hikyuu 2.6.8.4__py3-none-manylinux2014_x86_64.whl → 2.7.0__py3-none-manylinux2014_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (209) hide show
  1. hikyuu/__init__.py +31 -17
  2. hikyuu/__init__.pyi +610 -590
  3. hikyuu/analysis/__init__.pyi +584 -563
  4. hikyuu/analysis/analysis.pyi +585 -564
  5. hikyuu/core.py +2 -0
  6. hikyuu/core.pyi +586 -565
  7. hikyuu/cpp/__init__.pyi +2 -2
  8. hikyuu/cpp/core310.pyi +501 -108
  9. hikyuu/cpp/core310.so +0 -0
  10. hikyuu/cpp/core311.pyi +495 -108
  11. hikyuu/cpp/core311.so +0 -0
  12. hikyuu/cpp/core312.pyi +495 -108
  13. hikyuu/cpp/core312.so +0 -0
  14. hikyuu/cpp/core313.pyi +501 -108
  15. hikyuu/cpp/core313.so +0 -0
  16. hikyuu/cpp/i18n/zh_CN/hikyuu.mo +0 -0
  17. hikyuu/cpp/libboost_charconv-mt.so +0 -0
  18. hikyuu/cpp/libboost_charconv-mt.so.1.88.0 +0 -0
  19. hikyuu/cpp/libboost_chrono-mt.so +0 -0
  20. hikyuu/cpp/libboost_chrono-mt.so.1.88.0 +0 -0
  21. hikyuu/cpp/libboost_date_time-mt.so +0 -0
  22. hikyuu/cpp/libboost_date_time-mt.so.1.88.0 +0 -0
  23. hikyuu/cpp/libboost_serialization-mt.so +0 -0
  24. hikyuu/cpp/libboost_serialization-mt.so.1.88.0 +0 -0
  25. hikyuu/cpp/libboost_system-mt.so +0 -0
  26. hikyuu/cpp/libboost_system-mt.so.1.88.0 +0 -0
  27. hikyuu/cpp/libboost_thread-mt.so +0 -0
  28. hikyuu/cpp/libboost_thread-mt.so.1.88.0 +0 -0
  29. hikyuu/cpp/libboost_wserialization-mt.so +0 -0
  30. hikyuu/cpp/libboost_wserialization-mt.so.1.88.0 +0 -0
  31. hikyuu/cpp/libhikyuu.so +0 -0
  32. hikyuu/cpp/libsqlite3.so +0 -0
  33. hikyuu/data/clickhouse_upgrade/createdb.sql +105 -105
  34. hikyuu/data/common.py +3 -3
  35. hikyuu/data/common_clickhouse.py +1 -1
  36. hikyuu/data/download_block.py +351 -0
  37. hikyuu/data/em_block_to_clickhouse.py +26 -74
  38. hikyuu/data/em_block_to_mysql.py +25 -75
  39. hikyuu/data/em_block_to_sqlite.py +26 -78
  40. hikyuu/data/hku_config_template.py +3 -3
  41. hikyuu/data/pytdx_to_clickhouse.py +15 -11
  42. hikyuu/data/pytdx_to_h5.py +6 -2
  43. hikyuu/data/pytdx_to_mysql.py +5 -1
  44. hikyuu/data/pytdx_weight_to_clickhouse.py +1 -1
  45. hikyuu/data/pytdx_weight_to_mysql.py +1 -1
  46. hikyuu/data/pytdx_weight_to_sqlite.py +1 -1
  47. hikyuu/data/zh_bond10_to_clickhouse.py +1 -1
  48. hikyuu/draw/__init__.pyi +1 -1
  49. hikyuu/draw/drawplot/__init__.pyi +9 -9
  50. hikyuu/draw/drawplot/bokeh_draw.pyi +600 -580
  51. hikyuu/draw/drawplot/common.pyi +1 -1
  52. hikyuu/draw/drawplot/echarts_draw.pyi +602 -582
  53. hikyuu/draw/drawplot/matplotlib_draw.py +4 -74
  54. hikyuu/draw/drawplot/matplotlib_draw.pyi +612 -592
  55. hikyuu/draw/elder.pyi +11 -11
  56. hikyuu/draw/kaufman.pyi +18 -18
  57. hikyuu/draw/volume.pyi +10 -10
  58. hikyuu/examples/notebook/Demo/Demo1.ipynb +48 -33
  59. hikyuu/extend.py +0 -7
  60. hikyuu/extend.pyi +594 -573
  61. hikyuu/fetcher/stock/zh_block_em.py +12 -40
  62. hikyuu/gui/HikyuuTDX.py +99 -31
  63. hikyuu/gui/data/CollectSpotThread.py +1 -1
  64. hikyuu/gui/data/EscapetimeThread.py +8 -14
  65. hikyuu/gui/data/ImportBlockInfoTask.py +3 -10
  66. hikyuu/gui/data/MainWindow.py +1196 -717
  67. hikyuu/gui/data/SchedImportThread.py +2 -2
  68. hikyuu/gui/data/UsePytdxImportToH5Thread.py +3 -3
  69. hikyuu/gui/data/UseQmtImportToH5Thread.py +2 -2
  70. hikyuu/gui/data/UseTdxImportToH5Thread.py +3 -3
  71. hikyuu/gui/data/tool.py +32 -25
  72. hikyuu/gui/dataserver.py +5 -3
  73. hikyuu/gui/images/liandongxiaopu.png +0 -0
  74. hikyuu/hub.pyi +6 -6
  75. hikyuu/include/hikyuu/DataType.h +4 -16
  76. hikyuu/include/hikyuu/KData.h +6 -3
  77. hikyuu/include/hikyuu/KDataPrivatedBufferImp.h +1 -1
  78. hikyuu/include/hikyuu/KDataSharedBufferImp.h +1 -1
  79. hikyuu/include/hikyuu/KQuery.h +2 -2
  80. hikyuu/include/hikyuu/Stock.h +4 -1
  81. hikyuu/include/hikyuu/StockManager.h +13 -3
  82. hikyuu/include/hikyuu/data_driver/BaseInfoDriver.h +8 -0
  83. hikyuu/include/hikyuu/data_driver/BlockInfoDriver.h +6 -0
  84. hikyuu/include/hikyuu/data_driver/KDataDriver.h +26 -1
  85. hikyuu/include/hikyuu/data_driver/base_info/mysql/MySQLBaseInfoDriver.h +1 -1
  86. hikyuu/include/hikyuu/data_driver/base_info/sqlite/SQLiteBaseInfoDriver.h +1 -1
  87. hikyuu/include/hikyuu/data_driver/block_info/mysql/MySQLBlockInfoDriver.h +2 -1
  88. hikyuu/include/hikyuu/data_driver/block_info/qianlong/QLBlockInfoDriver.h +2 -1
  89. hikyuu/include/hikyuu/data_driver/block_info/sqlite/SQLiteBlockInfoDriver.h +2 -1
  90. hikyuu/include/hikyuu/data_driver/kdata/DoNothingKDataDriver.h +1 -1
  91. hikyuu/include/hikyuu/data_driver/kdata/cvs/KDataTempCsvDriver.h +1 -1
  92. hikyuu/include/hikyuu/data_driver/kdata/hdf5/H5KDataDriver.h +1 -1
  93. hikyuu/include/hikyuu/data_driver/kdata/mysql/MySQLKDataDriver.h +1 -1
  94. hikyuu/include/hikyuu/data_driver/kdata/sqlite/SQLiteKDataDriver.h +1 -1
  95. hikyuu/include/hikyuu/data_driver/kdata/tdx/TdxKDataDriver.h +1 -1
  96. hikyuu/include/hikyuu/hikyuu.h +1 -1
  97. hikyuu/include/hikyuu/indicator/build_in.h +1 -0
  98. hikyuu/include/hikyuu/indicator/crt/CYCLE.h +4 -4
  99. hikyuu/include/hikyuu/indicator/crt/HSL.h +2 -2
  100. hikyuu/include/hikyuu/indicator/crt/QUANTILE_TRUNC.h +30 -0
  101. hikyuu/include/hikyuu/indicator/crt/TURNOVER.h +1 -0
  102. hikyuu/include/hikyuu/indicator/crt/ZSCORE.h +2 -2
  103. hikyuu/include/hikyuu/indicator/imp/IQuantileTrunc.h +25 -0
  104. hikyuu/include/hikyuu/misc.h +38 -0
  105. hikyuu/include/hikyuu/plugin/dataserver.h +2 -1
  106. hikyuu/include/hikyuu/plugin/device.h +10 -0
  107. hikyuu/include/hikyuu/plugin/extind.h +37 -0
  108. hikyuu/include/hikyuu/plugin/hkuextra.h +0 -18
  109. hikyuu/include/hikyuu/plugin/interface/DataServerPluginInterface.h +2 -2
  110. hikyuu/include/hikyuu/plugin/interface/DevicePluginInterface.h +2 -0
  111. hikyuu/include/hikyuu/plugin/interface/ExtendIndicatorsPluginInterface.h +12 -0
  112. hikyuu/include/hikyuu/plugin/interface/HkuExtraPluginInterface.h +0 -14
  113. hikyuu/include/hikyuu/plugin/interface/plugins.h +3 -1
  114. hikyuu/include/hikyuu/python/pybind_utils.h +1 -8
  115. hikyuu/include/hikyuu/strategy/RunSystemInStrategy.h +3 -0
  116. hikyuu/include/hikyuu/trade_manage/Performance.h +4 -4
