imt-ring 1.6.24__py3-none-any.whl → 1.6.26__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: imt-ring
3
- Version: 1.6.24
3
+ Version: 1.6.26
4
4
  Summary: RING: Recurrent Inertial Graph-based Estimator
5
5
  Author-email: Simon Bachhuber <simon.bachhuber@fau.de>
6
6
  Project-URL: Homepage, https://github.com/SimiPixel/ring
@@ -54,11 +54,11 @@ ring/io/xml/to_xml.py,sha256=fohb-jWMf2cxVdT5dmknsGyrNMseICSbKEz_urbaWbQ,3407
54
54
  ring/ml/__init__.py,sha256=nbh48gaswWeY4S4vT1sply_3ROj2DQ7agjoLR4Ho3T8,1517
55
55
  ring/ml/base.py,sha256=lfwEZLBDglOSRWChUHoH1kezefhttPV9TMEpNIqsMNw,9972
56
56
  ring/ml/callbacks.py,sha256=W19QF6_uvaNCjs8ObsjNXD7mv9gFgJBixdRSbB_BynE,13301
57
- ring/ml/ml_utils.py,sha256=xqy9BnLy8IKVqkFS9mlZsGJXSbThI9zZxZ5rhl8LSI8,7144
57
+ ring/ml/ml_utils.py,sha256=Zm4spN0Xn-2avYu9xt3NikCLVjYM1Gh59a6XU9jGxoU,10792
58
58
  ring/ml/optimizer.py,sha256=TZF0_LmnewzmGVso-zIQJtpWguUW0fW3HeRpIdG_qoI,4763
59
59
  ring/ml/ringnet.py,sha256=mef7jyN2QcApJmQGH3HYZyTV-00q8YpsYOKhW0-ku1k,8973
60
60
  ring/ml/rnno_v1.py,sha256=2qE08OIvTJ5PvSxKpYGzGSrvEImWrdAT_qslZ7jP5tA,1372
61
- ring/ml/train.py,sha256=XuUUB0NhvByGtZDtS_weyp-TKPG9ErnKixS4NqB8q6M,10822
61
+ ring/ml/train.py,sha256=-6SzQKjIgktgRjaXKVg_1dqcBmAJggZSVwDnau1FnxI,10832
62
62
  ring/ml/training_loop.py,sha256=CEokvPQuuk_WCd-J60ZDodJYcPVvyxLfgXDr_DnbzRI,3359
63
63
  ring/ml/params/0x13e3518065c21cd8.pickle,sha256=Zh2k1zK-TNxJl5F7nyTeQ9001qqRE_dfvaq1HWV287A,9355838
64
64
  ring/ml/params/0x1d76628065a71e0f.pickle,sha256=YTNVuvfw-nCRD9BH1PZYcR9uCFpNWDhw8Lc50eDn_EE,9351038
@@ -86,7 +86,7 @@ ring/utils/randomize_sys.py,sha256=G_vBIo0OwQkXL2u0djwbaoaeb02C4LQCTNNloOYIU2M,3
86
86
  ring/utils/utils.py,sha256=tJaWXLGOTwkxJQj2l23dX97wO3aZYhM2qd7eNuMRs84,6907
87
87
  ring/utils/register_gym_envs/__init__.py,sha256=PtPIRBQJ16339xZ9G9VpvqrvcGbQ_Pk_SUz4tQPa9nQ,94
88
88
  ring/utils/register_gym_envs/saddle.py,sha256=tA5CyW_akSXyDm0xJ83CtOrUMVElH0f9vZtEDDJQalI,4422
89
- imt_ring-1.6.24.dist-info/METADATA,sha256=vaXarRf1r5xZeGK-av_regQ2LgaCTnb0Th43bDLXgN8,4089
90
- imt_ring-1.6.24.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
91
- imt_ring-1.6.24.dist-info/top_level.txt,sha256=EiT790-lAyi8iwTzJArH3f2k77rwhDn00q-4PlmvDQo,5
92
- imt_ring-1.6.24.dist-info/RECORD,,
89
+ imt_ring-1.6.26.dist-info/METADATA,sha256=ibexS27KESraTLpx1W9rTIHvHS-j92qDOz-BaTOMOds,4089
90
+ imt_ring-1.6.26.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
91
+ imt_ring-1.6.26.dist-info/top_level.txt,sha256=EiT790-lAyi8iwTzJArH3f2k77rwhDn00q-4PlmvDQo,5
92
+ imt_ring-1.6.26.dist-info/RECORD,,
ring/ml/ml_utils.py CHANGED
@@ -243,5 +243,102 @@ def save_model_tf(jax_func, path: str, *input, validate: bool = True):
243
243
  )
244
244
 
