndarray,
88
+ y: np.ndarray,
89
+ z: np.ndarray,
90
+ w: Optional[np.ndarray],
91
+ max_points: Optional[int],
92
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Optional[np.ndarray]]:
93
+ if max_points is None:
94
+ return x, y, z, w
95
+ max_points = int(max_points)
96
+ if max_points <= 0 or len(x) <= max_points:
97
+ return x, y, z, w
98
+ rng = np.random.default_rng(13)
99
+ idx = rng.choice(len(x), size=max_points, replace=False)
100
+ if w is None:
101
+ return x[idx], y[idx], z[idx], None
102
+ return x[idx], y[idx], z[idx], w[idx]
103
+
104
+
105
+ def plot_geo_heatmap(
106
+ df: pd.DataFrame,
107
+ *,
108
+ x_col: str,
109
+ y_col: str,
110
+ value_col: str,
111
+ weight_col: Optional[str] = None,
112
+ bins: int | Tuple[int, int] = 50,
113
+ agg: str = "mean",
114
+ cmap: str = "YlOrRd",
115
+ title: str = "Geo Heatmap",
116
+ ax: Optional[plt.Axes] = None,
117
+ show: bool = False,
118
+ save_path: Optional[str] = None,
119
+ style: Optional[PlotStyle] = None,
120
+ ) -> plt.Figure:
121
+ style = style or PlotStyle()
122
+ if agg not in {"mean", "sum"}:
123
+ raise ValueError("agg must be 'mean' or 'sum'.")
124
+ x, y, z, w = _sanitize_geo(df, x_col, y_col, value_col, weight_col)
125
+
126
+ if isinstance(bins, int):
127
+ bins = (bins, bins)
128
+
129
+ if w is None:
130
+ sum_z, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=z)
131
+ if agg == "sum":
132
+ grid = sum_z
133
+ else:
134
+ count, _, _ = np.histogram2d(x, y, bins=bins)
135
+ grid = sum_z / np.maximum(count, 1.0)
136
+ else:
137
+ sum_w, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=w)
138
+ sum_zw, _, _ = np.histogram2d(x, y, bins=bins, weights=z * w)
139
+ grid = sum_zw / np.maximum(sum_w, EPS)
140
+
141
+ created_fig = ax is None
142
+ if created_fig:
143
+ fig, ax = plt.subplots(figsize=style.figsize)
144
+ else:
145
+ fig = ax.figure
146
+
147
+ im = ax.imshow(
148
+ grid.T,
149
+ origin="lower",
150
+ extent=[x_edges[0], x_edges[-1], y_edges[0], y_edges[-1]],
151
+ aspect="auto",
152
+ cmap=cmap,
153
+ )
154
+ cbar = fig.colorbar(im, ax=ax)
155
+ cbar.set_label(value_col, fontsize=style.label_size)
156
+ cbar.ax.tick_params(labelsize=style.tick_size)
157
+
158
+ ax.set_xlabel(x_col, fontsize=style.label_size)
159
+ ax.set_ylabel(y_col, fontsize=style.label_size)
160
+ ax.set_title(title, fontsize=style.title_size)
161
+ ax.tick_params(axis="both", labelsize=style.tick_size)
162
+
163
+ if created_fig:
164
+ finalize_figure(fig, save_path=save_path, show=show, style=style)
165
+
166
+ return fig
167
+
168
+
169
+ def plot_geo_contour(
170
+ df: pd.DataFrame,
171
+ *,
172
+ x_col: str,
173
+ y_col: str,
174
+ value_col: str,
175
+ weight_col: Optional[str] = None,
176
+ max_points: Optional[int] = None,
177
+ levels: int | Sequence[float] = 10,
178
+ cmap: str = "viridis",
179
+ title: str = "Geo Contour",
180
+ ax: Optional[plt.Axes] = None,
181
+ show_points: bool = False,
