hikyuu 2.6.8.4__py3-none-manylinux2014_x86_64.whl → 2.7.0__py3-none-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- hikyuu/__init__.py +31 -17
- hikyuu/__init__.pyi +610 -590
- hikyuu/analysis/__init__.pyi +584 -563
- hikyuu/analysis/analysis.pyi +585 -564
- hikyuu/core.py +2 -0
- hikyuu/core.pyi +586 -565
- hikyuu/cpp/__init__.pyi +2 -2
- hikyuu/cpp/core310.pyi +501 -108
- hikyuu/cpp/core310.so +0 -0
- hikyuu/cpp/core311.pyi +495 -108
- hikyuu/cpp/core311.so +0 -0
- hikyuu/cpp/core312.pyi +495 -108
- hikyuu/cpp/core312.so +0 -0
- hikyuu/cpp/core313.pyi +501 -108
- hikyuu/cpp/core313.so +0 -0
- hikyuu/cpp/i18n/zh_CN/hikyuu.mo +0 -0
- hikyuu/cpp/libboost_charconv-mt.so +0 -0
- hikyuu/cpp/libboost_charconv-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_chrono-mt.so +0 -0
- hikyuu/cpp/libboost_chrono-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_date_time-mt.so +0 -0
- hikyuu/cpp/libboost_date_time-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_serialization-mt.so +0 -0
- hikyuu/cpp/libboost_serialization-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_system-mt.so +0 -0
- hikyuu/cpp/libboost_system-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_thread-mt.so +0 -0
- hikyuu/cpp/libboost_thread-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_wserialization-mt.so +0 -0
- hikyuu/cpp/libboost_wserialization-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libhikyuu.so +0 -0
- hikyuu/cpp/libsqlite3.so +0 -0
- hikyuu/data/clickhouse_upgrade/createdb.sql +105 -105
- hikyuu/data/common.py +3 -3
- hikyuu/data/common_clickhouse.py +1 -1
- hikyuu/data/download_block.py +351 -0
- hikyuu/data/em_block_to_clickhouse.py +26 -74
- hikyuu/data/em_block_to_mysql.py +25 -75
- hikyuu/data/em_block_to_sqlite.py +26 -78
- hikyuu/data/hku_config_template.py +3 -3
- hikyuu/data/pytdx_to_clickhouse.py +15 -11
- hikyuu/data/pytdx_to_h5.py +6 -2
- hikyuu/data/pytdx_to_mysql.py +5 -1
- hikyuu/data/pytdx_weight_to_clickhouse.py +1 -1
- hikyuu/data/pytdx_weight_to_mysql.py +1 -1
- hikyuu/data/pytdx_weight_to_sqlite.py +1 -1
- hikyuu/data/zh_bond10_to_clickhouse.py +1 -1
- hikyuu/draw/__init__.pyi +1 -1
- hikyuu/draw/drawplot/__init__.pyi +9 -9
- hikyuu/draw/drawplot/bokeh_draw.pyi +600 -580
- hikyuu/draw/drawplot/common.pyi +1 -1
- hikyuu/draw/drawplot/echarts_draw.pyi +602 -582
- hikyuu/draw/drawplot/matplotlib_draw.py +4 -74
- hikyuu/draw/drawplot/matplotlib_draw.pyi +612 -592
- hikyuu/draw/elder.pyi +11 -11
- hikyuu/draw/kaufman.pyi +18 -18
- hikyuu/draw/volume.pyi +10 -10
- hikyuu/examples/notebook/Demo/Demo1.ipynb +48 -33
- hikyuu/extend.py +0 -7
- hikyuu/extend.pyi +594 -573
- hikyuu/fetcher/stock/zh_block_em.py +12 -40
- hikyuu/gui/HikyuuTDX.py +99 -31
- hikyuu/gui/data/CollectSpotThread.py +1 -1
- hikyuu/gui/data/EscapetimeThread.py +8 -14
- hikyuu/gui/data/ImportBlockInfoTask.py +3 -10
- hikyuu/gui/data/MainWindow.py +1196 -717
- hikyuu/gui/data/SchedImportThread.py +2 -2
- hikyuu/gui/data/UsePytdxImportToH5Thread.py +3 -3
- hikyuu/gui/data/UseQmtImportToH5Thread.py +2 -2
- hikyuu/gui/data/UseTdxImportToH5Thread.py +3 -3
- hikyuu/gui/data/tool.py +32 -25
- hikyuu/gui/dataserver.py +5 -3
- hikyuu/gui/images/liandongxiaopu.png +0 -0
- hikyuu/hub.pyi +6 -6
- hikyuu/include/hikyuu/DataType.h +4 -16
- hikyuu/include/hikyuu/KData.h +6 -3
- hikyuu/include/hikyuu/KDataPrivatedBufferImp.h +1 -1
- hikyuu/include/hikyuu/KDataSharedBufferImp.h +1 -1
- hikyuu/include/hikyuu/KQuery.h +2 -2
- hikyuu/include/hikyuu/Stock.h +4 -1
- hikyuu/include/hikyuu/StockManager.h +13 -3
- hikyuu/include/hikyuu/data_driver/BaseInfoDriver.h +8 -0
- hikyuu/include/hikyuu/data_driver/BlockInfoDriver.h +6 -0
- hikyuu/include/hikyuu/data_driver/KDataDriver.h +26 -1
- hikyuu/include/hikyuu/data_driver/base_info/mysql/MySQLBaseInfoDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/base_info/sqlite/SQLiteBaseInfoDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/block_info/mysql/MySQLBlockInfoDriver.h +2 -1
- hikyuu/include/hikyuu/data_driver/block_info/qianlong/QLBlockInfoDriver.h +2 -1
- hikyuu/include/hikyuu/data_driver/block_info/sqlite/SQLiteBlockInfoDriver.h +2 -1
- hikyuu/include/hikyuu/data_driver/kdata/DoNothingKDataDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/cvs/KDataTempCsvDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/hdf5/H5KDataDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/mysql/MySQLKDataDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/sqlite/SQLiteKDataDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/tdx/TdxKDataDriver.h +1 -1
- hikyuu/include/hikyuu/hikyuu.h +1 -1
- hikyuu/include/hikyuu/indicator/build_in.h +1 -0
- hikyuu/include/hikyuu/indicator/crt/CYCLE.h +4 -4
- hikyuu/include/hikyuu/indicator/crt/HSL.h +2 -2
- hikyuu/include/hikyuu/indicator/crt/QUANTILE_TRUNC.h +30 -0
- hikyuu/include/hikyuu/indicator/crt/TURNOVER.h +1 -0
- hikyuu/include/hikyuu/indicator/crt/ZSCORE.h +2 -2
- hikyuu/include/hikyuu/indicator/imp/IQuantileTrunc.h +25 -0
- hikyuu/include/hikyuu/misc.h +38 -0
- hikyuu/include/hikyuu/plugin/dataserver.h +2 -1
- hikyuu/include/hikyuu/plugin/device.h +10 -0
- hikyuu/include/hikyuu/plugin/extind.h +37 -0
- hikyuu/include/hikyuu/plugin/hkuextra.h +0 -18
- hikyuu/include/hikyuu/plugin/interface/DataServerPluginInterface.h +2 -2
- hikyuu/include/hikyuu/plugin/interface/DevicePluginInterface.h +2 -0
- hikyuu/include/hikyuu/plugin/interface/ExtendIndicatorsPluginInterface.h +12 -0
- hikyuu/include/hikyuu/plugin/interface/HkuExtraPluginInterface.h +0 -14
- hikyuu/include/hikyuu/plugin/interface/plugins.h +3 -1
- hikyuu/include/hikyuu/python/pybind_utils.h +1 -8
- hikyuu/include/hikyuu/strategy/RunSystemInStrategy.h +3 -0
- hikyuu/include/hikyuu/trade_manage/Performance.h +4 -4
- hikyuu/include/hikyuu/trade_manage/TradeManagerBase.h +10 -1
- hikyuu/include/hikyuu/trade_sys/moneymanager/imp/FixedCapitalFundsMM.h +0 -4
- hikyuu/include/hikyuu/trade_sys/multifactor/MultiFactorBase.h +36 -3
- hikyuu/include/hikyuu/trade_sys/multifactor/NormalizeBase.h +125 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/ScoresFilterBase.h +125 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/build_in.h +3 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/buildin_norm.h +36 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/buildin_scfilter.h +51 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/GroupSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreLessOrEqualValueSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreNanSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/MinAmountPercentSCFilter.h +25 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/PriceSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/TopNSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/imp/EqualWeightMultiFactor.h +1 -1
- hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICIRMultiFactor.h +1 -1
- hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICMultiFactor.h +1 -1
- hikyuu/include/hikyuu/trade_sys/multifactor/imp/WeightMultiFactor.h +1 -1
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormMinMax.h +23 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantile.h +28 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantileUniform.h +28 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormZScore.h +25 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/__init__.py +1 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/quantile_trunc.h +16 -0