  117. hikyuu/include/hikyuu/trade_manage/TradeManagerBase.h +10 -1
  118. hikyuu/include/hikyuu/trade_sys/moneymanager/imp/FixedCapitalFundsMM.h +0 -4
  119. hikyuu/include/hikyuu/trade_sys/multifactor/MultiFactorBase.h +36 -3
  120. hikyuu/include/hikyuu/trade_sys/multifactor/NormalizeBase.h +125 -0
  121. hikyuu/include/hikyuu/trade_sys/multifactor/ScoresFilterBase.h +125 -0
  122. hikyuu/include/hikyuu/trade_sys/multifactor/build_in.h +3 -0
  123. hikyuu/include/hikyuu/trade_sys/multifactor/buildin_norm.h +36 -0
  124. hikyuu/include/hikyuu/trade_sys/multifactor/buildin_scfilter.h +51 -0
  125. hikyuu/include/hikyuu/trade_sys/multifactor/filter/GroupSCFilter.h +24 -0
  126. hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreLessOrEqualValueSCFilter.h +24 -0
  127. hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreNanSCFilter.h +24 -0
  128. hikyuu/include/hikyuu/trade_sys/multifactor/filter/MinAmountPercentSCFilter.h +25 -0
  129. hikyuu/include/hikyuu/trade_sys/multifactor/filter/PriceSCFilter.h +24 -0
  130. hikyuu/include/hikyuu/trade_sys/multifactor/filter/TopNSCFilter.h +24 -0
  131. hikyuu/include/hikyuu/trade_sys/multifactor/imp/EqualWeightMultiFactor.h +1 -1
  132. hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICIRMultiFactor.h +1 -1
  133. hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICMultiFactor.h +1 -1
  134. hikyuu/include/hikyuu/trade_sys/multifactor/imp/WeightMultiFactor.h +1 -1
  135. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormMinMax.h +23 -0
  136. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantile.h +28 -0
  137. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantileUniform.h +28 -0
  138. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormZScore.h +25 -0
  139. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/__init__.py +1 -0
  140. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/quantile_trunc.h +16 -0
  141. hikyuu/include/hikyuu/trade_sys/portfolio/Portfolio.h +7 -0
  142. hikyuu/include/hikyuu/trade_sys/portfolio/imp/SimplePortfolio.h +7 -0
  143. hikyuu/include/hikyuu/trade_sys/portfolio/imp/WithoutAFPortfolio.h +7 -0
  144. hikyuu/include/hikyuu/trade_sys/selector/SelectorBase.h +49 -0
  145. hikyuu/include/hikyuu/trade_sys/selector/build_in.h +1 -0
  146. hikyuu/include/hikyuu/trade_sys/selector/crt/SE_MultiFactor2.h +40 -0
  147. hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector.h +0 -3
  148. hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector2.h +49 -0
  149. hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorSelector.h +1 -1
  150. hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorValueSelector.h +1 -1
  151. hikyuu/include/hikyuu/trade_sys/signal/imp/BandSignal2.h +0 -4
  152. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/AddValueSignal.h +2 -2
  153. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/DivValueSignal.h +2 -2
  154. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/MulValueSignal.h +2 -2
  155. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorSignal.h +1 -1
  156. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorValueSignal.h +4 -4
  157. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/SubValueSignal.h +2 -2
  158. hikyuu/include/hikyuu/trade_sys/slippage/build_in.h +5 -1
  159. hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_LogNormal.h +22 -0
  160. hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_Normal.h +22 -0
  161. hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_TruncNormal.h +25 -0
  162. hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_Uniform.h +23 -0
  163. hikyuu/include/hikyuu/trade_sys/slippage/imp/LogNormalSlippage.h +28 -0
  164. hikyuu/include/hikyuu/trade_sys/slippage/imp/NormalSlippage.h +28 -0
  165. hikyuu/include/hikyuu/trade_sys/slippage/imp/TruncNormalSlippage.h +28 -0
  166. hikyuu/include/hikyuu/trade_sys/slippage/imp/UniformSlippage.h +24 -0
  167. hikyuu/include/hikyuu/trade_sys/system/System.h +14 -1
  168. hikyuu/include/hikyuu/utilities/SpendTimer.h +17 -7
  169. hikyuu/include/hikyuu/utilities/arithmetic.h +55 -0
  170. hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLConnect.h +1 -1
  171. hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLStatement.h +1 -1
  172. hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteConnect.h +1 -1
  173. hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteStatement.h +1 -1
  174. hikyuu/include/hikyuu/utilities/plugin/PluginLoader.h +4 -1
  175. hikyuu/include/hikyuu/version.h +5 -5
  176. hikyuu/plugin/libbacktest.so +0 -0
  177. hikyuu/plugin/libclickhousedriver.so +0 -0
  178. hikyuu/plugin/libdataserver.so +0 -0
  179. hikyuu/{cpp/core39.so → plugin/libdataserver_parquet.so} +0 -0
  180. hikyuu/plugin/libdevice.so +0 -0
  181. hikyuu/plugin/libextind.so +0 -0
  182. hikyuu/plugin/libhkuextra.so +0 -0
  183. hikyuu/plugin/libimport2hdf5.so +0 -0
  184. hikyuu/plugin/libtmreport.so +0 -0
  185. hikyuu/trade_manage/__init__.pyi +599 -579
  186. hikyuu/trade_manage/broker.pyi +3 -3
  187. hikyuu/trade_manage/broker_easytrader.pyi +1 -1
  188. hikyuu/trade_manage/trade.py +0 -2
  189. hikyuu/trade_manage/trade.pyi +599 -579
  190. hikyuu/util/__init__.pyi +1 -1
  191. hikyuu/util/singleton.pyi +1 -1
  192. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/METADATA +36 -32
  193. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/RECORD +197 -164
  194. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/top_level.txt +2 -2
  195. hikyuu/cpp/core39.pyi +0 -14385
  196. hikyuu/data_driver/__init__.py +0 -49
  197. hikyuu/data_driver/jqdata_data_driver.py +0 -277
  198. hikyuu/data_driver/pytdx_data_driver.py +0 -292
  199. hikyuu/fetcher/stock/zh_stock_a_huatai.py +0 -51
  200. hikyuu/fetcher/stock/zh_stock_a_pytdx.py +0 -129
  201. hikyuu/gui/data/CollectToMemThread.py +0 -123
  202. hikyuu/gui/data/CollectToMySQLThread.py +0 -178
  203. hikyuu/gui/start_huatai_insight.py +0 -510
  204. hikyuu/include/hikyuu/views/arrow_common.h +0 -38
  205. hikyuu/include/hikyuu/views/arrow_views.h +0 -117
  206. hikyuu/tools/update_block_info.py +0 -168