245
245
 
246
+ def to_onnx(
247
+ fn,
248
+ output_path,
249
+ *args: tuple[np.ndarray],
250
+ in_args_names: Optional[list[str]] = None,
251
+ out_args_names: Optional[list[str]] = None,
252
+ validate: bool = False,
253
+ ):
254
+ """
255
+ Converts a JAX function to ONNX format, with optional input/output renaming and validation.
256
+
257
+ Args:
258
+ fn (callable): The JAX function to be converted.
259
+ output_path (str): Path where the ONNX model will be saved.
260
+ *args (tuple[np.ndarray]): Input arguments for the JAX function.
261
+ in_args_names (Optional[list[str]]): Names for the ONNX model's input tensors. Defaults to None.
262
+ out_args_names (Optional[list[str]]): Names for the ONNX model's output tensors. Defaults to None.
263
+ validate (bool): Whether to validate the ONNX model against the JAX function's outputs. Defaults to False.
264
+
265
+ Raises:
266
+ AssertionError: If the number of provided names does not match the number of inputs/outputs.
267
+ AssertionError: If the ONNX model's outputs do not match the JAX function's outputs within tolerance.
268
+ ValueError: If any error occurs during ONNX conversion, saving, or validation.
269
+
270
+ Notes:
271
+ - The function uses `jax2tf` to convert the JAX function to TensorFlow format,
272
+ and `tf2onnx` for ONNX conversion.
273
+ - Input and output tensor names in the ONNX model can be renamed using `sor4onnx.rename`.
274
+ - Validation compares outputs of the JAX function and the ONNX model using ONNX Runtime.
275
+
276
+ Example:
277
+ ```
278
+ import jax.numpy as jnp
279
+
280
+ def my_fn(x, y):
281
+ return x + y, x * y
282
+
283
+ x = jnp.array([1, 2, 3])
284
+ y = jnp.array([4, 5, 6])
285
+
286
+ to_onnx(
287
+ my_fn,
288
+ "model.onnx",
289
+ x, y,
290
+ in_args_names=["input1", "input2"],
291
+ out_args_names=["sum", "product"],
292
+ validate=True,
293
+ )
294
+ ```
295
+ """ # noqa: E501
296
+ import jax.experimental.jax2tf as jax2tf
297
+ import tensorflow as tf
298
+ import tf2onnx
299
+
300
+ tf_fn = tf.function(jax2tf.convert(fn, enable_xla=False))
301
+ tf_args = [tf.TensorSpec(np.shape(x), np.result_type(x)) for x in args]
302
+ tf2onnx.convert.from_function(
303
+ tf_fn, input_signature=tf_args, output_path=output_path
304
+ )
305
+
306
+ if in_args_names is not None or out_args_names is not None:
307
+ import onnx
308
+ from sor4onnx import rename
309
+
310
+ model = onnx.load(output_path)
311
+
312
+ if in_args_names is not None:
313
+ old_names = [inp.name for inp in model.graph.input]
314
+ assert len(old_names) == len(in_args_names)
315
+ for old_name, new_name in zip(old_names, in_args_names):
316
+ model = rename([old_name, new_name], None, model, None, mode="inputs")
317
+
318
+ if out_args_names is not None:
319
+ old_names = [out.name for out in model.graph.output]
320
+ assert len(old_names) == len(out_args_names)
321
+ for old_name, new_name in zip(old_names, out_args_names):
322
+ model = rename([old_name, new_name], None, model, None, mode="outputs")
323
+
324
+ onnx.save(model, output_path)
325
+
326
+ if validate:
327
+ import onnxruntime as ort
328
+
329
+ output_jax = fn(*args)
330
+ session = ort.InferenceSession(output_path)
331
+ input_names = [inp.name for inp in session.get_inputs()]
332
+ output_onnx = session.run(
333
+ None, {name: np.array(arg) for name, arg in zip(input_names, args)}
334
+ )
335
+
336
+ for o1, o2 in zip(output_jax, output_onnx):
337
+ assert np.allclose(o1, o2, atol=1e-5, rtol=1e-5)
338
+
339
+ if out_args_names is not None:
340
+ assert [out.name for out in session.get_outputs()] == out_args_names
341
+
342
+
246
343
  def _unknown_link_names(N: int):
247
344
  return [f"link{i}" for i in range(N)]
ring/ml/train.py CHANGED
@@ -45,7 +45,7 @@ def _build_step_fn(
45
45
 
46
46
  @partial(jax.value_and_grad, has_aux=True)
47
47
  def loss_fn(params, state, X, y):
48
- yhat, state = filter.apply(params=params, state=state, X=X)
48
+ yhat, state = filter.apply(params=params, state=state, X=X, y=y)
49
49
  # this vmap maps along batch-axis, not time-axis
50
50
  # time-axis is handled by `metric_fn`
51
51
  pipe = lambda q, qhat: jnp.mean(jax.vmap(metric_fn)(q, qhat))
@@ -261,7 +261,7 @@ def _build_eval_fn(
261
261
  """Build function that evaluates the filter performance."""
262
262
 
263
263
  def eval_fn(params, state, X, y):
264
- yhat, _ = filter.apply(params=params, state=state, X=X)
264
+ yhat, _ = filter.apply(params=params, state=state, X=X, y=y)
265
265
 
266
266
  y = _arr_to_dict(y, link_names)
267
267
  yhat = _arr_to_dict(yhat, link_names)