- hikyuu/include/hikyuu/trade_sys/portfolio/Portfolio.h +7 -0
- hikyuu/include/hikyuu/trade_sys/portfolio/imp/SimplePortfolio.h +7 -0
- hikyuu/include/hikyuu/trade_sys/portfolio/imp/WithoutAFPortfolio.h +7 -0
- hikyuu/include/hikyuu/trade_sys/selector/SelectorBase.h +49 -0
- hikyuu/include/hikyuu/trade_sys/selector/build_in.h +1 -0
- hikyuu/include/hikyuu/trade_sys/selector/crt/SE_MultiFactor2.h +40 -0
- hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector.h +0 -3
- hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector2.h +49 -0
- hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorSelector.h +1 -1
- hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorValueSelector.h +1 -1
- hikyuu/include/hikyuu/trade_sys/signal/imp/BandSignal2.h +0 -4
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/AddValueSignal.h +2 -2
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/DivValueSignal.h +2 -2
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/MulValueSignal.h +2 -2
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorSignal.h +1 -1
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorValueSignal.h +4 -4
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/SubValueSignal.h +2 -2
- hikyuu/include/hikyuu/trade_sys/slippage/build_in.h +5 -1
- hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_LogNormal.h +22 -0
- hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_Normal.h +22 -0
- hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_TruncNormal.h +25 -0
- hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_Uniform.h +23 -0
- hikyuu/include/hikyuu/trade_sys/slippage/imp/LogNormalSlippage.h +28 -0
- hikyuu/include/hikyuu/trade_sys/slippage/imp/NormalSlippage.h +28 -0
- hikyuu/include/hikyuu/trade_sys/slippage/imp/TruncNormalSlippage.h +28 -0
- hikyuu/include/hikyuu/trade_sys/slippage/imp/UniformSlippage.h +24 -0
- hikyuu/include/hikyuu/trade_sys/system/System.h +14 -1
- hikyuu/include/hikyuu/utilities/SpendTimer.h +17 -7
- hikyuu/include/hikyuu/utilities/arithmetic.h +55 -0
- hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLConnect.h +1 -1
- hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLStatement.h +1 -1
- hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteConnect.h +1 -1
- hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteStatement.h +1 -1
- hikyuu/include/hikyuu/utilities/plugin/PluginLoader.h +4 -1
- hikyuu/include/hikyuu/version.h +5 -5
- hikyuu/plugin/libbacktest.so +0 -0
- hikyuu/plugin/libclickhousedriver.so +0 -0
- hikyuu/plugin/libdataserver.so +0 -0
- hikyuu/{cpp/core39.so → plugin/libdataserver_parquet.so} +0 -0
- hikyuu/plugin/libdevice.so +0 -0
- hikyuu/plugin/libextind.so +0 -0
- hikyuu/plugin/libhkuextra.so +0 -0
- hikyuu/plugin/libimport2hdf5.so +0 -0
- hikyuu/plugin/libtmreport.so +0 -0
- hikyuu/trade_manage/__init__.pyi +599 -579
- hikyuu/trade_manage/broker.pyi +3 -3
- hikyuu/trade_manage/broker_easytrader.pyi +1 -1
- hikyuu/trade_manage/trade.py +0 -2
- hikyuu/trade_manage/trade.pyi +599 -579
- hikyuu/util/__init__.pyi +1 -1
- hikyuu/util/singleton.pyi +1 -1
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/METADATA +36 -32
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/RECORD +197 -164
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/top_level.txt +2 -2
- hikyuu/cpp/core39.pyi +0 -14385
- hikyuu/data_driver/__init__.py +0 -49
- hikyuu/data_driver/jqdata_data_driver.py +0 -277
- hikyuu/data_driver/pytdx_data_driver.py +0 -292
- hikyuu/fetcher/stock/zh_stock_a_huatai.py +0 -51
- hikyuu/fetcher/stock/zh_stock_a_pytdx.py +0 -129
- hikyuu/gui/data/CollectToMemThread.py +0 -123
- hikyuu/gui/data/CollectToMySQLThread.py +0 -178
- hikyuu/gui/start_huatai_insight.py +0 -510
- hikyuu/include/hikyuu/views/arrow_common.h +0 -38
- hikyuu/include/hikyuu/views/arrow_views.h +0 -117
- hikyuu/tools/update_block_info.py +0 -168
- /hikyuu/include/hikyuu/{views → trade_sys/multifactor/filter}/__init__.py +0 -0
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/WHEEL +0 -0
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/entry_points.txt +0 -0
hikyuu/cpp/core310.pyi
CHANGED
|
@@ -3,7 +3,7 @@ import collections.abc
|
|
|
3
3
|
import numpy
|
|
4
4
|
import numpy.typing
|
|
5
5
|
import typing
|
|
6
|
-
__all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NOT', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', '
|
|
6
|
+
__all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_FUNC', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'GROUP_COUNT', 'GROUP_FUNC', 'GROUP_MAX', 'GROUP_MEAN', 'GROUP_MIN', 'GROUP_PROD', 'GROUP_SUM', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NORM_MinMax', 'NORM_NOTHING', 'NORM_Quantile', 'NORM_Quantile_Uniform', 'NORM_Zscore', 'NOT', 'NormalizeBase', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'QUANTILE_TRUNC', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SCFilter_AmountLimit', 'SCFilter_Group', 'SCFilter_IgnoreNan', 'SCFilter_LessOrEqualValue', 'SCFilter_Price', 'SCFilter_TopN', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_MultiFactor2', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SP_LogNormal', 'SP_Normal', 'SP_TruncNormal', 'SP_Uniform', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'ScoresFilterBase', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'bind_email', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_expire_date', 'get_funds_list', 'get_kdata', 'get_last_version', 'get_log_level', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'open_ostream_to_python', 'open_spend_time', 'parallel_run_pf', 'parallel_run_sys', 'positions_to_df', 'positions_to_np', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'toPriceList', 'trades_to_df', 'trades_to_np', 'translist_to_df', 'translist_to_np', 'view_license', 'weights_to_df', 'weights_to_np']
|
|
7
7
|
class AllocateFundsBase:
|
|
8
8
|
"""
|
|
9
9
|
资产分配算法基类, 子类接口:
|
|
@@ -229,7 +229,10 @@ class Block:
|
|
|
229
229
|
def __init__(self) -> None:
|
|
230
230
|
...
|
|
231
231
|
@typing.overload
|
|
232
|
-
def __init__(self,
|
|
232
|
+
def __init__(self, category: str, name: str) -> None:
|
|
233
|
+
...
|
|
234
|
+
@typing.overload
|
|
235
|
+
def __init__(self, category: str, name: str, index_code: str) -> None:
|
|
233
236
|
...
|
|
234
237
|
@typing.overload
|
|
235
238
|
def __init__(self, arg0: Block) -> None:
|
|
@@ -1211,9 +1214,6 @@ class DatetimeList:
|
|
|
1211
1214
|
@staticmethod
|
|
1212
1215
|
def to_pandas(data: DatetimeList):
|
|
1213
1216
|
...
|
|
1214
|
-
@staticmethod
|
|
1215
|
-
def to_pyarrow(data):
|
|
1216
|
-
...
|
|
1217
1217
|
def __bool__(self) -> bool:
|
|
1218
1218
|
"""
|
|
1219
1219
|
Check whether the list is nonempty
|
|
@@ -2017,8 +2017,6 @@ class Indicator:
|
|
|
2017
2017
|
"""
|
|
2018
2018
|
转化为np.array, 如果为时间序列, 则包含 datetime 日期列
|
|
2019
2019
|
"""
|
|
2020
|
-
def to_pyarrow(self) -> typing.Any:
|
|
2021
|
-
...
|
|
2022
2020
|
def value_to_df(self) -> typing.Any:
|
|
2023
2021
|
"""
|
|
2024
2022
|
转换为 DataFrame, 仅包含值
|
|
@@ -2027,8 +2025,6 @@ class Indicator:
|
|
|
2027
2025
|
"""
|
|
2028
2026
|
仅转化值为np.array, 不包含日期列
|
|
2029
2027
|
"""
|
|
2030
|
-
def value_to_pyarrow(self) -> typing.Any:
|
|
2031
|
-
...
|
|
2032
2028
|
@property
|
|
2033
2029
|
def discard(self) -> int:
|
|
2034
2030
|
"""
|
|
@@ -2347,8 +2343,6 @@ class KData:
|
|
|
2347
2343
|
"""
|
|
2348
2344
|
将 KData 转换为 NumPy 数组
|
|
2349
2345
|
"""
|
|
2350
|
-
def to_pyarrow(self) -> typing.Any:
|
|
2351
|
-
...