  207. /hikyuu/include/hikyuu/{views → trade_sys/multifactor/filter}/__init__.py +0 -0
  208. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/WHEEL +0 -0
  209. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/entry_points.txt +0 -0
hikyuu/cpp/core310.pyi CHANGED
@@ -3,7 +3,7 @@ import collections.abc
3
3
  import numpy
4
4
  import numpy.typing
5
5
  import typing
6
- __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NOT', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'dates_to_pa', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_inds_view', 'get_inds_view_pyarrow', 'get_kdata', 'get_last_version', 'get_log_level', 'get_market_view', 'get_market_view_pyarrow', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'krecords_to_pa', 'open_ostream_to_python', 'open_spend_time', 'positions_to_df', 'positions_to_np', 'positions_to_pa', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'timeline_to_pa', 'toPriceList', 'trades_to_df', 'trades_to_np', 'trades_to_pa', 'translist_to_df', 'translist_to_np', 'translist_to_pa', 'view_license', 'weights_to_df', 'weights_to_np', 'weights_to_pa']
6
+ __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_FUNC', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'GROUP_COUNT', 'GROUP_FUNC', 'GROUP_MAX', 'GROUP_MEAN', 'GROUP_MIN', 'GROUP_PROD', 'GROUP_SUM', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NORM_MinMax', 'NORM_NOTHING', 'NORM_Quantile', 'NORM_Quantile_Uniform', 'NORM_Zscore', 'NOT', 'NormalizeBase', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'QUANTILE_TRUNC', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SCFilter_AmountLimit', 'SCFilter_Group', 'SCFilter_IgnoreNan', 'SCFilter_LessOrEqualValue', 'SCFilter_Price', 'SCFilter_TopN', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_MultiFactor2', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SP_LogNormal', 'SP_Normal', 'SP_TruncNormal', 'SP_Uniform', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'ScoresFilterBase', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'bind_email', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_expire_date', 'get_funds_list', 'get_kdata', 'get_last_version', 'get_log_level', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'open_ostream_to_python', 'open_spend_time', 'parallel_run_pf', 'parallel_run_sys', 'positions_to_df', 'positions_to_np', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'toPriceList', 'trades_to_df', 'trades_to_np', 'translist_to_df', 'translist_to_np', 'view_license', 'weights_to_df', 'weights_to_np']
7
7
  class AllocateFundsBase:
8
8
  """
9
9
  资产分配算法基类, 子类接口:
@@ -229,7 +229,10 @@ class Block:
229
229
  def __init__(self) -> None:
230
230
  ...
231
231
  @typing.overload
232
- def __init__(self, arg0: str, arg1: str) -> None:
232
+ def __init__(self, category: str, name: str) -> None:
233
+ ...
234
+ @typing.overload
235
+ def __init__(self, category: str, name: str, index_code: str) -> None:
233
236
  ...
234
237
  @typing.overload
235
238
  def __init__(self, arg0: Block) -> None:
@@ -1211,9 +1214,6 @@ class DatetimeList:
1211
1214
  @staticmethod
1212
1215
  def to_pandas(data: DatetimeList):
1213
1216
  ...
1214
- @staticmethod
1215
- def to_pyarrow(data):
1216
- ...
1217
1217
  def __bool__(self) -> bool:
1218
1218
  """
1219
1219
  Check whether the list is nonempty
@@ -2017,8 +2017,6 @@ class Indicator:
2017
2017
  """
2018
2018
  转化为np.array, 如果为时间序列, 则包含 datetime 日期列
2019
2019
  """
2020
- def to_pyarrow(self) -> typing.Any:
2021
- ...
2022
2020
  def value_to_df(self) -> typing.Any:
2023
2021
  """
2024
2022
  转换为 DataFrame, 仅包含值
@@ -2027,8 +2025,6 @@ class Indicator:
2027
2025
  """
2028
2026
  仅转化值为np.array, 不包含日期列
2029
2027
  """
2030
- def value_to_pyarrow(self) -> typing.Any:
2031
- ...
2032
2028
  @property
2033
2029
  def discard(self) -> int:
2034
2030
  """
@@ -2347,8 +2343,6 @@ class KData:
2347
2343
  """
2348
2344
  将 KData 转换为 NumPy 数组
2349
2345
  """
2350
- def to_pyarrow(self) -> typing.Any:
2351
- ...
2352
2346
  def tocsv(self, arg0: str) -> None:
2353
2347
  """
2354
2348
  tocsv(self, filename)
@@ -2608,9 +2602,6 @@ class KRecordList:
2608
2602
  @staticmethod
2609
2603
  def to_pandas(data):
2610
2604
  ...
2611
- @staticmethod
2612
- def to_pyarrow(data):
2613
- ...
2614
2605
  def __bool__(self) -> bool:
2615
2606
  """
2616
2607
  Check whether the list is nonempty
@@ -3085,6 +3076,17 @@ class MultiFactorBase:
3085
3076
  ...
3086
3077
  def __str__(self) -> str:
3087
3078
  ...
3079
+ def add_special_normalize(self, name: str, norm: NormalizeBase = None, category: str = '', style_inds: collections.abc.Sequence[Indicator] = []) -> None:
3080
+ """
3081
+ add_special_normalize(self, name[, norm=None, category="", style_inds=[]])
3082
+
3083
+ 对指定名称的指标应用特定的标准化/归一化、行业中性化、风格因子中性化操作。标准化操作、行业中性化、风格因子中性化彼此无关,可同时指定也可分开指定。
3084
+
3085
+ :param str name: 特殊归一化方法名称
3086
+ :param Normalize norm: 特殊归一化方法
3087
+ :param str category: 行业中性化时,指定板块类别
3088
+ :param list[Indicator] style_inds: 用于中性化的风格指标列表
3089
+ """
3088
3090
  def clone(self) -> MultiFactorBase:
3089
3091
  """
3090
3092
  克隆操作
@@ -3106,7 +3108,14 @@ class MultiFactorBase:
3106
3108
  :return: ScoreRecordList
3107
3109
  """
3108
3110
  def get_all_src_factors(self) -> list[list[Indicator]]:
3109
- ...
3111
+ """
3112
+ get_all_src_factors(self)
3113
+
3114
+ 获取所有原始因子列表(如果指定了标准化、行业中性化, 返回为已处理的因子列表)
3115
+
3116
+ :rtype: list
3117
+ :return: list IndicatorList stks x inds
3118
+ """
3110
3119
  def get_datetime_list(self) -> DatetimeList:
3111
3120
  """
3112
3121
  获取参考日期列表(由参考证券通过查询条件获得)
@@ -3182,6 +3191,14 @@ class MultiFactorBase:
3182
3191
  """
3183
3192
  是否存在指定参数
3184
3193
  """
3194
+ def set_normalize(self, norm: NormalizeBase) -> None:
3195
+ """
3196
+ set_normalize(self, norm)
3197
+
3198
+ 设置标准化或归一化方法(影响全部因子)
3199
+
3200
+ :param NormalizeBase norm: 标准化或归一化方法实例
3201
+ """
3185
3202
  def set_param(self, arg0: str, arg1: any) -> None:
3186
3203
  """
3187
3204
  set_param(self, name, value)
@@ -3232,6 +3249,74 @@ class MultiFactorBase:
3232
3249
  @query.setter
3233
3250
  def query(self, arg1: Query) -> None:
3234
3251
  ...