182
+ show: bool = False,
183
+ save_path: Optional[str] = None,
184
+ style: Optional[PlotStyle] = None,
185
+ ) -> plt.Figure:
186
+ style = style or PlotStyle()
187
+ x, y, z, w = _sanitize_geo(df, x_col, y_col, value_col, weight_col)
188
+ x, y, z, w = _downsample_points(x, y, z, w, max_points)
189
+
190
+ if w is not None:
191
+ z = z * w
192
+
193
+ triang = mtri.Triangulation(x, y)
194
+
195
+ created_fig = ax is None
196
+ if created_fig:
197
+ fig, ax = plt.subplots(figsize=style.figsize)
198
+ else:
199
+ fig = ax.figure
200
+
201
+ contour = ax.tricontourf(triang, z, levels=levels, cmap=cmap)
202
+ if show_points:
203
+ ax.scatter(x, y, s=6, c="k", alpha=0.2)
204
+ cbar = fig.colorbar(contour, ax=ax)
205
+ cbar.set_label(value_col, fontsize=style.label_size)
206
+ cbar.ax.tick_params(labelsize=style.tick_size)
207
+
208
+ ax.set_xlabel(x_col, fontsize=style.label_size)
209
+ ax.set_ylabel(y_col, fontsize=style.label_size)
210
+ ax.set_title(title, fontsize=style.title_size)
211
+ ax.tick_params(axis="both", labelsize=style.tick_size)
212
+
213
+ if created_fig:
214
+ finalize_figure(fig, save_path=save_path, show=show, style=style)
215
+
216
+ return fig
217
+
218
+
219
+ def plot_geo_heatmap_on_map(
220
+ df: pd.DataFrame,
221
+ *,
222
+ lon_col: str,
223
+ lat_col: str,
224
+ value_col: str,
225
+ weight_col: Optional[str] = None,
226
+ bins: int | Tuple[int, int] = 100,
227
+ agg: str = "mean",
228
+ cmap: str = "YlOrRd",
229
+ alpha: float = 0.6,
230
+ basemap: Optional[object] = "CartoDB.Positron",
231
+ zoom: Optional[int] = None,
232
+ padding: float = 0.05,
233
+ title: str = "Geo Heatmap (Map)",
234
+ ax: Optional[plt.Axes] = None,
235
+ show_points: bool = False,
236
+ show: bool = False,
237
+ save_path: Optional[str] = None,
238
+ style: Optional[PlotStyle] = None,
239
+ ) -> plt.Figure:
240
+ _require_contextily("plot_geo_heatmap_on_map")
241
+ style = style or PlotStyle()
242
+ if agg not in {"mean", "sum"}:
243
+ raise ValueError("agg must be 'mean' or 'sum'.")
244
+ lon, lat, z, w = _sanitize_geo(df, lon_col, lat_col, value_col, weight_col)
245
+ x, y = _lonlat_to_mercator(lon, lat)
246
+
247
+ if isinstance(bins, int):
248
+ bins = (bins, bins)
249
+
250
+ if w is None:
251
+ sum_z, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=z)
252
+ if agg == "sum":
253
+ grid = sum_z
254
+ else:
255
+ count, _, _ = np.histogram2d(x, y, bins=bins)
256
+ grid = sum_z / np.maximum(count, 1.0)
257
+ else:
258
+ sum_w, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=w)
259
+ sum_zw, _, _ = np.histogram2d(x, y, bins=bins, weights=z * w)
260
+ grid = sum_zw / np.maximum(sum_w, EPS)
261
+
262
+ created_fig = ax is None
263
+ if created_fig:
264
+ fig, ax = plt.subplots(figsize=style.figsize)
265
+ else:
266
+ fig = ax.figure
267
+
268
+ _apply_bounds(ax, x, y, padding)
269
+ ax.set_aspect("equal", adjustable="box")
270
+
271
+ source = _resolve_basemap(basemap)
