imt-ring 1.6.24__py3-none-any.whl → 1.6.26__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {imt_ring-1.6.24.dist-info → imt_ring-1.6.26.dist-info}/METADATA +1 -1
- {imt_ring-1.6.24.dist-info → imt_ring-1.6.26.dist-info}/RECORD +6 -6
- ring/ml/ml_utils.py +97 -0
- ring/ml/train.py +2 -2
- {imt_ring-1.6.24.dist-info → imt_ring-1.6.26.dist-info}/WHEEL +0 -0
- {imt_ring-1.6.24.dist-info → imt_ring-1.6.26.dist-info}/top_level.txt +0 -0
@@ -54,11 +54,11 @@ ring/io/xml/to_xml.py,sha256=fohb-jWMf2cxVdT5dmknsGyrNMseICSbKEz_urbaWbQ,3407
|
|
54
54
|
ring/ml/__init__.py,sha256=nbh48gaswWeY4S4vT1sply_3ROj2DQ7agjoLR4Ho3T8,1517
|
55
55
|
ring/ml/base.py,sha256=lfwEZLBDglOSRWChUHoH1kezefhttPV9TMEpNIqsMNw,9972
|
56
56
|
ring/ml/callbacks.py,sha256=W19QF6_uvaNCjs8ObsjNXD7mv9gFgJBixdRSbB_BynE,13301
|
57
|
-
ring/ml/ml_utils.py,sha256=
|
57
|
+
ring/ml/ml_utils.py,sha256=Zm4spN0Xn-2avYu9xt3NikCLVjYM1Gh59a6XU9jGxoU,10792
|
58
58
|
ring/ml/optimizer.py,sha256=TZF0_LmnewzmGVso-zIQJtpWguUW0fW3HeRpIdG_qoI,4763
|
59
59
|
ring/ml/ringnet.py,sha256=mef7jyN2QcApJmQGH3HYZyTV-00q8YpsYOKhW0-ku1k,8973
|
60
60
|
ring/ml/rnno_v1.py,sha256=2qE08OIvTJ5PvSxKpYGzGSrvEImWrdAT_qslZ7jP5tA,1372
|
61
|
-
ring/ml/train.py,sha256
|
61
|
+
ring/ml/train.py,sha256=-6SzQKjIgktgRjaXKVg_1dqcBmAJggZSVwDnau1FnxI,10832
|
62
62
|
ring/ml/training_loop.py,sha256=CEokvPQuuk_WCd-J60ZDodJYcPVvyxLfgXDr_DnbzRI,3359
|
63
63
|
ring/ml/params/0x13e3518065c21cd8.pickle,sha256=Zh2k1zK-TNxJl5F7nyTeQ9001qqRE_dfvaq1HWV287A,9355838
|
64
64
|
ring/ml/params/0x1d76628065a71e0f.pickle,sha256=YTNVuvfw-nCRD9BH1PZYcR9uCFpNWDhw8Lc50eDn_EE,9351038
|
@@ -86,7 +86,7 @@ ring/utils/randomize_sys.py,sha256=G_vBIo0OwQkXL2u0djwbaoaeb02C4LQCTNNloOYIU2M,3
|
|
86
86
|
ring/utils/utils.py,sha256=tJaWXLGOTwkxJQj2l23dX97wO3aZYhM2qd7eNuMRs84,6907
|
87
87
|
ring/utils/register_gym_envs/__init__.py,sha256=PtPIRBQJ16339xZ9G9VpvqrvcGbQ_Pk_SUz4tQPa9nQ,94
|
88
88
|
ring/utils/register_gym_envs/saddle.py,sha256=tA5CyW_akSXyDm0xJ83CtOrUMVElH0f9vZtEDDJQalI,4422
|
89
|
-
imt_ring-1.6.
|
90
|
-
imt_ring-1.6.
|
91
|
-
imt_ring-1.6.
|
92
|
-
imt_ring-1.6.
|
89
|
+
imt_ring-1.6.26.dist-info/METADATA,sha256=ibexS27KESraTLpx1W9rTIHvHS-j92qDOz-BaTOMOds,4089
|
90
|
+
imt_ring-1.6.26.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
91
|
+
imt_ring-1.6.26.dist-info/top_level.txt,sha256=EiT790-lAyi8iwTzJArH3f2k77rwhDn00q-4PlmvDQo,5
|
92
|
+
imt_ring-1.6.26.dist-info/RECORD,,
|
ring/ml/ml_utils.py
CHANGED
@@ -243,5 +243,102 @@ def save_model_tf(jax_func, path: str, *input, validate: bool = True):
|
|
243
243
|
)
|
244
244
|
|
245
245
|
|
246
|
+
def to_onnx(
|
247
|
+
fn,
|
248
|
+
output_path,
|
249
|
+
*args: tuple[np.ndarray],
|
250
|
+
in_args_names: Optional[list[str]] = None,
|
251
|
+
out_args_names: Optional[list[str]] = None,
|
252
|
+
validate: bool = False,
|
253
|
+
):
|
254
|
+
"""
|
255
|
+
Converts a JAX function to ONNX format, with optional input/output renaming and validation.
|
256
|
+
|
257
|
+
Args:
|
258
|
+
fn (callable): The JAX function to be converted.
|
259
|
+
output_path (str): Path where the ONNX model will be saved.
|
260
|
+
*args (tuple[np.ndarray]): Input arguments for the JAX function.
|
261
|
+
in_args_names (Optional[list[str]]): Names for the ONNX model's input tensors. Defaults to None.
|
262
|
+
out_args_names (Optional[list[str]]): Names for the ONNX model's output tensors. Defaults to None.