3252
+ class NormalizeBase:
3253
+ """
3254
+ 用于 MF 的截面标准化操作
3255
+ """
3256
+ @staticmethod
3257
+ def _pybind11_conduit_v1_(*args, **kwargs):
3258
+ ...
3259
+ def __getstate__(self) -> tuple:
3260
+ ...
3261
+ @typing.overload
3262
+ def __init__(self) -> None:
3263
+ ...
3264
+ @typing.overload
3265
+ def __init__(self, arg0: NormalizeBase) -> None:
3266
+ ...
3267
+ @typing.overload
3268
+ def __init__(self, arg0: str) -> None:
3269
+ """
3270
+ 初始化构造函数
3271
+
3272
+ :param str name: 名称
3273
+ """
3274
+ def __repr__(self) -> str:
3275
+ ...
3276
+ def __setstate__(self, arg0: tuple) -> None:
3277
+ ...
3278
+ def __str__(self) -> str:
3279
+ ...
3280
+ def clone(self) -> NormalizeBase:
3281
+ """
3282
+ 克隆操作
3283
+ """
3284
+ def get_param(self, arg0: str) -> any:
3285
+ """
3286
+ get_param(self, name)
3287
+
3288
+ 获取指定的参数
3289
+
3290
+ :param str name: 参数名称
3291
+ :return: 参数值
3292
+ :raises out_of_range: 无此参数
3293
+ """
3294
+ def have_param(self, arg0: str) -> bool:
3295
+ """
3296
+ 是否存在指定参数
3297
+ """
3298
+ def normalize(self, arg0: collections.abc.Sequence[typing.SupportsFloat]) -> list[float]:
3299
+ """
3300
+ 【重载接口】子类计算接口
3301
+ """
3302
+ def set_param(self, arg0: str, arg1: any) -> None:
3303
+ """
3304
+ set_param(self, name, value)
3305
+
3306
+ 设置参数
3307
+
3308
+ :param str name: 参数名称
3309
+ :param value: 参数值
3310
+ :raises logic_error: Unsupported type! 不支持的参数类型
3311
+ """
3312
+ @property
3313
+ def name(self) -> str:
3314
+ """
3315
+ 名称
3316
+ """
3317
+ @name.setter
3318
+ def name(self, arg1: str) -> None:
3319
+ ...
3235
3320
  class OrderBrokerBase:
3236
3321
  """
3237
3322
  订单代理包装基类,用户可以参考自定义自己的订单代理,加入额外的处理
@@ -3507,6 +3592,10 @@ class Portfolio:
3507
3592
  """
3508
3593
  是否存在指定参数
3509
3594
  """
3595
+ def last_suggestion(self) -> typing.Any:
3596
+ """
3597
+ 回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
3598
+ """
3510
3599
  def reset(self) -> None:
3511
3600
  """
3512
3601
  复位操作
@@ -3803,8 +3892,6 @@ class PositionRecordList:
3803
3892
  ...
3804
3893
  def to_pandas(self):
3805
3894
  ...
3806
- def to_pyarrow(self):
3807
- ...
3808
3895
  class ProfitGoalBase:
3809
3896
  """
3810
3897
  盈利目标策略基类
@@ -4284,6 +4371,87 @@ class ScoreRecordList:
4284
4371
  ...
4285
4372
  def to_pandas(self):
4286
4373
  ...
4374
+ class ScoresFilterBase:
4375
+ """
4376
+ 用于 MF 的截面标准化操作
4377
+ """
4378
+ @staticmethod
4379
+ def _pybind11_conduit_v1_(*args, **kwargs):
4380
+ ...
4381
+ def __getstate__(self) -> tuple:
4382
+ ...
4383
+ @typing.overload
4384
+ def __init__(self) -> None:
4385
+ ...
4386
+ @typing.overload
4387
+ def __init__(self, arg0: ScoresFilterBase) -> None:
4388
+ ...
4389
+ @typing.overload
4390
+ def __init__(self, arg0: str) -> None:
4391
+ """
4392
+ 初始化构造函数
4393
+
4394
+ :param str name: 名称
4395
+ """
4396
+ def __or__(self, arg0: ScoresFilterBase) -> ScoresFilterBase:
4397
+ ...
4398
+ def __repr__(self) -> str:
4399
+ ...
4400
+ def __setstate__(self, arg0: tuple) -> None:
4401
+ ...
4402
+ def __str__(self) -> str:
4403
+ ...
4404
+ def _filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
4405
+ """
4406
+ 【重载接口】子类计算接口
4407
+ """
4408
+ def clone(self) -> ScoresFilterBase:
4409
+ """
4410
+ 克隆操作
4411
+ """
4412
+ def filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
4413
+ """
4414
+ filter(self, scores, date, query)
4415
+
4416
+ 截面过滤
4417
+ :param list scores: 截面数据
4418
+ :param Datetime date: 截面日期
4419
+ :param KQuery query: 查询参数
4420
+ :return: 截面数据
4421
+ :rtype: ScoreRecordList
4422
+ """
4423
+ def get_param(self, arg0: str) -> any:
4424
+ """
4425
+ get_param(self, name)
4426
+
4427
+ 获取指定的参数
4428
+
4429
+ :param str name: 参数名称
4430
+ :return: 参数值
4431
+ :raises out_of_range: 无此参数
4432
+ """
4433
+ def have_param(self, arg0: str) -> bool:
4434
+ """
4435
+ 是否存在指定参数
4436
+ """
4437
+ def set_param(self, arg0: str, arg1: any) -> None:
4438
+ """
4439
+ set_param(self, name, value)
4440
+
4441
+ 设置参数
4442
+
4443
+ :param str name: 参数名称
4444
+ :param value: 参数值
4445
+ :raises logic_error: Unsupported type! 不支持的参数类型
4446
+ """
4447
+ @property
4448
+ def name(self) -> str:
4449
+ """
4450
+ 名称
4451
+ """
4452
+ @name.setter
4453
+ def name(self, arg1: str) -> None:
4454
+ ...
4287
4455
  class SelectorBase:
4288
4456
  """
4289
4457
  选择器策略基类,实现标的、系统策略的评估和选取算法,自定义选择器策略子类接口:
@@ -4361,6 +4529,14 @@ class SelectorBase:
4361
4529
  """
4362
4530
  子类复位操作实现
4363
4531
  """
4532
+ def add_scores_filter(self, arg0: ScoresFilterBase) -> None:
4533
+ """
4534
+ add_scores_filter(self, filter)
4535
+
4536
+ 在已有过滤基础上新增过滤, 仅适用于 SE_MultiFactor
4537
+
4538
+ :param ScoresFilter filter: 新的过滤器
4539
+ """
4364
4540
  def add_stock(self, stock: Stock, sys: ...) -> None:
4365
4541
  """
4366
4542
  add_stock(self, stock, sys)
@@ -4443,6 +4619,19 @@ class SelectorBase:
4443
4619
  :param value: 参数值
4444
4620
  :raises logic_error: Unsupported type! 不支持的参数类型
4445
4621
  """
4622
+ def set_scores_filter(self, arg0: ScoresFilterBase) -> None:
4623
+ """
4624
+ set_scores_filter(self, filter)
4625
+
4626
+ 设置 ScoresFilter, 将替换现有的过滤器. 仅适用于 SE_MultiFactor
4627
+
4628
+ :param ScoresFilter filter: ScoresFilter
4629
+ """
4630
+ @property
4631
+ def mf(self) -> ...:
4632
+ """
4633
+ 获取关联的 MF
4634
+ """
4446
4635
  @property
4447
4636
  def name(self) -> str:
4448
4637
  """
@@ -4461,6 +4650,11 @@ class SelectorBase:
4461
4650
  """
4462
4651
  由 PF 运行时设定的实际运行系统列表
4463
4652
  """
4653
+ @property
4654
+ def scfilter(self) -> ScoresFilterBase:
4655
+ """
4656
+ 获取 ScoresFilter
4657
+ """
4464
4658
  class SignalBase:
4465
4659
  """
4466
4660
  信号指示器基类
@@ -5311,6 +5505,15 @@ class StockManager:
5311
5505
  """
5312
5506
  获取当前板块信息驱动参数
5313
5507
  """
5508
+ def get_category_list(self) -> list[str]:
5509
+ """
5510
+ get_category_list(self)
5511
+
5512
+ 获取所有板块分类
5513
+
5514
+ :return: 所有板块分类
5515
+ :rtype: StringList
5516
+ """
5314
5517
  def get_context(self) -> StrategyContext:
5315
5518
  """
5316
5519
  获取当前上下文
@@ -5668,9 +5871,6 @@ class StockWeightList:
5668
5871
  @staticmethod
5669
5872
  def to_pandas(data):
5670
5873
  ...