|
|
2352
2346
|
def tocsv(self, arg0: str) -> None:
|
|
2353
2347
|
"""
|
|
2354
2348
|
tocsv(self, filename)
|
|
@@ -2608,9 +2602,6 @@ class KRecordList:
|
|
|
2608
2602
|
@staticmethod
|
|
2609
2603
|
def to_pandas(data):
|
|
2610
2604
|
...
|
|
2611
|
-
@staticmethod
|
|
2612
|
-
def to_pyarrow(data):
|
|
2613
|
-
...
|
|
2614
2605
|
def __bool__(self) -> bool:
|
|
2615
2606
|
"""
|
|
2616
2607
|
Check whether the list is nonempty
|
|
@@ -3085,6 +3076,17 @@ class MultiFactorBase:
|
|
|
3085
3076
|
...
|
|
3086
3077
|
def __str__(self) -> str:
|
|
3087
3078
|
...
|
|
3079
|
+
def add_special_normalize(self, name: str, norm: NormalizeBase = None, category: str = '', style_inds: collections.abc.Sequence[Indicator] = []) -> None:
|
|
3080
|
+
"""
|
|
3081
|
+
add_special_normalize(self, name[, norm=None, category="", style_inds=[]])
|
|
3082
|
+
|
|
3083
|
+
对指定名称的指标应用特定的标准化/归一化、行业中性化、风格因子中性化操作。标准化操作、行业中性化、风格因子中性化彼此无关,可同时指定也可分开指定。
|
|
3084
|
+
|
|
3085
|
+
:param str name: 特殊归一化方法名称
|
|
3086
|
+
:param Normalize norm: 特殊归一化方法
|
|
3087
|
+
:param str category: 行业中性化时,指定板块类别
|
|
3088
|
+
:param list[Indicator] style_inds: 用于中性化的风格指标列表
|
|
3089
|
+
"""
|
|
3088
3090
|
def clone(self) -> MultiFactorBase:
|
|
3089
3091
|
"""
|
|
3090
3092
|
克隆操作
|
|
@@ -3106,7 +3108,14 @@ class MultiFactorBase:
|
|
|
3106
3108
|
:return: ScoreRecordList
|
|
3107
3109
|
"""
|
|
3108
3110
|
def get_all_src_factors(self) -> list[list[Indicator]]:
|
|
3109
|
-
|
|
3111
|
+
"""
|
|
3112
|
+
get_all_src_factors(self)
|
|
3113
|
+
|
|
3114
|
+
获取所有原始因子列表(如果指定了标准化、行业中性化, 返回为已处理的因子列表)
|
|
3115
|
+
|
|
3116
|
+
:rtype: list
|
|
3117
|
+
:return: list IndicatorList stks x inds
|
|
3118
|
+
"""
|
|
3110
3119
|
def get_datetime_list(self) -> DatetimeList:
|
|
3111
3120
|
"""
|
|
3112
3121
|
获取参考日期列表(由参考证券通过查询条件获得)
|
|
@@ -3182,6 +3191,14 @@ class MultiFactorBase:
|
|
|
3182
3191
|
"""
|
|
3183
3192
|
是否存在指定参数
|
|
3184
3193
|
"""
|
|
3194
|
+
def set_normalize(self, norm: NormalizeBase) -> None:
|
|
3195
|
+
"""
|
|
3196
|
+
set_normalize(self, norm)
|
|
3197
|
+
|
|
3198
|
+
设置标准化或归一化方法(影响全部因子)
|
|
3199
|
+
|
|
3200
|
+
:param NormalizeBase norm: 标准化或归一化方法实例
|
|
3201
|
+
"""
|
|
3185
3202
|
def set_param(self, arg0: str, arg1: any) -> None:
|
|
3186
3203
|
"""
|
|
3187
3204
|
set_param(self, name, value)
|
|
@@ -3232,6 +3249,74 @@ class MultiFactorBase:
|
|
|
3232
3249
|
@query.setter
|
|
3233
3250
|
def query(self, arg1: Query) -> None:
|
|
3234
3251
|
...
|
|
3252
|
+
class NormalizeBase:
|
|
3253
|
+
"""
|
|
3254
|
+
用于 MF 的截面标准化操作
|
|
3255
|
+
"""
|
|
3256
|
+
@staticmethod
|
|
3257
|
+
def _pybind11_conduit_v1_(*args, **kwargs):
|
|
3258
|
+
...
|
|
3259
|
+
def __getstate__(self) -> tuple:
|
|
3260
|
+
...
|
|
3261
|
+
@typing.overload
|
|
3262
|
+
def __init__(self) -> None:
|
|
3263
|
+
...
|
|
3264
|
+
@typing.overload
|
|
3265
|
+
def __init__(self, arg0: NormalizeBase) -> None:
|
|
3266
|
+
...
|
|
3267
|
+
@typing.overload
|
|
3268
|
+
def __init__(self, arg0: str) -> None:
|
|
3269
|
+
"""
|
|
3270
|
+
初始化构造函数
|
|
3271
|
+
|
|
3272
|
+
:param str name: 名称
|
|
3273
|
+
"""
|
|
3274
|
+
def __repr__(self) -> str:
|
|
3275
|
+
...
|
|
3276
|
+
def __setstate__(self, arg0: tuple) -> None:
|
|
3277
|
+
...
|
|
3278
|
+
def __str__(self) -> str:
|
|
3279
|
+
...
|
|
3280
|
+
def clone(self) -> NormalizeBase:
|
|
3281
|
+
"""
|
|
3282
|
+
克隆操作
|
|
3283
|
+
"""
|
|
3284
|
+
def get_param(self, arg0: str) -> any:
|
|
3285
|
+
"""
|
|
3286
|
+
get_param(self, name)
|
|
3287
|
+
|
|
3288
|
+
获取指定的参数
|
|
3289
|
+
|
|
3290
|
+
:param str name: 参数名称
|
|
3291
|
+
:return: 参数值
|
|
3292
|
+
:raises out_of_range: 无此参数
|
|
3293
|
+
"""
|
|
3294
|
+
def have_param(self, arg0: str) -> bool:
|
|
3295
|
+
"""
|
|
3296
|
+
是否存在指定参数
|
|
3297
|
+
"""
|
|
3298
|
+
def normalize(self, arg0: collections.abc.Sequence[typing.SupportsFloat]) -> list[float]:
|
|
3299
|
+
"""
|
|
3300
|
+
【重载接口】子类计算接口
|
|
3301
|
+
"""
|
|
3302
|
+
def set_param(self, arg0: str, arg1: any) -> None:
|
|
3303
|
+
"""
|
|
3304
|
+
set_param(self, name, value)
|
|
3305
|
+
|
|
3306
|
+
设置参数
|
|
3307
|
+
|
|
3308
|
+
:param str name: 参数名称
|
|
3309
|
+
:param value: 参数值
|
|
3310
|
+
:raises logic_error: Unsupported type! 不支持的参数类型
|
|
3311
|
+
"""
|
|
3312
|
+
@property
|
|
3313
|
+
def name(self) -> str:
|
|
3314
|
+
"""
|
|
3315
|
+
名称
|
|
3316
|
+
"""
|
|
3317
|
+
@name.setter
|
|
3318
|
+
def name(self, arg1: str) -> None:
|
|
3319
|
+
...
|
|
3235
3320
|
class OrderBrokerBase:
|
|
3236
3321
|
"""
|
|
3237
3322
|
订单代理包装基类,用户可以参考自定义自己的订单代理,加入额外的处理
|
|
@@ -3507,6 +3592,10 @@ class Portfolio:
|
|
|
3507
3592
|
"""
|
|
3508
3593
|
是否存在指定参数
|
|
3509
3594
|
"""
|
|
3595
|
+
def last_suggestion(self) -> typing.Any:
|
|
3596
|
+
"""
|
|
3597
|
+
回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
|
|
3598
|
+
"""
|
|
3510
3599
|
def reset(self) -> None:
|
|
3511
3600
|
"""
|
|
3512
3601
|
复位操作
|
|
@@ -3803,8 +3892,6 @@ class PositionRecordList:
|
|
|
3803
3892
|
...
|
|
3804
3893
|
def to_pandas(self):
|
|
3805
3894
|
...
|
|
3806
|
-
def to_pyarrow(self):
|
|
3807
|
-
...
|
|
3808
3895
|
class ProfitGoalBase:
|
|
3809
3896
|
"""
|
|
3810
3897
|
盈利目标策略基类
|
|
@@ -4284,6 +4371,87 @@ class ScoreRecordList:
|
|
|
4284
4371
|
...
|
|
4285
4372
|
def to_pandas(self):
|
|
4286
4373
|
...
|
|
4374
|
+
class ScoresFilterBase:
|
|
4375
|
+
"""
|
|
4376
|
+
用于 MF 的截面标准化操作
|
|
4377
|
+
"""
|
|
4378
|
+
@staticmethod
|
|
4379
|
+
def _pybind11_conduit_v1_(*args, **kwargs):
|
|
4380
|
+
...