|
263
|
+
validate (bool): Whether to validate the ONNX model against the JAX function's outputs. Defaults to False.
|
264
|
+
|
265
|
+
Raises:
|
266
|
+
AssertionError: If the number of provided names does not match the number of inputs/outputs.
|
267
|
+
AssertionError: If the ONNX model's outputs do not match the JAX function's outputs within tolerance.
|
268
|
+
ValueError: If any error occurs during ONNX conversion, saving, or validation.
|
269
|
+
|
270
|
+
Notes:
|
271
|
+
- The function uses `jax2tf` to convert the JAX function to TensorFlow format,
|
272
|
+
and `tf2onnx` for ONNX conversion.
|
273
|
+
- Input and output tensor names in the ONNX model can be renamed using `sor4onnx.rename`.
|
274
|
+
- Validation compares outputs of the JAX function and the ONNX model using ONNX Runtime.
|
275
|
+
|
276
|
+
Example:
|
277
|
+
```
|
278
|
+
import jax.numpy as jnp
|
279
|
+
|
280
|
+
def my_fn(x, y):
|
281
|
+
return x + y, x * y
|
282
|
+
|
283
|
+
x = jnp.array([1, 2, 3])
|
284
|
+
y = jnp.array([4, 5, 6])
|
285
|
+
|
286
|
+
to_onnx(
|
287
|
+
my_fn,
|
288
|
+
"model.onnx",
|
289
|
+
x, y,
|
290
|
+
in_args_names=["input1", "input2"],
|
291
|
+
out_args_names=["sum", "product"],
|
292
|
+
validate=True,
|
293
|
+
)
|
294
|
+
```
|
295
|
+
""" # noqa: E501
|
296
|
+
import jax.experimental.jax2tf as jax2tf
|
297
|
+
import tensorflow as tf
|
298
|
+
import tf2onnx
|
299
|
+
|
300
|
+
tf_fn = tf.function(jax2tf.convert(fn, enable_xla=False))
|
301
|
+
tf_args = [tf.TensorSpec(np.shape(x), np.result_type(x)) for x in args]
|
302
|
+
tf2onnx.convert.from_function(
|
303
|
+
tf_fn, input_signature=tf_args, output_path=output_path
|
304
|
+
)
|
305
|
+
|
306
|
+
if in_args_names is not None or out_args_names is not None:
|
307
|
+
import onnx
|
308
|
+
from sor4onnx import rename
|
309
|
+
|
310
|
+
model = onnx.load(output_path)
|
311
|
+
|
312
|
+
if in_args_names is not None:
|
313
|
+
old_names = [inp.name for inp in model.graph.input]
|
314
|
+
assert len(old_names) == len(in_args_names)
|
315
|
+
for old_name, new_name in zip(old_names, in_args_names):
|
316
|
+
model = rename([old_name, new_name], None, model, None, mode="inputs")
|
317
|
+
|
318
|
+
if out_args_names is not None:
|
319
|
+
old_names = [out.name for out in model.graph.output]
|
320
|
+
assert len(old_names) == len(out_args_names)
|
321
|
+
for old_name, new_name in zip(old_names, out_args_names):
|
322
|
+
model = rename([old_name, new_name], None, model, None, mode="outputs")
|
323
|
+
|
324
|
+
onnx.save(model, output_path)
|
325
|
+
|
326
|
+
if validate:
|
327
|
+
import onnxruntime as ort
|
328
|
+
|
329
|
+
output_jax = fn(*args)
|
330
|
+
session = ort.InferenceSession(output_path)
|
331
|
+
input_names = [inp.name for inp in session.get_inputs()]
|
332
|
+
output_onnx = session.run(
|
333
|
+
None, {name: np.array(arg) for name, arg in zip(input_names, args)}
|
334
|
+
)
|
335
|
+
|
336
|
+
for o1, o2 in zip(output_jax, output_onnx):
|
337
|
+
assert np.allclose(o1, o2, atol=1e-5, rtol=1e-5)
|
338
|
+
|
339
|
+
if out_args_names is not None:
|
340
|
+
assert [out.name for out in session.get_outputs()] == out_args_names
|
341
|
+
|
342
|
+
|
246
343
|
def _unknown_link_names(N: int):
|
247
344
|
return [f"link{i}" for i in range(N)]
|
ring/ml/train.py
CHANGED
@@ -45,7 +45,7 @@ def _build_step_fn(
|
|
45
45
|
|
46
46
|
@partial(jax.value_and_grad, has_aux=True)
|
47
47
|
def loss_fn(params, state, X, y):
|
48
|
-
yhat, state = filter.apply(params=params, state=state, X=X)
|
48
|
+
yhat, state = filter.apply(params=params, state=state, X=X, y=y)
|
49
49
|
# this vmap maps along batch-axis, not time-axis
|
50
50
|
# time-axis is handled by `metric_fn`
|
51
51
|
pipe = lambda q, qhat: jnp.mean(jax.vmap(metric_fn)(q, qhat))
|
@@ -261,7 +261,7 @@ def _build_eval_fn(
|
|
261
261
|
"""Build function that evaluates the filter performance."""
|
262
262
|
|
263
263
|
def eval_fn(params, state, X, y):
|
264
|
-
yhat, _ = filter.apply(params=params, state=state, X=X)
|
264
|
+
yhat, _ = filter.apply(params=params, state=state, X=X, y=y)
|
265
265
|
|
266
266
|
y = _arr_to_dict(y, link_names)
|
267
267
|
yhat = _arr_to_dict(yhat, link_names)
|
File without changes
|
File without changes
|