5671
- @staticmethod
5672
- def to_pyarrow(data):
5673
- ...
5674
5874
  def __bool__(self) -> bool:
5675
5875
  """
5676
5876
  Check whether the list is nonempty
@@ -6267,6 +6467,10 @@ class System:
6267
6467
  """
6268
6468
  是否存在指定参数
6269
6469
  """
6470
+ def last_suggestion(self) -> typing.Any:
6471
+ """
6472
+ 回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
6473
+ """
6270
6474
  def ready(self) -> None:
6271
6475
  ...
6272
6476
  def reset(self) -> None:
@@ -6882,9 +7086,6 @@ class TimeLineList:
6882
7086
  @staticmethod
6883
7087
  def to_pandas(data):
6884
7088
  ...
6885
- @staticmethod
6886
- def to_pyarrow(data):
6887
- ...
6888
7089
  def __bool__(self) -> bool:
6889
7090
  """
6890
7091
  Check whether the list is nonempty
@@ -7847,8 +8048,6 @@ class TradeRecordList:
7847
8048
  ...
7848
8049
  def to_pandas(self):
7849
8050
  ...
7850
- def to_pyarrow(self):
7851
- ...
7852
8051
  class TradeRequest:
7853
8052
  """
7854
8053
  交易请求记录。系统内部在实现延迟操作时登记的交易请求信息。暴露该结构的主要目的是用于
@@ -7935,9 +8134,6 @@ class TransList:
7935
8134
  @staticmethod
7936
8135
  def to_pandas(data):
7937
8136
  ...
7938
- @staticmethod
7939
- def to_pyarrow(data):
7940
- ...
7941
8137
  def __bool__(self) -> bool:
7942
8138
  """
7943
8139
  Check whether the list is nonempty
@@ -8178,6 +8374,26 @@ def AGG_COUNT(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit:
8178
8374
  """
8179
8375
  聚合函数: 非空值计数, 可参考 AGG_STD 帮助
8180
8376
  """
8377
+ def AGG_FUNC(ind: Indicator, agg_func: typing.Any, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8378
+ """
8379
+ AGG_FUNC(ind, agg_func[, ktype=Query.MIN, fill_null=False, unit=1]
8380
+
8381
+ 使用自定函数聚合其他K线周期的指标。虽然支持python自定义函数, 但python函数需要GIL, 速度会慢。建议最好直接使用 C++ 自定义聚合函数。
8382
+
8383
+ 示例, 计算日线时聚合分钟线收盘价的和:
8384
+
8385
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
8386
+ >>> ind = AGG_FUNC(CLOSE(), lambda ds, x: np.sum(x))
8387
+ >>> ind(k)
8388
+
8389
+ :param Indicator ind: 待计算指标
8390
+ :param callable agg_func: 自定义聚合函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回针对list的聚合结果, 注意是单个值
8391
+ :param KQuery.KType ktype: 聚合的K线周期
8392
+ :param bool fill_null: 是否填充缺失值
8393
+ :param int unit: 聚合周期单位 (上下文K线分组单位, 使用日线计算分钟线聚合时, unit=2代表聚合2天的分钟线)
8394
+ :return: 聚合结果
8395
+ :rtype: Indicator
8396
+ """
8181
8397
  def AGG_MAD(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8182
8398
  """
8183
8399
  聚合函数: 平均绝对偏差, 可参考 AGG_STD 帮助
@@ -9153,6 +9369,48 @@ def FLOOR(arg0: typing.SupportsFloat) -> Indicator:
9153
9369
  :param data: 输入数据
9154
9370
  :rtype: Indicator
9155
9371
  """
9372
+ def GROUP_COUNT(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9373
+ """
9374
+ 分组累积计数
9375
+ """
9376
+ def GROUP_FUNC(ind: Indicator, group_func: typing.Any, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9377
+ """
9378
+ GROUP_FUNC(ind, group_func[, ktype=Query.DAY, unit=1])
9379
+
9380
+ 自定义分组累积计算指标。虽然支持python自定义函数, 但python函数需要GIL, 速度较慢。建议最好直接使用 C++ 自定义分组累积函数。
9381
+
9382
+ 示例, 计算日线时聚合分钟线收盘价的和:
9383
+
9384
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
9385
+ >>> ind = GROUP_FUNC(CLOSE(), lambda dates, data: data/2.0)
9386
+ >>> ind(k)
9387
+
9388
+ :param Indicator ind: 待计算指标
9389
+ :param callable group_func: 自定义分组累积函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回和输入等长的累积计算结果, 类型同样须为 np.array
9390
+ :param KQuery.KType ktype: 分组的K线周期
9391
+ :param int unit: 分组周期单位 (分组的K线周期单位, 使用日线计算分钟线, unit=2代表按2天累积计算的分钟线)
9392
+ :rtype: Indicator
9393
+ """
9394
+ def GROUP_MAX(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9395
+ """
9396
+ 分组累积最大值
9397
+ """
9398
+ def GROUP_MEAN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9399
+ """
9400
+ 分组累积平均
9401
+ """
9402
+ def GROUP_MIN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9403
+ """
9404
+ 分组累积最小值
9405
+ """
9406
+ def GROUP_PROD(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9407
+ """
9408
+ 分组累积乘积
9409
+ """
9410
+ def GROUP_SUM(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9411
+ """
9412
+ 分组累积和
9413
+ """
9156
9414
  @typing.overload
9157
9415
  def HHV(n: typing.SupportsInt = 20) -> Indicator:
9158
9416
  ...
@@ -10124,6 +10382,36 @@ def NDAY(x: Indicator, y: Indicator, n: IndParam) -> Indicator:
10124
10382
  :param int|Indicator|IndParam n: 时间窗口
10125
10383
  :rtype: Indicator
10126
10384
  """
10385
+ def NORM_MinMax() -> NormalizeBase:
10386
+ """
10387
+ 最小-最大标准化操作
10388
+ """
10389
+ def NORM_NOTHING() -> NormalizeBase:
10390
+ """
10391
+ 无截面标准化操作
10392
+ """
10393
+ def NORM_Quantile(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
10394
+ """
10395
+ 分位数截面标准化操作
10396
+
10397
+ :param quantile_min: 最小分位数
10398
+ :param quantile_max: 最大分位数
10399
+ """
10400
+ def NORM_Quantile_Uniform(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
10401
+ """
10402
+ 分位数截面均匀分布标准化操作
10403
+
10404
+ :param quantile_min: 最小分位数
10405
+ :param quantile_max: 最大分位数
10406
+ """
10407
+ def NORM_Zscore(out_extreme: bool = False, nsigma: typing.SupportsFloat = 3.0, recursive: bool = False) -> NormalizeBase:
10408
+ """
10409
+ Z-score 标准化操作
10410
+
10411
+ :param out_extreme: 是否剔除异常值
10412
+ :param nsigma: 异常值判断倍数±3.0
10413
+ :param recursive: 是否递归处理异常值
10414
+ """
10127
10415
  @typing.overload
10128
10416
  def NOT() -> Indicator:
10129
10417
  ...