|
|
4381
|
+
def __getstate__(self) -> tuple:
|
|
4382
|
+
...
|
|
4383
|
+
@typing.overload
|
|
4384
|
+
def __init__(self) -> None:
|
|
4385
|
+
...
|
|
4386
|
+
@typing.overload
|
|
4387
|
+
def __init__(self, arg0: ScoresFilterBase) -> None:
|
|
4388
|
+
...
|
|
4389
|
+
@typing.overload
|
|
4390
|
+
def __init__(self, arg0: str) -> None:
|
|
4391
|
+
"""
|
|
4392
|
+
初始化构造函数
|
|
4393
|
+
|
|
4394
|
+
:param str name: 名称
|
|
4395
|
+
"""
|
|
4396
|
+
def __or__(self, arg0: ScoresFilterBase) -> ScoresFilterBase:
|
|
4397
|
+
...
|
|
4398
|
+
def __repr__(self) -> str:
|
|
4399
|
+
...
|
|
4400
|
+
def __setstate__(self, arg0: tuple) -> None:
|
|
4401
|
+
...
|
|
4402
|
+
def __str__(self) -> str:
|
|
4403
|
+
...
|
|
4404
|
+
def _filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
|
|
4405
|
+
"""
|
|
4406
|
+
【重载接口】子类计算接口
|
|
4407
|
+
"""
|
|
4408
|
+
def clone(self) -> ScoresFilterBase:
|
|
4409
|
+
"""
|
|
4410
|
+
克隆操作
|
|
4411
|
+
"""
|
|
4412
|
+
def filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
|
|
4413
|
+
"""
|
|
4414
|
+
filter(self, scores, date, query)
|
|
4415
|
+
|
|
4416
|
+
截面过滤
|
|
4417
|
+
:param list scores: 截面数据
|
|
4418
|
+
:param Datetime date: 截面日期
|
|
4419
|
+
:param KQuery query: 查询参数
|
|
4420
|
+
:return: 截面数据
|
|
4421
|
+
:rtype: ScoreRecordList
|
|
4422
|
+
"""
|
|
4423
|
+
def get_param(self, arg0: str) -> any:
|
|
4424
|
+
"""
|
|
4425
|
+
get_param(self, name)
|
|
4426
|
+
|
|
4427
|
+
获取指定的参数
|
|
4428
|
+
|
|
4429
|
+
:param str name: 参数名称
|
|
4430
|
+
:return: 参数值
|
|
4431
|
+
:raises out_of_range: 无此参数
|
|
4432
|
+
"""
|
|
4433
|
+
def have_param(self, arg0: str) -> bool:
|
|
4434
|
+
"""
|
|
4435
|
+
是否存在指定参数
|
|
4436
|
+
"""
|
|
4437
|
+
def set_param(self, arg0: str, arg1: any) -> None:
|
|
4438
|
+
"""
|
|
4439
|
+
set_param(self, name, value)
|
|
4440
|
+
|
|
4441
|
+
设置参数
|
|
4442
|
+
|
|
4443
|
+
:param str name: 参数名称
|
|
4444
|
+
:param value: 参数值
|
|
4445
|
+
:raises logic_error: Unsupported type! 不支持的参数类型
|
|
4446
|
+
"""
|
|
4447
|
+
@property
|
|
4448
|
+
def name(self) -> str:
|
|
4449
|
+
"""
|
|
4450
|
+
名称
|
|
4451
|
+
"""
|
|
4452
|
+
@name.setter
|
|
4453
|
+
def name(self, arg1: str) -> None:
|
|
4454
|
+
...
|
|
4287
4455
|
class SelectorBase:
|
|
4288
4456
|
"""
|
|
4289
4457
|
选择器策略基类,实现标的、系统策略的评估和选取算法,自定义选择器策略子类接口:
|
|
@@ -4361,6 +4529,14 @@ class SelectorBase:
|
|
|
4361
4529
|
"""
|
|
4362
4530
|
子类复位操作实现
|
|
4363
4531
|
"""
|
|
4532
|
+
def add_scores_filter(self, arg0: ScoresFilterBase) -> None:
|
|
4533
|
+
"""
|
|
4534
|
+
add_scores_filter(self, filter)
|
|
4535
|
+
|
|
4536
|
+
在已有过滤基础上新增过滤, 仅适用于 SE_MultiFactor
|
|
4537
|
+
|
|
4538
|
+
:param ScoresFilter filter: 新的过滤器
|
|
4539
|
+
"""
|
|
4364
4540
|
def add_stock(self, stock: Stock, sys: ...) -> None:
|
|
4365
4541
|
"""
|
|
4366
4542
|
add_stock(self, stock, sys)
|
|
@@ -4443,6 +4619,19 @@ class SelectorBase:
|
|
|
4443
4619
|
:param value: 参数值
|
|
4444
4620
|
:raises logic_error: Unsupported type! 不支持的参数类型
|
|
4445
4621
|
"""
|
|
4622
|
+
def set_scores_filter(self, arg0: ScoresFilterBase) -> None:
|
|
4623
|
+
"""
|
|
4624
|
+
set_scores_filter(self, filter)
|
|
4625
|
+
|
|
4626
|
+
设置 ScoresFilter, 将替换现有的过滤器. 仅适用于 SE_MultiFactor
|
|
4627
|
+
|
|
4628
|
+
:param ScoresFilter filter: ScoresFilter
|
|
4629
|
+
"""
|
|
4630
|
+
@property
|
|
4631
|
+
def mf(self) -> ...:
|
|
4632
|
+
"""
|
|
4633
|
+
获取关联的 MF
|
|
4634
|
+
"""
|
|
4446
4635
|
@property
|
|
4447
4636
|
def name(self) -> str:
|
|
4448
4637
|
"""
|
|
@@ -4461,6 +4650,11 @@ class SelectorBase:
|
|
|
4461
4650
|
"""
|
|
4462
4651
|
由 PF 运行时设定的实际运行系统列表
|
|
4463
4652
|
"""
|
|
4653
|
+
@property
|
|
4654
|
+
def scfilter(self) -> ScoresFilterBase:
|
|
4655
|
+
"""
|
|
4656
|
+
获取 ScoresFilter
|
|
4657
|
+
"""
|
|
4464
4658
|
class SignalBase:
|
|
4465
4659
|
"""
|
|
4466
4660
|
信号指示器基类
|
|
@@ -5311,6 +5505,15 @@ class StockManager:
|
|
|
5311
5505
|
"""
|
|
5312
5506
|
获取当前板块信息驱动参数
|
|
5313
5507
|
"""
|
|
5508
|
+
def get_category_list(self) -> list[str]:
|
|
5509
|
+
"""
|
|
5510
|
+
get_category_list(self)
|
|
5511
|
+
|
|
5512
|
+
获取所有板块分类
|
|
5513
|
+
|
|
5514
|
+
:return: 所有板块分类
|
|
5515
|
+
:rtype: StringList
|
|
5516
|
+
"""
|
|
5314
5517
|
def get_context(self) -> StrategyContext:
|
|
5315
5518
|
"""
|
|
5316
5519
|
获取当前上下文
|
|
@@ -5668,9 +5871,6 @@ class StockWeightList:
|
|
|
5668
5871
|
@staticmethod
|
|
5669
5872
|
def to_pandas(data):
|
|
5670
5873
|
...
|
|
5671
|
-
@staticmethod
|
|
5672
|
-
def to_pyarrow(data):
|
|
5673
|
-
...
|
|
5674
5874
|
def __bool__(self) -> bool:
|
|
5675
5875
|
"""
|
|
5676
5876
|
Check whether the list is nonempty
|
|
@@ -6267,6 +6467,10 @@ class System:
|
|
|
6267
6467
|
"""
|
|
6268
6468
|
是否存在指定参数
|
|
6269
6469
|
"""
|
|
6470
|
+
def last_suggestion(self) -> typing.Any:
|
|
6471
|
+
"""
|
|
6472
|
+
回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
|
|
6473
|
+
"""
|
|
6270
6474
|
def ready(self) -> None:
|
|
6271
6475
|
...
|
|
6272
6476
|
def reset(self) -> None:
|
|
@@ -6882,9 +7086,6 @@ class TimeLineList:
|
|
|
6882
7086
|
@staticmethod
|
|
6883
7087
|
def to_pandas(data):
|
|
6884
7088
|
...
|
|
6885
|
-
@staticmethod
|
|
6886
|
-
def to_pyarrow(data):
|
|
6887
|
-
...
|
|
6888
7089
|
def __bool__(self) -> bool:
|
|
6889
7090
|
"""
|
|
6890
7091
|
Check whether the list is nonempty
|
|
@@ -7847,8 +8048,6 @@ class TradeRecordList:
|
|
|
7847
8048
|
...
|
|
7848
8049
|
def to_pandas(self):
|
|
7849
8050
|
...
|
|
7850
|
-
def to_pyarrow(self):
|
|
7851
|
-
...