272
+ if source is not None:
273
+ if zoom is None:
274
+ cx.add_basemap(ax, source=source, crs="EPSG:3857")
275
+ else:
276
+ cx.add_basemap(ax, source=source, crs="EPSG:3857", zoom=zoom)
277
+
278
+ im = ax.imshow(
279
+ grid.T,
280
+ origin="lower",
281
+ extent=[x_edges[0], x_edges[-1], y_edges[0], y_edges[-1]],
282
+ aspect="auto",
283
+ cmap=cmap,
284
+ alpha=alpha,
285
+ )
286
+ if show_points:
287
+ ax.scatter(x, y, s=6, c="k", alpha=0.25)
288
+
289
+ cbar = fig.colorbar(im, ax=ax)
290
+ cbar.set_label(value_col, fontsize=style.label_size)
291
+ cbar.ax.tick_params(labelsize=style.tick_size)
292
+
293
+ ax.set_title(title, fontsize=style.title_size)
294
+ ax.tick_params(axis="both", labelsize=style.tick_size)
295
+
296
+ if created_fig:
297
+ finalize_figure(fig, save_path=save_path, show=show, style=style)
298
+
299
+ return fig
300
+
301
+
302
+ def plot_geo_contour_on_map(
303
+ df: pd.DataFrame,
304
+ *,
305
+ lon_col: str,
306
+ lat_col: str,
307
+ value_col: str,
308
+ weight_col: Optional[str] = None,
309
+ max_points: Optional[int] = None,
310
+ levels: int | Sequence[float] = 10,
311
+ cmap: str = "viridis",
312
+ alpha: float = 0.6,
313
+ basemap: Optional[object] = "CartoDB.Positron",
314
+ zoom: Optional[int] = None,
315
+ padding: float = 0.05,
316
+ title: str = "Geo Contour (Map)",
317
+ ax: Optional[plt.Axes] = None,
318
+ show_points: bool = False,
319
+ show: bool = False,
320
+ save_path: Optional[str] = None,
321
+ style: Optional[PlotStyle] = None,
322
+ ) -> plt.Figure:
323
+ _require_contextily("plot_geo_contour_on_map")
324
+ style = style or PlotStyle()
325
+ lon, lat, z, w = _sanitize_geo(df, lon_col, lat_col, value_col, weight_col)
326
+ lon, lat, z, w = _downsample_points(lon, lat, z, w, max_points)
327
+ x, y = _lonlat_to_mercator(lon, lat)
328
+ if w is not None:
329
+ z = z * w
330
+
331
+ created_fig = ax is None
332
+ if created_fig:
333
+ fig, ax = plt.subplots(figsize=style.figsize)
334
+ else:
335
+ fig = ax.figure
336
+
337
+ _apply_bounds(ax, x, y, padding)
338
+ ax.set_aspect("equal", adjustable="box")
339
+
340
+ source = _resolve_basemap(basemap)
341
+ if source is not None:
342
+ if zoom is None:
343
+ cx.add_basemap(ax, source=source, crs="EPSG:3857")
344
+ else:
345
+ cx.add_basemap(ax, source=source, crs="EPSG:3857", zoom=zoom)
346
+
347
+ triang = mtri.Triangulation(x, y)
348
+ contour = ax.tricontourf(triang, z, levels=levels, cmap=cmap, alpha=alpha)
349
+ if show_points:
350
+ ax.scatter(x, y, s=6, c="k", alpha=0.25)
351
+
352
+ cbar = fig.colorbar(contour, ax=ax)
353
+ cbar.set_label(value_col, fontsize=style.label_size)
354
+ cbar.ax.tick_params(labelsize=style.tick_size)
355
+
356
+ ax.set_title(title, fontsize=style.title_size)
357
+ ax.tick_params(axis="both", labelsize=style.tick_size)
358
+
359
+ if created_fig:
360
+ finalize_figure(fig, save_path=save_path, show=show, style=style)
361
+
362
+ return fig