@@ -10262,6 +10550,22 @@ def PRICELIST(data: typing.Any = None, discard: typing.SupportsInt = 0, align_da
10262
10550
  :rtype: Indicator
10263
10551
  """
10264
10552
  @typing.overload
10553
+ def QUANTILE_TRUNC(n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
10554
+ ...
10555
+ @typing.overload
10556
+ def QUANTILE_TRUNC(data: Indicator, n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
10557
+ """
10558
+ QUANTILE_TRUNC(data[, n=60, quantial_min=0.01, quantial_max=0.99])
10559
+
10560
+ 对数据进行分位数截断处理。非窗口滚动。
10561
+
10562
+ :param Indicator data: 待剔除异常值数据
10563
+ :param int n: 时间窗口
10564
+ :param float quantial_min: 剔除极值时使用的百分位数下限,默认 0.01
10565
+ :param float quantial_max: 剔除极值时使用的百分位数上限,默认 0.99
10566
+ :rtype: Indicator
10567
+ """
10568
+ @typing.overload
10265
10569
  def RANK(stks: collections.abc.Sequence, mode: typing.SupportsInt = 0, fill_null: bool = True, market: str = 'SH') -> Indicator:
10266
10570
  ...
10267
10571
  @typing.overload
@@ -10619,6 +10923,59 @@ def SAFTYLOSS(data: Indicator, n1: Indicator, n2: Indicator, p: Indicator) -> In
10619
10923
  :param float|Indicator|IndParam p: 噪音系数
10620
10924
  :rtype: Indicator
10621
10925
  """
10926
+ def SCFilter_AmountLimit(min_amount_percent_limit: typing.SupportsFloat = 0.1) -> ScoresFilterBase:
10927
+ """
10928
+ SCFilter_AmountLimit([min_amount_percent_limit: float = 0.1])
10929
+
10930
+ 过滤掉成交金额在评分列表末尾百分比范围内的截面
10931
+
10932
+ 注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是成交金额较小的系统评分记录;反之,则是金额较大的系统评分记录
10933
+
10934
+ :param double min_amount_percent_limit: 最小金额百分比限制
10935
+ :return: 截面过滤器
10936
+ :rtype: ScoresFilterPtr
10937
+ """
10938
+ def SCFilter_Group(group: typing.SupportsInt = 10, group_index: typing.SupportsInt = 0) -> ScoresFilterBase:
10939
+ """
10940
+ SCFilter_Group([group: int=10, group_index: int=0])
10941
+
10942
+ 按截面进行分组过滤
10943
+ :param int group: 分组数量
10944
+ :param int group_index: 分组索引
10945
+ :return: 截面过滤器
10946
+ :rtype: ScoresFilterPtr
10947
+ """
10948
+ def SCFilter_IgnoreNan() -> ScoresFilterBase:
10949
+ """
10950
+ SCFilter_IgnoreNan() -> ScoresFilterPtr
10951
+
10952
+ 忽略截面中的NAN值
10953
+ """
10954
+ def SCFilter_LessOrEqualValue(value: typing.SupportsFloat = 0.0) -> ScoresFilterBase:
10955
+ """
10956
+ SCFilter_LessOrEqualValue([value = 0.0])
10957
+
10958
+ 过滤掉评分小于等于指定值的截面
10959
+ """
10960
+ def SCFilter_Price(min_price: typing.SupportsFloat = 10.0, max_price: typing.SupportsFloat = 100000.0) -> ScoresFilterBase:
10961
+ """
10962
+ SCFilter_Price([min_price = 10., max_price = 100000.])
10963
+
10964
+ 仅保留价格在 [min_price, max_price] 之间的标的
10965
+
10966
+ 注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是价格较小的系统评分记录;反之,则是价格较大的系统评分记录
10967
+
10968
+ :param double min_price: 最小价格限制
10969
+ :param double max_price: 最大价格限制
10970
+ """
10971
+ def SCFilter_TopN(topn: typing.SupportsInt = 10) -> ScoresFilterBase:
10972
+ """
10973
+ SCFilter_TopN([topn: int=10])
10974
+
10975
+ 获取评分列表中的前 topn 个
10976
+
10977
+ :param int topn: 前 topn 个
10978
+ """
10622
10979
  def SE_EvaluateOptimal(arg0: typing.Any) -> SelectorBase:
10623
10980
  """
10624
10981
  SE_EvaluateOptimal(evalulate_func)
@@ -10669,6 +11026,27 @@ def SE_MultiFactor(inds: collections.abc.Sequence, topn: typing.SupportsInt = 10
10669
11026
  :param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
10670
11027
  :param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
10671
11028
  """
11029
+ @typing.overload
11030
+ def SE_MultiFactor2(mf: ..., filter: ScoresFilterBase = ...) -> SelectorBase:
11031
+ ...
11032
+ @typing.overload
11033
+ def SE_MultiFactor2(inds: collections.abc.Sequence, ic_n: typing.SupportsInt = 5, ic_rolling_n: typing.SupportsInt = 120, ref_stk: typing.Any = None, spearman: bool = True, mode: str = 'MF_ICIRWeight', filter: ScoresFilterBase = ...) -> SelectorBase:
11034
+ """
11035
+ SE_MultiFactor2([inds, ic_n, ic_rolling_n, ref_stk, spearman, mode, filter])
11036
+
11037
+ 创建基于多因子评分的选择器,两种创建方式
11038
+
11039
+ - 直接指定 MF:
11040
+ :param MultiFactorBase mf: 直接指定的多因子合成算法
11041
+
11042
+ - 参数直接创建:
11043
+ :param sequense(Indicator) inds: 原始因子列表
11044
+ :param int ic_n: 默认 IC 对应的 N 日收益率
11045
+ :param int ic_rolling_n: IC 滚动周期
11046
+ :param Stock ref_stk: 参考证券 (未指定时,默认为 sh000300 沪深300)
11047
+ :param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
11048
+ :param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
11049
+ """
10672
11050
  def SE_PerformanceOptimal(key: str = '帐户平均年收益率%', mode: typing.SupportsInt = 0) -> SelectorBase:
10673
11051
  """
10674
11052
  SE_PerformanceOptimal(key="帐户平均年收益率%", mode=0)
@@ -11079,6 +11457,48 @@ def SP_FixedValue(value: typing.SupportsFloat = 0.01) -> SlippageBase:
11079
11457
  :param float p: 偏移价格
11080
11458
  :return: 移滑价差算法实例
11081
11459
  """
11460
+ def SP_LogNormal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05) -> SlippageBase:
11461
+ """
11462
+ SP_LogNormal([mean=0.0, stddev=0.05])
11463
+
11464
+ 对数正态分布随机价格移滑价差算法, 买入和卖出操作是价格在对数正态分布[mean, stddev]范围内的随机偏移
11465
+
11466
+ :param float mean: 对数正态分布的均值
11467
+ :param float stddev: 对数正态分布的标准差
11468
+ :return: 移滑价差算法实例
11469
+ """
11470
+ def SP_Normal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05) -> SlippageBase:
11471
+ """
11472
+ SP_Normal([mean=0.0, stddev=0.05])
11473
+
11474
+ 正态分布随机价格移滑价差算法, 买入和卖出操作是价格在正态分布[mean, stddev]范围内的随机偏移
11475
+
11476
+ :param float mean: 正态分布的均值
11477
+ :param float stddev: 正态分布的标准差
11478
+ :return: 移滑价差算法实例
11479
+ """
11480
+ def SP_TruncNormal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05, min_value: typing.SupportsFloat = -0.11, max_value: typing.SupportsFloat = 0.1) -> SlippageBase:
11481
+ """
11482
+ SP_TruncNormal([mean=0.0, stddev=0.05, min_value=-0.1, max_value=0.1])
11483
+
11484
+ 截断正态分布随机价格移滑价差算法, 买入和卖出操作是价格在截断正态分布[mean, stddev, min_value, max_value]范围内的随机偏移
11485
+
11486
+ :param float mean: 截断正态分布的均值
11487
+ :param float stddev: 截断正态分布的标准差
11488
+ :param float min_value: 最小截断值
11489
+ :param float max_value: 最大截断值
11490
+ :return: 移滑价差算法实例
11491
+ """
11492
+ def SP_Uniform(min_value: typing.SupportsFloat = -0.05, max_value: typing.SupportsFloat = 0.05) -> SlippageBase:
11493
+ """
11494
+ SP_Uniform([min_value=-0.05, max_value=0.05])
11495
+
11496
+ 均匀分布随机价格移滑价差算法, 买入和卖出操作是价格在[min_value, max_value]范围内的均匀分布随机偏移
11497
+
11498
+ :param float min_value: 最小偏移价格
11499
+ :param float max_value: 最大偏移价格
11500
+ :return: 移滑价差算法实例
11501
+ """
11082
11502
  @typing.overload
11083
11503
  def SQRT() -> Indicator:
11084
11504
  ...