|
|
7852
8051
|
class TradeRequest:
|
|
7853
8052
|
"""
|
|
7854
8053
|
交易请求记录。系统内部在实现延迟操作时登记的交易请求信息。暴露该结构的主要目的是用于
|
|
@@ -7935,9 +8134,6 @@ class TransList:
|
|
|
7935
8134
|
@staticmethod
|
|
7936
8135
|
def to_pandas(data):
|
|
7937
8136
|
...
|
|
7938
|
-
@staticmethod
|
|
7939
|
-
def to_pyarrow(data):
|
|
7940
|
-
...
|
|
7941
8137
|
def __bool__(self) -> bool:
|
|
7942
8138
|
"""
|
|
7943
8139
|
Check whether the list is nonempty
|
|
@@ -8178,6 +8374,26 @@ def AGG_COUNT(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit:
|
|
|
8178
8374
|
"""
|
|
8179
8375
|
聚合函数: 非空值计数, 可参考 AGG_STD 帮助
|
|
8180
8376
|
"""
|
|
8377
|
+
def AGG_FUNC(ind: Indicator, agg_func: typing.Any, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
|
|
8378
|
+
"""
|
|
8379
|
+
AGG_FUNC(ind, agg_func[, ktype=Query.MIN, fill_null=False, unit=1]
|
|
8380
|
+
|
|
8381
|
+
使用自定函数聚合其他K线周期的指标。虽然支持python自定义函数, 但python函数需要GIL, 速度会慢。建议最好直接使用 C++ 自定义聚合函数。
|
|
8382
|
+
|
|
8383
|
+
示例, 计算日线时聚合分钟线收盘价的和:
|
|
8384
|
+
|
|
8385
|
+
>>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
|
|
8386
|
+
>>> ind = AGG_FUNC(CLOSE(), lambda ds, x: np.sum(x))
|
|
8387
|
+
>>> ind(k)
|
|
8388
|
+
|
|
8389
|
+
:param Indicator ind: 待计算指标
|
|
8390
|
+
:param callable agg_func: 自定义聚合函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回针对list的聚合结果, 注意是单个值
|
|
8391
|
+
:param KQuery.KType ktype: 聚合的K线周期
|
|
8392
|
+
:param bool fill_null: 是否填充缺失值
|
|
8393
|
+
:param int unit: 聚合周期单位 (上下文K线分组单位, 使用日线计算分钟线聚合时, unit=2代表聚合2天的分钟线)
|
|
8394
|
+
:return: 聚合结果
|
|
8395
|
+
:rtype: Indicator
|
|
8396
|
+
"""
|
|
8181
8397
|
def AGG_MAD(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
|
|
8182
8398
|
"""
|
|
8183
8399
|
聚合函数: 平均绝对偏差, 可参考 AGG_STD 帮助
|
|
@@ -9153,6 +9369,48 @@ def FLOOR(arg0: typing.SupportsFloat) -> Indicator:
|
|
|
9153
9369
|
:param data: 输入数据
|
|
9154
9370
|
:rtype: Indicator
|
|
9155
9371
|
"""
|
|
9372
|
+
def GROUP_COUNT(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9373
|
+
"""
|
|
9374
|
+
分组累积计数
|
|
9375
|
+
"""
|
|
9376
|
+
def GROUP_FUNC(ind: Indicator, group_func: typing.Any, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9377
|
+
"""
|
|
9378
|
+
GROUP_FUNC(ind, group_func[, ktype=Query.DAY, unit=1])
|
|
9379
|
+
|
|
9380
|
+
自定义分组累积计算指标。虽然支持python自定义函数, 但python函数需要GIL, 速度较慢。建议最好直接使用 C++ 自定义分组累积函数。
|
|
9381
|
+
|
|
9382
|
+
示例, 计算日线时聚合分钟线收盘价的和:
|
|
9383
|
+
|
|
9384
|
+
>>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
|
|
9385
|
+
>>> ind = GROUP_FUNC(CLOSE(), lambda dates, data: data/2.0)
|
|
9386
|
+
>>> ind(k)
|
|
9387
|
+
|
|
9388
|
+
:param Indicator ind: 待计算指标
|
|
9389
|
+
:param callable group_func: 自定义分组累积函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回和输入等长的累积计算结果, 类型同样须为 np.array
|
|
9390
|
+
:param KQuery.KType ktype: 分组的K线周期
|
|
9391
|
+
:param int unit: 分组周期单位 (分组的K线周期单位, 使用日线计算分钟线, unit=2代表按2天累积计算的分钟线)
|
|
9392
|
+
:rtype: Indicator
|
|
9393
|
+
"""
|
|
9394
|
+
def GROUP_MAX(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9395
|
+
"""
|
|
9396
|
+
分组累积最大值
|
|
9397
|
+
"""
|
|
9398
|
+
def GROUP_MEAN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9399
|
+
"""
|
|
9400
|
+
分组累积平均
|
|
9401
|
+
"""
|
|
9402
|
+
def GROUP_MIN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9403
|
+
"""
|
|
9404
|
+
分组累积最小值
|
|
9405
|
+
"""
|
|
9406
|
+
def GROUP_PROD(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9407
|
+
"""
|
|
9408
|
+
分组累积乘积
|
|
9409
|
+
"""
|
|
9410
|
+
def GROUP_SUM(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9411
|
+
"""
|
|
9412
|
+
分组累积和
|
|
9413
|
+
"""
|
|
9156
9414
|
@typing.overload
|
|
9157
9415
|
def HHV(n: typing.SupportsInt = 20) -> Indicator:
|
|
9158
9416
|
...
|
|
@@ -10124,6 +10382,36 @@ def NDAY(x: Indicator, y: Indicator, n: IndParam) -> Indicator:
|
|
|
10124
10382
|
:param int|Indicator|IndParam n: 时间窗口
|
|
10125
10383
|
:rtype: Indicator
|
|
10126
10384
|
"""
|
|
10385
|
+
def NORM_MinMax() -> NormalizeBase:
|
|
10386
|
+
"""
|
|
10387
|
+
最小-最大标准化操作
|
|
10388
|
+
"""
|
|
10389
|
+
def NORM_NOTHING() -> NormalizeBase:
|
|
10390
|
+
"""
|
|
10391
|
+
无截面标准化操作
|
|
10392
|
+
"""
|
|
10393
|
+
def NORM_Quantile(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
|
|
10394
|
+
"""
|
|
10395
|
+
分位数截面标准化操作
|
|
10396
|
+
|
|
10397
|
+
:param quantile_min: 最小分位数
|
|
10398
|
+
:param quantile_max: 最大分位数
|
|
10399
|
+
"""
|
|
10400
|
+
def NORM_Quantile_Uniform(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
|
|
10401
|
+
"""
|
|
10402
|
+
分位数截面均匀分布标准化操作
|
|
10403
|
+
|
|
10404
|
+
:param quantile_min: 最小分位数
|
|
10405
|
+
:param quantile_max: 最大分位数
|
|
10406
|
+
"""
|
|
10407
|
+
def NORM_Zscore(out_extreme: bool = False, nsigma: typing.SupportsFloat = 3.0, recursive: bool = False) -> NormalizeBase:
|
|
10408
|
+
"""
|
|
10409
|
+
Z-score 标准化操作
|
|
10410
|
+
|
|
10411
|
+
:param out_extreme: 是否剔除异常值
|
|
10412
|
+
:param nsigma: 异常值判断倍数±3.0
|
|
10413
|
+
:param recursive: 是否递归处理异常值
|
|
10414
|
+
"""
|
|
10127
10415
|
@typing.overload
|
|
10128
10416
|
def NOT() -> Indicator:
|
|
10129
10417
|
...
|
|
@@ -10262,6 +10550,22 @@ def PRICELIST(data: typing.Any = None, discard: typing.SupportsInt = 0, align_da
|
|
|
10262
10550
|
:rtype: Indicator
|
|
10263
10551
|
"""
|
|
10264
10552
|
@typing.overload
|
|
10553
|
+
def QUANTILE_TRUNC(n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
|
|
10554
|
+
...
|
|
10555
|
+
@typing.overload
|
|
10556
|
+
def QUANTILE_TRUNC(data: Indicator, n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
|
|
10557
|
+
"""
|
|
10558
|
+
QUANTILE_TRUNC(data[, n=60, quantial_min=0.01, quantial_max=0.99])
|
|
10559
|
+
|
|
10560
|
+
对数据进行分位数截断处理。非窗口滚动。
|
|
10561
|
+
|
|
10562
|
+
:param Indicator data: 待剔除异常值数据
|
|
10563
|
+
:param int n: 时间窗口
|
|
10564
|
+
:param float quantial_min: 剔除极值时使用的百分位数下限,默认 0.01
|
|
10565
|
+
:param float quantial_max: 剔除极值时使用的百分位数上限,默认 0.99
|
|
10566
|
+
:rtype: Indicator
|
|
10567
|
+
"""
|
|
10568
|
+
@typing.overload
|
|
10265
10569
|
def RANK(stks: collections.abc.Sequence, mode: typing.SupportsInt = 0, fill_null: bool = True, market: str = 'SH') -> Indicator:
|
|
10266
10570
|
...
|
|
10267
10571
|
@typing.overload
|
|
@@ -10619,6 +10923,59 @@ def SAFTYLOSS(data: Indicator, n1: Indicator, n2: Indicator, p: Indicator) -> In
|
|
|
10619
10923
|
:param float|Indicator|IndParam p: 噪音系数
|
|
10620
10924
|
:rtype: Indicator
|
|
10621
10925
|
"""
|
|
10926
|
+
def SCFilter_AmountLimit(min_amount_percent_limit: typing.SupportsFloat = 0.1) -> ScoresFilterBase:
|
|
10927
|
+
"""
|
|
10928
|
+
SCFilter_AmountLimit([min_amount_percent_limit: float = 0.1])
|
|
10929
|
+
|
|
10930
|
+
过滤掉成交金额在评分列表末尾百分比范围内的截面
|
|
10931
|
+
|
|
10932
|
+
注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是成交金额较小的系统评分记录;反之,则是金额较大的系统评分记录
|
|
10933
|
+
|
|
10934
|
+
:param double min_amount_percent_limit: 最小金额百分比限制
|
|
10935
|
+
:return: 截面过滤器
|
|
10936
|
+
:rtype: ScoresFilterPtr
|
|
10937
|
+
"""
|
|
10938
|
+
def SCFilter_Group(group: typing.SupportsInt = 10, group_index: typing.SupportsInt = 0) -> ScoresFilterBase:
|
|
10939
|
+
"""
|
|
10940
|
+
SCFilter_Group([group: int=10, group_index: int=0])
|
|
10941
|
+
|
|
10942
|
+
按截面进行分组过滤
|
|
10943
|
+
:param int group: 分组数量
|
|
10944
|
+
:param int group_index: 分组索引
|
|
10945
|
+
:return: 截面过滤器
|
|
10946
|
+
:rtype: ScoresFilterPtr
|
|
10947
|
+
"""
|
|
10948
|
+
def SCFilter_IgnoreNan() -> ScoresFilterBase:
|
|
10949
|
+
"""
|
|
10950
|
+
SCFilter_IgnoreNan() -> ScoresFilterPtr
|
|
10951
|
+
|
|
10952
|
+
忽略截面中的NAN值
|
|
10953
|
+
"""
|
|
10954
|
+
def SCFilter_LessOrEqualValue(value: typing.SupportsFloat = 0.0) -> ScoresFilterBase:
|
|
10955
|
+
"""
|
|
10956
|
+
SCFilter_LessOrEqualValue([value = 0.0])
|
|
10957
|
+
|
|
10958
|
+
过滤掉评分小于等于指定值的截面
|
|
10959
|
+
"""
|
|
10960
|
+
def SCFilter_Price(min_price: typing.SupportsFloat = 10.0, max_price: typing.SupportsFloat = 100000.0) -> ScoresFilterBase:
|
|
10961
|
+
"""
|
|
10962
|
+
SCFilter_Price([min_price = 10., max_price = 100000.])
|
|
10963
|
+
|
|
10964
|
+
仅保留价格在 [min_price, max_price] 之间的标的
|
|
10965
|
+
|
|
10966
|
+
注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是价格较小的系统评分记录;反之,则是价格较大的系统评分记录
|
|
10967
|
+
|
|
10968
|
+
:param double min_price: 最小价格限制
|
|
10969
|
+
:param double max_price: 最大价格限制
|
|
10970
|
+
"""
|
|
10971
|
+
def SCFilter_TopN(topn: typing.SupportsInt = 10) -> ScoresFilterBase:
|
|
10972
|
+
"""
|
|
10973
|
+
SCFilter_TopN([topn: int=10])
|
|
10974
|
+
|
|
10975
|
+
获取评分列表中的前 topn 个
|
|
10976
|
+
|
|
10977
|
+
:param int topn: 前 topn 个
|
|
10978
|
+
"""
|
|
10622
10979
|
def SE_EvaluateOptimal(arg0: typing.Any) -> SelectorBase:
|
|
10623
10980
|
"""
|
|
10624
10981
|
SE_EvaluateOptimal(evalulate_func)
|
|
@@ -10669,6 +11026,27 @@ def SE_MultiFactor(inds: collections.abc.Sequence, topn: typing.SupportsInt = 10
|
|
|
10669
11026
|
:param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
|
|
10670
11027
|
:param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
|
|
10671
11028
|
"""
|
|
11029
|
+
@typing.overload
|
|
11030
|
+
def SE_MultiFactor2(mf: ..., filter: ScoresFilterBase = ...) -> SelectorBase:
|
|
11031
|
+
...
|
|
11032
|
+
@typing.overload
|
|
11033
|
+
def SE_MultiFactor2(inds: collections.abc.Sequence, ic_n: typing.SupportsInt = 5, ic_rolling_n: typing.SupportsInt = 120, ref_stk: typing.Any = None, spearman: bool = True, mode: str = 'MF_ICIRWeight', filter: ScoresFilterBase = ...) -> SelectorBase:
|
|
11034
|
+
"""
|
|
11035
|
+
SE_MultiFactor2([inds, ic_n, ic_rolling_n, ref_stk, spearman, mode, filter])
|
|
11036
|
+
|
|
11037
|
+
创建基于多因子评分的选择器,两种创建方式
|
|
11038
|
+
|
|
11039
|
+
- 直接指定 MF:
|
|
11040
|
+
:param MultiFactorBase mf: 直接指定的多因子合成算法
|
|
11041
|
+
|
|
11042
|
+
- 参数直接创建:
|
|
11043
|
+
:param sequense(Indicator) inds: 原始因子列表
|
|
11044
|
+
:param int ic_n: 默认 IC 对应的 N 日收益率
|
|
11045
|
+
:param int ic_rolling_n: IC 滚动周期
|
|
11046
|
+
:param Stock ref_stk: 参考证券 (未指定时,默认为 sh000300 沪深300)
|
|
11047
|
+
:param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
|
|
11048
|
+
:param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
|
|
11049
|
+
"""
|
|
10672
11050
|
def SE_PerformanceOptimal(key: str = '帐户平均年收益率%', mode: typing.SupportsInt = 0) -> SelectorBase:
|
|
10673
11051
|
"""
|
|
10674
11052
|
SE_PerformanceOptimal(key="帐户平均年收益率%", mode=0)
|
|
@@ -11079,6 +11457,48 @@ def SP_FixedValue(value: typing.SupportsFloat = 0.01) -> SlippageBase:
|
|
|
11079
11457
|
:param float p: 偏移价格
|
|
11080
11458
|
:return: 移滑价差算法实例
|
|
11081
11459
|
"""
|
|
11460
|
+
def SP_LogNormal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05) -> SlippageBase:
|
|
11461
|
+
"""
|
|
11462
|
+
SP_LogNormal([mean=0.0, stddev=0.05])
|
|
11463
|
+
|
|
11464
|
+
对数正态分布随机价格移滑价差算法, 买入和卖出操作是价格在对数正态分布[mean, stddev]范围内的随机偏移
|
|
11465
|
+
|
|
11466
|
+
:param float mean: 对数正态分布的均值
|
|
11467
|
+
:param float stddev: 对数正态分布的标准差
|
|
11468
|
+
:return: 移滑价差算法实例
|
|
11469
|
+
"""
|
|
11470
|
+
def SP_Normal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05) -> SlippageBase:
|
|
11471
|
+
"""
|
|
11472
|
+
SP_Normal([mean=0.0, stddev=0.05])
|
|
11473
|
+
|
|
11474
|
+
正态分布随机价格移滑价差算法, 买入和卖出操作是价格在正态分布[mean, stddev]范围内的随机偏移
|
|
11475
|
+
|
|
11476
|
+
:param float mean: 正态分布的均值
|
|
11477
|
+
:param float stddev: 正态分布的标准差
|
|
11478
|
+
:return: 移滑价差算法实例
|
|
11479
|
+
"""
|
|
11480
|
+
def SP_TruncNormal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05, min_value: typing.SupportsFloat = -0.11, max_value: typing.SupportsFloat = 0.1) -> SlippageBase:
|
|
11481
|
+
"""
|
|
11482
|
+
SP_TruncNormal([mean=0.0, stddev=0.05, min_value=-0.1, max_value=0.1])
|
|
11483
|
+
|
|
11484
|
+
截断正态分布随机价格移滑价差算法, 买入和卖出操作是价格在截断正态分布[mean, stddev, min_value, max_value]范围内的随机偏移
|
|
11485
|
+
|
|
11486
|
+
:param float mean: 截断正态分布的均值
|
|
11487
|
+
:param float stddev: 截断正态分布的标准差
|
|
11488
|
+
:param float min_value: 最小截断值
|
|
11489
|
+
:param float max_value: 最大截断值
|
|
11490
|
+
:return: 移滑价差算法实例
|
|
11491
|
+
"""
|
|
11492
|
+
def SP_Uniform(min_value: typing.SupportsFloat = -0.05, max_value: typing.SupportsFloat = 0.05) -> SlippageBase:
|
|
11493
|
+
"""
|
|
11494
|
+
SP_Uniform([min_value=-0.05, max_value=0.05])
|
|
11495
|
+
|
|
11496
|
+
均匀分布随机价格移滑价差算法, 买入和卖出操作是价格在[min_value, max_value]范围内的均匀分布随机偏移
|
|
11497
|
+
|
|
11498
|
+
:param float min_value: 最小偏移价格
|
|
11499
|
+
:param float max_value: 最大偏移价格
|
|
11500
|
+
:return: 移滑价差算法实例
|
|
11501
|
+
"""
|
|
11082
11502
|
@typing.overload
|
|
11083
11503
|
def SQRT() -> Indicator:
|
|
11084
11504
|
...