@@ -13768,7 +14188,7 @@ def ZSCORE(data: Indicator, out_extreme: bool = False, nsigma: typing.SupportsFl
13768
14188
  """
13769
14189
  ZSCORE(data[, out_extreme, nsigma, recursive])
13770
14190
 
13771
- 对数据进行标准化(归一),可选进行极值排除
14191
+ 对数据进行标准化(归一),可选进行极值处理
13772
14192
 
13773
14193
  注:非窗口滚动,如需窗口滚动的标准化,直接 (x - MA(x, n)) / STDEV(x, n) 即可。
13774
14194
 
@@ -13822,6 +14242,15 @@ def batch_calculate_inds(arg0: collections.abc.Sequence, arg1: KData) -> list:
13822
14242
  :return: 指标计算结果列表
13823
14243
  :rtype: list
13824
14244
  """
14245
+ def bind_email(arg0: str, arg1: str) -> None:
14246
+ """
14247
+ bind_email(email: str, code: str)
14248
+
14249
+ 绑定邮箱和授权码
14250
+
14251
+ :param str email: 邮箱地址
14252
+ :param str code: 授权码
14253
+ """
13825
14254
  def can_upgrade() -> bool:
13826
14255
  ...
13827
14256
  def close_ostream_to_python() -> None:
@@ -13882,10 +14311,6 @@ def dates_to_np(arg0: DatetimeList) -> numpy.ndarray:
13882
14311
  """
13883
14312
  将 DatetimeList 转换为 NumPy 元组
13884
14313
  """
13885
- def dates_to_pa(arg0: DatetimeList) -> typing.Any:
13886
- """
13887
- 将日期列表转换为 pyarrow.Table 对象
13888
- """
13889
14314
  def df_to_krecords(df: typing.Any, columns: collections.abc.Sequence[str] = ['datetime', 'open', 'high', 'low', 'close', 'amount', 'volume']) -> KRecordList:
13890
14315
  """
13891
14316
  df_to_krecords(df: pd.DataFrame[, columns: dict]) -> KRecordList
@@ -13899,7 +14324,7 @@ def df_to_krecords(df: typing.Any, columns: collections.abc.Sequence[str] = ['da
13899
14324
  def fetch_trial_license(arg0: str) -> str:
13900
14325
  """
13901
14326
  fetch_trial_license(email: str)
13902
-
14327
+
13903
14328
  获取试用授权码
13904
14329
 
13905
14330
  :param str email: 邮箱地址
@@ -13947,38 +14372,23 @@ def get_date_range(start: Datetime, end: Datetime) -> DatetimeList:
13947
14372
  :param Datetime end: 结束日期
13948
14373
  :rtype: DatetimeList
13949
14374
  """
13950
- @typing.overload
13951
- def get_inds_view(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
13952
- ...
13953
- @typing.overload
13954
- def get_inds_view(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], date: Datetime, cal_len: typing.SupportsInt = 100, ktype: str = 'DAY', market: str = 'SH') -> typing.Any:
14375
+ def get_expire_date() -> Datetime:
14376
+ """
14377
+ get_expire_date() -> Datetime
14378
+
14379
+ 查看授权到期时间
14380
+ """
14381
+ def get_funds_list(arg0: collections.abc.Sequence[TradeManager], arg1: DatetimeList) -> list[list[FundsRecord]]:
13955
14382
  """
13956
- get_inds_view(stks, inds, date[, cal_len=100, ktype=Query.DAY, market='SH']) -> pandas.DataFrame)
14383
+ get_funds_list(tm_list: list, ref_dates: DatetimeList) -> list[Funds])
13957
14384
 
13958
- 方式1: 获取指定日期的各证券的各指标结果
13959
-
13960
- :param stks: 证券列表
13961
- :param list[Indicator] inds: 指标列表
13962
- :param Datetime date: 指定日期
13963
- :param int cal_len: 计算需要的数据长度
13964
- :param str ktype: k线类型
13965
- :param str market: 指定行情市场(用于日期对齐)
14385
+ 一次性从多个账户中获取多个指定时刻的账户资金信息
13966
14386
 
13967
- 方式2: 获取按指定Query查询计算的各证券的各指标结果, 结果中将包含指定 Query 包含的所有指定市场交易日日期
13968
- get_inds_view(stks, inds, query, market='SH'])
13969
-
13970
- :param stks: 指定证券列表
13971
- :param list[Indicator] inds: 指定指标列表
13972
- :param Query query: 查询条件
13973
- :param str market: 指定行情市场(用于日期对齐)
14387
+ :param list tm_list: 账户列表
14388
+ :param DatetimeList ref_dates: 获取时刻列表
14389
+ :return: 账户资金列表
13974
14390
  """
13975
14391
  @typing.overload
13976
- def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
13977
- ...
13978
- @typing.overload
13979
- def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], date: Datetime, cal_len: typing.SupportsInt = 100, ktype: str = 'DAY', market: str = 'SH') -> typing.Any:
13980
- ...
13981
- @typing.overload
13982
14392
  def get_kdata(arg0: str, arg1: Query) -> KData:
13983
14393
  ...
13984
14394
  @typing.overload
@@ -14009,23 +14419,6 @@ def get_log_level() -> LOG_LEVEL:
14009
14419
  """
14010
14420
  获取当前日志级别
14011
14421
  """
14012
- def get_market_view(stks: collections.abc.Sequence, date: Datetime = ..., market: str = 'SH') -> typing.Any:
14013
- """
14014
- get_market_view(stks[, date=Datetime(), market='SH']) -> pandas.DataFrame
14015
-
14016
- 获取指定股票集合在指定交易日的行情数据,不包含当日停牌无数据的股票。如未指定日期,则返回最后交易日行情数据,
14017
- 如同时接收了行情数据,则为实时行情。
14018
-
14019
- 注: 此函数依赖于日线数据
14020
-
14021
- :param list[Stock] stks: 股票列表
14022
- :param Datetime date: 获取指定日期的行情数据
14023
- :param str market: 市场代码
14024
- :return: 指定股票列表最后行情数据
14025
- :rtype: pandas.DataFrame
14026
- """
14027
- def get_market_view_pyarrow(stks: collections.abc.Sequence, date: Datetime = ..., market: str = 'SH') -> typing.Any:
14028
- ...