|
|
@@ -13768,7 +14188,7 @@ def ZSCORE(data: Indicator, out_extreme: bool = False, nsigma: typing.SupportsFl
|
|
|
13768
14188
|
"""
|
|
13769
14189
|
ZSCORE(data[, out_extreme, nsigma, recursive])
|
|
13770
14190
|
|
|
13771
|
-
|
|
14191
|
+
对数据进行标准化(归一),可选进行极值处理
|
|
13772
14192
|
|
|
13773
14193
|
注:非窗口滚动,如需窗口滚动的标准化,直接 (x - MA(x, n)) / STDEV(x, n) 即可。
|
|
13774
14194
|
|
|
@@ -13822,6 +14242,15 @@ def batch_calculate_inds(arg0: collections.abc.Sequence, arg1: KData) -> list:
|
|
|
13822
14242
|
:return: 指标计算结果列表
|
|
13823
14243
|
:rtype: list
|
|
13824
14244
|
"""
|
|
14245
|
+
def bind_email(arg0: str, arg1: str) -> None:
|
|
14246
|
+
"""
|
|
14247
|
+
bind_email(email: str, code: str)
|
|
14248
|
+
|
|
14249
|
+
绑定邮箱和授权码
|
|
14250
|
+
|
|
14251
|
+
:param str email: 邮箱地址
|
|
14252
|
+
:param str code: 授权码
|
|
14253
|
+
"""
|
|
13825
14254
|
def can_upgrade() -> bool:
|
|
13826
14255
|
...
|
|
13827
14256
|
def close_ostream_to_python() -> None:
|
|
@@ -13882,10 +14311,6 @@ def dates_to_np(arg0: DatetimeList) -> numpy.ndarray:
|
|
|
13882
14311
|
"""
|
|
13883
14312
|
将 DatetimeList 转换为 NumPy 元组
|
|
13884
14313
|
"""
|
|
13885
|
-
def dates_to_pa(arg0: DatetimeList) -> typing.Any:
|
|
13886
|
-
"""
|
|
13887
|
-
将日期列表转换为 pyarrow.Table 对象
|
|
13888
|
-
"""
|
|
13889
14314
|
def df_to_krecords(df: typing.Any, columns: collections.abc.Sequence[str] = ['datetime', 'open', 'high', 'low', 'close', 'amount', 'volume']) -> KRecordList:
|
|
13890
14315
|
"""
|
|
13891
14316
|
df_to_krecords(df: pd.DataFrame[, columns: dict]) -> KRecordList
|
|
@@ -13899,7 +14324,7 @@ def df_to_krecords(df: typing.Any, columns: collections.abc.Sequence[str] = ['da
|
|
|
13899
14324
|
def fetch_trial_license(arg0: str) -> str:
|
|
13900
14325
|
"""
|
|
13901
14326
|
fetch_trial_license(email: str)
|
|
13902
|
-
|
|
14327
|
+
|
|
13903
14328
|
获取试用授权码
|
|
13904
14329
|
|
|
13905
14330
|
:param str email: 邮箱地址
|
|
@@ -13947,38 +14372,23 @@ def get_date_range(start: Datetime, end: Datetime) -> DatetimeList:
|
|
|
13947
14372
|
:param Datetime end: 结束日期
|
|
13948
14373
|
:rtype: DatetimeList
|
|
13949
14374
|
"""
|
|
13950
|
-
|
|
13951
|
-
|
|
13952
|
-
|
|
13953
|
-
|
|
13954
|
-
|
|
14375
|
+
def get_expire_date() -> Datetime:
|
|
14376
|
+
"""
|
|
14377
|
+
get_expire_date() -> Datetime
|
|
14378
|
+
|
|
14379
|
+
查看授权到期时间
|
|
14380
|
+
"""
|
|
14381
|
+
def get_funds_list(arg0: collections.abc.Sequence[TradeManager], arg1: DatetimeList) -> list[list[FundsRecord]]:
|
|
13955
14382
|
"""
|
|
13956
|
-
|
|
14383
|
+
get_funds_list(tm_list: list, ref_dates: DatetimeList) -> list[Funds])
|
|
13957
14384
|
|
|
13958
|
-
|
|
13959
|
-
|
|
13960
|
-
:param stks: 证券列表
|
|
13961
|
-
:param list[Indicator] inds: 指标列表
|
|
13962
|
-
:param Datetime date: 指定日期
|
|
13963
|
-
:param int cal_len: 计算需要的数据长度
|
|
13964
|
-
:param str ktype: k线类型
|
|
13965
|
-
:param str market: 指定行情市场(用于日期对齐)
|
|
14385
|
+
一次性从多个账户中获取多个指定时刻的账户资金信息
|
|
13966
14386
|
|
|
13967
|
-
|
|
13968
|
-
|
|
13969
|
-
|
|
13970
|
-
:param stks: 指定证券列表
|
|
13971
|
-
:param list[Indicator] inds: 指定指标列表
|
|
13972
|
-
:param Query query: 查询条件
|
|
13973
|
-
:param str market: 指定行情市场(用于日期对齐)
|
|
14387
|
+
:param list tm_list: 账户列表
|
|
14388
|
+
:param DatetimeList ref_dates: 获取时刻列表
|
|
14389
|
+
:return: 账户资金列表
|
|
13974
14390
|
"""
|
|
13975
14391
|
@typing.overload
|
|
13976
|
-
def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
|
|
13977
|
-
...
|
|
13978
|
-
@typing.overload
|
|
13979
|
-
def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], date: Datetime, cal_len: typing.SupportsInt = 100, ktype: str = 'DAY', market: str = 'SH') -> typing.Any:
|
|
13980
|
-
...
|
|
13981
|
-
@typing.overload
|
|
13982
14392
|
def get_kdata(arg0: str, arg1: Query) -> KData:
|
|
13983
14393
|
...
|
|
13984
14394
|
@typing.overload
|
|
@@ -14009,23 +14419,6 @@ def get_log_level() -> LOG_LEVEL:
|
|
|
14009
14419
|
"""
|
|
14010
14420
|
获取当前日志级别
|
|
14011
14421
|
"""
|
|
14012
|
-
def get_market_view(stks: collections.abc.Sequence, date: Datetime = ..., market: str = 'SH') -> typing.Any:
|
|
14013
|
-
"""
|
|
14014
|
-
get_market_view(stks[, date=Datetime(), market='SH']) -> pandas.DataFrame
|
|
14015
|
-
|
|
14016
|
-
获取指定股票集合在指定交易日的行情数据,不包含当日停牌无数据的股票。如未指定日期,则返回最后交易日行情数据,
|
|
14017
|
-
如同时接收了行情数据,则为实时行情。
|
|
14018
|
-
|
|
14019
|
-
注: 此函数依赖于日线数据
|
|
14020
|
-
|
|
14021
|
-
:param list[Stock] stks: 股票列表
|
|
14022
|
-
:param Datetime date: 获取指定日期的行情数据
|
|
14023
|
-
:param str market: 市场代码
|
|
14024
|
-
:return: 指定股票列表最后行情数据
|
|
14025
|
-
:rtype: pandas.DataFrame
|
|
14026
|
-
"""
|
|
14027
|
-
def get_market_view_pyarrow(stks: collections.abc.Sequence, date: Datetime = ..., market: str = 'SH') -> typing.Any:
|
|
14028
|
-
...
|
|
14029
14422
|
def get_spot_from_buffer_server(arg0: str, arg1: str, arg2: str, arg3: Datetime) -> list[SpotRecord]:
|
|
14030
14423
|
"""
|
|
14031
14424
|
get_spot_from_buffer_server(addr: str, market: str, code: str, datetime: str)
|
|
@@ -14112,16 +14505,33 @@ def krecords_to_df(arg0: KRecordList) -> typing.Any:
|
|
|
14112
14505
|
...