14029
14422
  def get_spot_from_buffer_server(arg0: str, arg1: str, arg2: str, arg3: Datetime) -> list[SpotRecord]:
14030
14423
  """
14031
14424
  get_spot_from_buffer_server(addr: str, market: str, code: str, datetime: str)
@@ -14112,16 +14505,33 @@ def krecords_to_df(arg0: KRecordList) -> typing.Any:
14112
14505
  ...
14113
14506
  def krecords_to_np(arg0: KRecordList) -> numpy.ndarray:
14114
14507
  ...
14115
- def krecords_to_pa(arg0: KRecordList) -> typing.Any:
14116
- """
14117
- 将KRecordList转换为parraw.Table
14118
- """
14119
14508
  def open_ostream_to_python() -> None:
14120
14509
  ...
14121
14510
  def open_spend_time() -> None:
14122
14511
  """
14123
14512
  全局开启 c++ 部分耗时打印
14124
14513
  """
14514
+ def parallel_run_pf(pf_list: collections.abc.Sequence[...], query: Query, force: bool = False) -> list[list[...]]:
14515
+ """
14516
+ parallel_run_pf(pf_list, query[, force=False])
14517
+
14518
+ 并行执行多个投资组合策略, 并返回 list FundsList, 各账户对应资产(按query时间段)
14519
+
14520
+ :param list pf_list: 投资组合列表
14521
+ :param Query query: 查询条件
14522
+ :param bool force: 强制重新计算
14523
+ """
14524
+ def parallel_run_sys(sys_list: collections.abc.Sequence[...], query: Query, reset: bool = False, reset_all: bool = False) -> list[list[...]]:
14525
+ """
14526
+ parallel_run_sys(sys_list, query[, reset=False, reset_all=False])
14527
+
14528
+ 并行运行多个系系统, 并返回 list FundsList, 各账户对应资产(按query时间段)
14529
+
14530
+ :param sys_list: 系统列表
14531
+ :param query: 查询条件
14532
+ :param bool reset: 执行前是否依据系统部件共享属性复位
14533
+ :param bool reset_all: 强制复位所有部件
14534
+ """
14125
14535
  def positions_to_df(arg0: PositionRecordList) -> typing.Any:
14126
14536
  """
14127
14537
  positions_to_df(positions)
@@ -14140,10 +14550,6 @@ def positions_to_np(arg0: PositionRecordList) -> numpy.ndarray:
14140
14550
 
14141
14551
  注意: 其中的当前市值、利润、盈亏等计算值均以日线计算, 如使用日线一下级别回测时, 对未清仓的持仓记录需要自行重新计算!
14142
14552
  """
14143
- def positions_to_pa(arg0: PositionRecordList) -> typing.Any:
14144
- """
14145
- 将交易记录列表转换为 pyarrow.Table 对象
14146
- """
14147
14553
  @typing.overload
14148
14554
  def register_extra_ktype(ktype: str, basetype: str, minutes: typing.SupportsInt, get_phase_end: collections.abc.Callable[[Datetime], Datetime]) -> None:
14149
14555
  ...
@@ -14187,7 +14593,7 @@ def release_extra_ktype() -> None:
14187
14593
  def remove_license() -> None:
14188
14594
  """
14189
14595
  remove_license()
14190
-
14596
+
14191
14597
  移除当前授权
14192
14598
  """
14193
14599
  @typing.overload
@@ -14281,16 +14687,19 @@ def spot_agent_is_running() -> bool:
14281
14687
  """
14282
14688
  判断行情数据接收代理是否在运行
14283
14689
  """
14284
- def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 2, save_tick: bool = False, buf_tick: bool = False) -> None:
14690
+ def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 3, save_tick: bool = False, buf_tick: bool = False, parquet_path: str = '') -> None:
14285
14691
  """
14286
- start_data_server(addr: str[, work_num: int=2])
14692
+ start_data_server(addr: str[, work_num: int=3, save_tick: bool=False, buf_tick: bool=False, parquet_path: str=''])
14287
14693
 
14288
- 启动数据缓存服务
14289
-
14694
+ 启动数据缓存服务。其中save_tick 参数和 parquet_path 有关联:
14695
+ - 如果 save_tick=True, parquet_path 不为空时, 使用 parquet_path 保存数据;
14696
+ - 如果 save_tick=True, parquet_path 为空时, 则使用 clickhouse K线存储引擎保存数据(需配置使用 clickhouse K线存储引擎)
14697
+
14290
14698
  :param str addr: 服务器地址
14291
14699
  :param int work_num: 工作线程数
14292
- :param bool save_tick: 是否保存tick数据至数据库(仅支持使用 clickhouse K线存储引擎)
14700
+ :param bool save_tick: 是否保存tick数据至数据库(如果 parquet_path 不为空时, 使用 parquet 文件进行保存;否则,需使用 clickhouse K线存储引擎)
14293
14701
  :param bool buf_tick: 是否缓存tick数据
14702
+ :param str parquet_path: 保存tick数据至parquet文件路径, 仅在 save_tick=True 时有效
14294
14703
  :return: None
14295
14704
  """
14296
14705
  def start_spot_agent(print: bool = False, worker_num: typing.SupportsInt = 1, addr: str = '') -> None:
@@ -14325,10 +14734,6 @@ def timeline_to_np(arg0: TimeLineList) -> numpy.ndarray:
14325
14734
  """
14326
14735
  将分时线记录转换为NumPy元组
14327
14736
  """
14328
- def timeline_to_pa(arg0: TimeLineList) -> typing.Any:
14329
- """
14330
- 将分时线记录转换为 pyarrow.Table 对象
14331
- """
14332
14737
  def toPriceList(arg0: collections.abc.Sequence) -> list[float]:
14333
14738
  """
14334
14739
  将 python list/tuple/np.arry 对象转化为 PriceList 对象
@@ -14345,10 +14750,6 @@ def trades_to_df(arg0: TradeRecordList) -> typing.Any:
14345
14750
  """
14346
14751
  def trades_to_np(arg0: TradeRecordList) -> numpy.ndarray:
14347
14752
  ...
14348
- def trades_to_pa(arg0: TradeRecordList) -> typing.Any:
14349
- """
14350
- 将交易记录列表转换为 pyarrow.Table 对象
14351
- """
14352
14753
  def translist_to_df(arg0: TransList) -> typing.Any:
14353
14754
  """
14354
14755
  将分笔记录转换为 DataFrame
@@ -14357,10 +14758,6 @@ def translist_to_np(arg0: TransList) -> numpy.ndarray:
14357
14758
  """
14358
14759
  将分笔记录转换为NumPy元组
14359
14760
  """
14360
- def translist_to_pa(arg0: TransList) -> typing.Any:
14361
- """
14362
- 将分笔记录转换为 pyarrow.Table 对象
14363
- """
14364
14761
  def view_license() -> str:
14365
14762
  """
14366
14763
  view_license()
@@ -14371,10 +14768,6 @@ def weights_to_df(arg0: StockWeightList) -> typing.Any:
14371
14768
  ...
14372
14769
  def weights_to_np(arg0: StockWeightList) -> numpy.ndarray:
14373
14770
  ...
14374
- def weights_to_pa(arg0: StockWeightList) -> typing.Any:
14375
- """
14376
- 将权息记录列表转换为 pyarrow.Table 对象
14377
- """
14378
14771
  DEBUG: LOG_LEVEL # value = <LOG_LEVEL.DEBUG: 1>
14379
14772
  ERROR: LOG_LEVEL # value = <LOG_LEVEL.ERROR: 4>
14380
14773
  FATAL: LOG_LEVEL # value = <LOG_LEVEL.FATAL: 5>