|
|
14113
14506
|
def krecords_to_np(arg0: KRecordList) -> numpy.ndarray:
|
|
14114
14507
|
...
|
|
14115
|
-
def krecords_to_pa(arg0: KRecordList) -> typing.Any:
|
|
14116
|
-
"""
|
|
14117
|
-
将KRecordList转换为parraw.Table
|
|
14118
|
-
"""
|
|
14119
14508
|
def open_ostream_to_python() -> None:
|
|
14120
14509
|
...
|
|
14121
14510
|
def open_spend_time() -> None:
|
|
14122
14511
|
"""
|
|
14123
14512
|
全局开启 c++ 部分耗时打印
|
|
14124
14513
|
"""
|
|
14514
|
+
def parallel_run_pf(pf_list: collections.abc.Sequence[...], query: Query, force: bool = False) -> list[list[...]]:
|
|
14515
|
+
"""
|
|
14516
|
+
parallel_run_pf(pf_list, query[, force=False])
|
|
14517
|
+
|
|
14518
|
+
并行执行多个投资组合策略, 并返回 list FundsList, 各账户对应资产(按query时间段)
|
|
14519
|
+
|
|
14520
|
+
:param list pf_list: 投资组合列表
|
|
14521
|
+
:param Query query: 查询条件
|
|
14522
|
+
:param bool force: 强制重新计算
|
|
14523
|
+
"""
|
|
14524
|
+
def parallel_run_sys(sys_list: collections.abc.Sequence[...], query: Query, reset: bool = False, reset_all: bool = False) -> list[list[...]]:
|
|
14525
|
+
"""
|
|
14526
|
+
parallel_run_sys(sys_list, query[, reset=False, reset_all=False])
|
|
14527
|
+
|
|
14528
|
+
并行运行多个系系统, 并返回 list FundsList, 各账户对应资产(按query时间段)
|
|
14529
|
+
|
|
14530
|
+
:param sys_list: 系统列表
|
|
14531
|
+
:param query: 查询条件
|
|
14532
|
+
:param bool reset: 执行前是否依据系统部件共享属性复位
|
|
14533
|
+
:param bool reset_all: 强制复位所有部件
|
|
14534
|
+
"""
|
|
14125
14535
|
def positions_to_df(arg0: PositionRecordList) -> typing.Any:
|
|
14126
14536
|
"""
|
|
14127
14537
|
positions_to_df(positions)
|
|
@@ -14140,10 +14550,6 @@ def positions_to_np(arg0: PositionRecordList) -> numpy.ndarray:
|
|
|
14140
14550
|
|
|
14141
14551
|
注意: 其中的当前市值、利润、盈亏等计算值均以日线计算, 如使用日线一下级别回测时, 对未清仓的持仓记录需要自行重新计算!
|
|
14142
14552
|
"""
|
|
14143
|
-
def positions_to_pa(arg0: PositionRecordList) -> typing.Any:
|
|
14144
|
-
"""
|
|
14145
|
-
将交易记录列表转换为 pyarrow.Table 对象
|
|
14146
|
-
"""
|
|
14147
14553
|
@typing.overload
|
|
14148
14554
|
def register_extra_ktype(ktype: str, basetype: str, minutes: typing.SupportsInt, get_phase_end: collections.abc.Callable[[Datetime], Datetime]) -> None:
|
|
14149
14555
|
...
|
|
@@ -14187,7 +14593,7 @@ def release_extra_ktype() -> None:
|
|
|
14187
14593
|
def remove_license() -> None:
|
|
14188
14594
|
"""
|
|
14189
14595
|
remove_license()
|
|
14190
|
-
|
|
14596
|
+
|
|
14191
14597
|
移除当前授权
|
|
14192
14598
|
"""
|
|
14193
14599
|
@typing.overload
|
|
@@ -14281,16 +14687,19 @@ def spot_agent_is_running() -> bool:
|
|
|
14281
14687
|
"""
|
|
14282
14688
|
判断行情数据接收代理是否在运行
|
|
14283
14689
|
"""
|
|
14284
|
-
def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt =
|
|
14690
|
+
def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 3, save_tick: bool = False, buf_tick: bool = False, parquet_path: str = '') -> None:
|
|
14285
14691
|
"""
|
|
14286
|
-
start_data_server(addr: str[, work_num: int=
|
|
14692
|
+
start_data_server(addr: str[, work_num: int=3, save_tick: bool=False, buf_tick: bool=False, parquet_path: str=''])
|
|
14287
14693
|
|
|
14288
|
-
|
|
14289
|
-
|
|
14694
|
+
启动数据缓存服务。其中save_tick 参数和 parquet_path 有关联:
|
|
14695
|
+
- 如果 save_tick=True, parquet_path 不为空时, 使用 parquet_path 保存数据;
|
|
14696
|
+
- 如果 save_tick=True, parquet_path 为空时, 则使用 clickhouse K线存储引擎保存数据(需配置使用 clickhouse K线存储引擎)
|
|
14697
|
+
|
|
14290
14698
|
:param str addr: 服务器地址
|
|
14291
14699
|
:param int work_num: 工作线程数
|
|
14292
|
-
:param bool save_tick: 是否保存tick数据至数据库(
|
|
14700
|
+
:param bool save_tick: 是否保存tick数据至数据库(如果 parquet_path 不为空时, 使用 parquet 文件进行保存;否则,需使用 clickhouse K线存储引擎)
|
|
14293
14701
|
:param bool buf_tick: 是否缓存tick数据
|
|
14702
|
+
:param str parquet_path: 保存tick数据至parquet文件路径, 仅在 save_tick=True 时有效
|
|
14294
14703
|
:return: None
|
|
14295
14704
|
"""
|
|
14296
14705
|
def start_spot_agent(print: bool = False, worker_num: typing.SupportsInt = 1, addr: str = '') -> None:
|
|
@@ -14325,10 +14734,6 @@ def timeline_to_np(arg0: TimeLineList) -> numpy.ndarray:
|
|
|
14325
14734
|
"""
|
|
14326
14735
|
将分时线记录转换为NumPy元组
|
|
14327
14736
|
"""
|
|
14328
|
-
def timeline_to_pa(arg0: TimeLineList) -> typing.Any:
|
|
14329
|
-
"""
|
|
14330
|
-
将分时线记录转换为 pyarrow.Table 对象
|
|
14331
|
-
"""
|
|
14332
14737
|
def toPriceList(arg0: collections.abc.Sequence) -> list[float]:
|
|
14333
14738
|
"""
|
|
14334
14739
|
将 python list/tuple/np.arry 对象转化为 PriceList 对象
|
|
@@ -14345,10 +14750,6 @@ def trades_to_df(arg0: TradeRecordList) -> typing.Any:
|
|
|
14345
14750
|
"""
|
|
14346
14751
|
def trades_to_np(arg0: TradeRecordList) -> numpy.ndarray:
|
|
14347
14752
|
...
|
|
14348
|
-
def trades_to_pa(arg0: TradeRecordList) -> typing.Any:
|
|
14349
|
-
"""
|
|
14350
|
-
将交易记录列表转换为 pyarrow.Table 对象
|
|
14351
|
-
"""
|
|
14352
14753
|
def translist_to_df(arg0: TransList) -> typing.Any:
|
|
14353
14754
|
"""
|
|
14354
14755
|
将分笔记录转换为 DataFrame
|
|
@@ -14357,10 +14758,6 @@ def translist_to_np(arg0: TransList) -> numpy.ndarray:
|
|
|
14357
14758
|
"""
|
|
14358
14759
|
将分笔记录转换为NumPy元组
|
|
14359
14760
|
"""
|
|
14360
|
-
def translist_to_pa(arg0: TransList) -> typing.Any:
|
|
14361
|
-
"""
|
|
14362
|
-
将分笔记录转换为 pyarrow.Table 对象
|
|
14363
|
-
"""
|
|
14364
14761
|
def view_license() -> str:
|
|
14365
14762
|
"""
|
|
14366
14763
|
view_license()
|
|
@@ -14371,10 +14768,6 @@ def weights_to_df(arg0: StockWeightList) -> typing.Any:
|
|
|
14371
14768
|
...
|
|
14372
14769
|
def weights_to_np(arg0: StockWeightList) -> numpy.ndarray:
|
|
14373
14770
|
...
|
|
14374
|
-
def weights_to_pa(arg0: StockWeightList) -> typing.Any:
|
|
14375
|
-
"""
|
|
14376
|
-
将权息记录列表转换为 pyarrow.Table 对象
|
|
14377
|
-
"""
|
|
14378
14771
|
DEBUG: LOG_LEVEL # value = <LOG_LEVEL.DEBUG: 1>
|
|
14379
14772
|
ERROR: LOG_LEVEL # value = <LOG_LEVEL.ERROR: 4>
|
|
14380
14773
|
FATAL: LOG_LEVEL # value = <LOG_LEVEL.FATAL: 5>
|